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Anthocyanins are natural phenolic pigments with biological activity. They are well-known to
have potent antioxidant and antiinflammatory activity, which explains the various biological
effects reported for these substances suggesting their antidiabetic and anticancer activities,
and their role in cardiovascular and neuroprotective prevention. This review aims to
comprehensively analyze different studies performed on this class of compounds, their
bioavailability and their therapeutic potential. An in-depth look in preclinical, in vitro and in
vivo, and clinical studies indicates the preventive effects of anthocyanins on cardioprotection,
neuroprotection, antiobesity as well as their antidiabetes and anticancer effects.

Keywords: anthocyanins, biodisponibility, neuroprotective, cardioprotective, antiobesity, antidiabetic,
antioxidant, anticancer
INTRODUCTION

Anthocyanins (ACNs) are natural bioactive water-soluble phenolic compounds, which represent one
of the principal families of natural pigments (orange, red, violet, and blue colors) (Riaz et al., 2016).
More than 700 ACNs were identified in nature, and they are produced by plants to attract insects to
flowers for pollination and herbivorous animals to fruits for seed dissemination, as well as for the
protection of plant cells against UV radiation damage (Markakis, 2012; Wallace and Giusti, 2013;
Warner, 2015). ACNs are widely found in different plant families, for example, Vitaceae, Rosaceae,
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Ericaceae, Saxifragaceae, Caprifoliaceae, Cruciferae, and Fabaceae
(Mazza and Miniati, 2018). The name is derived from the Greek
word anthos, which means flower and kyanos (blue) (Sui, 2016).
ACNs are a subclass of flavonoids and are distributed in different
parts of the plants, especially in flowers and fruits (Gupta, 2006;
Pascual-Teresa et al., 2010; Wallace and Giusti, 2013; Riaz
et al., 2016).

ACNs are natural bioactive compounds withmany pharmacological
effects: antioxidant, antiinflammatory, prevention of age-related
chronic diseases: cardiovascular disease (CVD), cancers,
neurodegenerative, and eye-related diseases. ACNs also have
antiviral properties. Recent in vitro studies have shown that they
can inhibit the replication of viruses such as herpes simplex,
parainfluenza virus, syncytial virus, HIV, rotavirus, and adenovirus
(Pour et al., 2019).

The broad spectrum of pharmacological properties supported
by preclinical and clinical evidence, associated with a low toxicity
make their pharmacotherapeutic use very attractive.

ACNs are used in the food industry to replace synthetic
colorants (Mazza and Miniati, 2018).

The current review comprehensively analyzes different studies
performed on this class of compounds, their bioavailability,
the therapeutic potential, molecular mechanisms of action, as
well as their clinical significance in the prevention of chronic
noncommunicable diseases.
MODERN TECHNOLOGY OF
EXTRACTION, STABILITY, AND
BIOAVAILABILITY OF ACNS

Extraction of ACNs
ACNs are a group of phytochemicals that are evaluated as
important compounds in nutrition and medicine. As plant
metabolites, they are known to be beneficial to health by
acting as antioxidants and having antiinflammatory effects.
Due to these beneficial effects on health, flavonoids are used
in nutraceutical, pharmaceutical, medicinal and cosmetic
production. ACNs molecules are found in a variety of fruits,
vegetables, grains, roots, stems, leaves, flowers, and bark. In order
to process ACNs as nutritional supplements, pharmaceuticals or
as active ingredients in food or cosmetics, ACNs must be released
from the plant cell matrix.

Therefore, a strong, efficient, and reliable extraction method
is needed.

Ultrasonic extraction is a nonthermal insulation technique that
prevents thermal decomposition of heat sensitive compounds.
Ultrasound extraction promotes the release of high quality
ACNs from plants resulting in higher yields and a faster process.
Sonicare is a light, green and efficient technique for the industrial
production of food ACNs (Belwal et al., 2019)

Advantages of ultrasound extraction: higher yields, fast extraction
process: in a few minutes high quality extracts—easy, nonthermal
extractiongreensolvents (water, ethanol, glycerin, vegetableoils, etc.),
easy and safe operation, low operating, and investment costs,
robustness and lowmaintenance.
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Enzymatic methods are more efficient because they offer the
possibility of being exploited high regioselectivity of these
biocatalysts, achieving a selective functionalization of the flavonoid.

Stability of ACNs
Therapeutic use of ACNs is limited by reduced stability and their
low solubility, both in organic solvents and in aqueous solutions.
However, ACNs can be converted to glycosylated or acylated
derivatives by chemical, enzymatic or chemoenzimatics methods.

The transformation of ACNs into bioconjugates by fatty acid
acylation offers the possibility to introduce into the molecule
another biologically active function and thus positively modify
not only physical properties such as solubility, but and
biological activity.

The protection and especially the controlled release of various
organic molecules is achieved almost exclusively by means of
encapsulated compounds. For example, cyclodextrins are part of
the most used class receptors in host-guest inclusion chemistry.
Advantages of encapsulation in cyclodextrins of active
substances biological effects are: improving bioavailability,
increasing stability, reducing side effects.

Bioavailability of ACNs
The chemical structure of ACNs is composed of an aglycone
basic unit (polyhydroxy and polymethoxy derivatives of 2-
phenylbenzopyrylium or flavylium salts) and a glycone, the
sugar moiety. The position, nature and number of sugar
moieties and their acylation as well as the position and
number of hydroxyl groups and their degree of methylation
result in various types of ACNs (Jackman et al., 1987; Mazza and
Miniati, 2018).

Pelargonidin, delphinidin, cyanidin, peonidin, petunidin, and
malvidin (Figure 1) are the most frequently occurring
anthocyanidins in plants. Similar to other flavonoids, ACNs
are characterized by the same carbon skeleton (C6-C3-C6).
Acylated ACNs consist of an additional organic acid unit
usually bonded to the sugar at the C-3 position (Markakis, 2012).

The oral bioavailability of ACNs is poor and it is correlated
with their stability, lack of site-specificity in distribution, rapid
elimination and clearance from the body, and the dietary source
of the compound and food matrix interactions (Milbury
et al., 2010).

Gastric administration of ACNs in rats demonstrated that
they are initially absorbed in the stomach (about 25%) through a
bilitranslocase-mediated mechanism and can be detected in their
native form in plasma within 6 min. In contrast, they can be
found as methylated and conjugated derivatives in bile within
20 min, suggesting that ACN metabolites are rapidly formed in
the liver and eliminated via bile, but not distributed in blood
(Passamonti et al., 2003; Talavera et al., 2003).

ACNs are also rapidly absorbed (12%–15%) in the small
intestine of rats and found in their natural form and methylated
derivatives in plasma within 25 min, but also excreted into bile
and urine as intact glycosides or methylated/glucuronidated
derivatives (Talavera et al., 2004). Absorption of ACNs in the
small intestine may occur by deglycosylation to aglycones followed
by passive transport through intestinal epithelium (Kay, 2006) or
August 2020 | Volume 11 | Article 1300
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by an active transport mechanism using intestinal sodium-
dependent glucose transporter 1 (SGLT1) or bilintranslocase
(Walton et al., 2006a; Passamonti et al., 2009).

Most ACNs in the blood are found in the form of their
metabolites which have a lower pharmacological activity than
the primary compounds. (Walton et al., 2006a; Passamonti
et al., 2009).

The instability, high reactivity and low extraction possibility
limit their potential applications of ACNs in food and
pharmaceutical industries (Castañeda-Ovando et al., 2009).
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PHARMACOLOGICAL ACTIVITIES OF
ACNS: AN OVERVIEW ON MOLECULAR
MECHANISMS

Neuroprotective Effects
Due to its high demand of energy and high lipid content, the
central nervous system (CNS), especially the brain, is particularly
susceptible to excessive reactive oxygen species (ROS)
(Nussbaum et al., 2017) (Figure 2). A high production of
oxygen leads to a high production of intracellular ROS during
FIGURE 2 | Summarized scheme of the most important pharmacological properties and molecular mechanisms of action of anthocyanins.
FIGURE 1 | Chemical structures of main anthocyanins: pelargonidin, cyanidin, peonidin, delphinidin, malvidin, and petunidin.
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cellular respiration within mitochondria (Salehi et al., 2019c). In
addition, exogenous sources of ROS may be environmental
pollution, smoking, unhealthy diet, UV-B radiation, drug
metabolites and infections (Singh et al., 2019). In the CNS, a
specific innate immune system, consisting of resting or activated
glial cells, protects the nervous system against pathogens or
injuries, but an excessive or prolonged inflammatory response
may contribute to neuronal apoptosis and may facilitate
the progression of neurodegenerative diseases (Russo and
Mcgavern, 2015)

Many dietary ACNs contain multiple ACNs compounds with
neuroprotective effects. Dietary ACNs from blue corn protected
brain from the mitochondrial DNA common deletion (mtDNA
CD) induced by a moderate ethanol consumption (Demeilliers
et al., 2017). Finally, we showed that the administration of
ACN-rich purple corn extract has a protective effect on the
development of orofacial allodynia in an in vivo model of
inflammatory trigeminal pain, and that it reduces trigeminal
macrophage infiltration and microglial activation both in vivo
and in vitro (Magni et al., 2018). The neuroprotective effect of
purple corn is comparable to the antiinflammatory effects of
acetyl salicylic acid, which does not modify microglia activation.

Therefore, a possible application of ACN-rich dietary
supplements as co-adjuvant therapy to pharmacological treatment
or as a preventive strategy against trigeminal pain, aimed at
reducing drugs dosage and adverse effects might be proposed.

Perspectives on Pathophysiology of
Neurodegenerative Disorders and Cerebral Ischemia
Neurodegenerative Disorders: A Brief Overview on
Pathophysiology
These are a group of chronic diseases characterized by a
progressive loss of neurons in brain or spinal cord, leading to a
progressive impairment in cognitive and motor functions and
ultimately resulting in severe disability (Calina et al., 2020;
Sharifi-Rad et al., 2020b). Chronic neurodegenerative diseases
include Alzheimer’s disease (AD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS) (Jellinger, 2009).

Neurodegenerative disorders and cerebral ischemia are
associated to three common factors triggering the onset of
neuronal apoptosis, (Jellinger, 2009; Li et al., 2019) which is
the main mechanism responsible for neuron loss:

i. oxidative stress
ii. excitotoxicity
iii. neuroinflammation

Oxidative stress is due to a significant reduction in the ability
of neuronal cells to scavenge excessive ROS, leading to oxidative
damage of macromolecules (i.e. DNA oxidation, protein
carbonylation, and lipid peroxidation) and to mitochondrial
dysfunction, additional generation of ROS and neuronal
apoptosis (Mariani et al., 2005; Singh et al., 2019). Increased
oxidative stress and mitochondrial dysfunction precede the
deposition of neurotoxic amyloid-b (Ab) protein aggregates, a
typical hallmark of AD (Salehi et al., 2020a). They also cause the
formation of the Lewy bodies, insoluble inclusions mainly
Frontiers in Pharmacology | www.frontiersin.org 4
consisting of damaged a-synuclein, associated with neuron loss
and dopamine deficiency in the substantia nigra of PD patients
(Wang et al., 2014; Puspita et al., 2017).

Excitotoxicity is a common pathogenic factor in neurodegenerative
diseases (Dong et al., 2009; Mattson, 2019). Excitotoxicity consists
of the overstimulation of glutamate receptors [i.e., N-methyl-D-
aspartic acid (NMDA) and a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)], causing an excessive influx of
calcium ions from the extracellular space (Dong et al., 2009;
Mattson, 2019). This calcium overload triggers intracellular
signaling cascades, leading to mitochondrial depolarization,
increased ROS and nitric oxide (NO) production, degradation
of macromolecules and ultimately apoptosis, thus indicating the
existence of a link between excitotoxicity and oxidative stress
(Dong et al., 2009; Mattson, 2019). Upregulation of NMDA
receptors has been associated to Ab deposition in AD
(Parameshwaran et al., 2008), whereas an overstimulation of AMPA
receptors with kainic acid in rats specifically promoted loss of motor
neurons, which are particularly rich in AMPA receptors, thus
suggesting a specific role of excitotoxicity in ALS (Sun et al., 2006).

Neuroinflammation may be also triggered as a response to the
aberrant deposition of protein aggregates, such as Ab in AD, a-
synuclein in PD and DNA-binding protein-43 in ALS (TDP-43).
(Zhang et al., 2005; Stewart et al., 2010; Van Langenhove
et al., 2012).
Cerebral Ischemia: A Brief Overview on Pathophysiology
This is a condition in which the brain does not receive enough
blood to meet its metabolic needs. Thus, the resulting lack of
oxygen can cause the death of brain tissue and therefore an
ischemic stroke (Tsatsakis et al., 2019). Cerebrovascular ischemia
causes loss of neurons in localized regions of brain by
mechanisms similar to those in neurodegenerative diseases
(Chen et al., 2011).

Oxidative stress caused by reperfusion following cerebrovascular
ischemia triggers the production of excessive superoxide radicals by
mitochondria with increasing ROS and mitochondrial dysfunction.
These superoxide radicals combined with NO, produced by
ischemia-induced neuronal NO synthase (nNOS), generate
reactive nitrogen species (i.e. peroxynitrite) that further damage
neuronal cellular proteins by nitrosylation (Eliasson et al., 1999).

Excitotoxicity is also a pathogenic factor in cerebrovascular
ischemia. Massive release of presynaptic glutamate caused by
cerebrovascular ischemia causes a consequent increase in
NMDA post-synaptic receptors (Szydlowska and Tymianski,
2010; Li Y. et al., 2016) and finally loss-of-function mutations
in the parkin gene (hereditary PD PARK2 gene) inducing a
proliferation of glutamate post-synaptic receptors, thus causing a
sensitization to excitotoxicity in the substantia nigra in PD
(Helton et al., 2008).

Neuroinflammation in cerebral ischemia: neurons injured by
cerebral ischemia release cytokines and chemokines, that activate
resting microglial cells to secrete antiinflammatory neuroprotective
cytokines, in order to assist in repairing neuronal cells, but also to
promote the synthesis of proinflammatory cytokines (e.g,. IL-1b and
TNF-a), iNOS and the production of NO, a reactive molecule which
August 2020 | Volume 11 | Article 1300
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destroys invading pathogens (Di Filippo et al., 2010; Buga et al., 2019;
Subhramanyam et al., 2019). In case of prolonged production, the
inflammatory response may result in neuronal damage and finally in
apoptosis (Block and Hong, 2007).

Mechanistic and Molecular Aspects of
Neuroprotective Effects of ACNs
Neurodegenerative Diseases
These studies have reported the neuroprotective effect of ACNs
in preclinical models of neurodegenerative diseases by multiple
mechanisms (Tsuda, 2012; Ullah et al., 2019).

Antioxidant Mechanisms:

i. The neuroprotective effect is accomplished because of
rapid absorption of ACNs and their capacity to cross the
blood brain barrier (BBB). Since they can reach the brain
in their native form, ACNs can exert their antioxidant
activity as direct scavengers of ROS (Shih et al., 2011;
Casedas et al., 2018).

ii. They can also activate the antioxidant response by promoting
the nuclear translocation of nuclear factor erythroid 2–related
factor 2 (Nrf2) or by stimulating the activity of antioxidant
enzymes, such as SOD, CAT and GPx (Casedas et al., 2018;
Pacheco et al., 2018).

In vitro studies have demonstrated that ACNs prevent the
intracellular calcium overload, thereby causing excitotoxicity and
the progression of neurodegenerative diseases (Ye et al., 2010;
Shih et al., 2011; Ullah et al., 2014; Badshah et al., 2015).

AntiNeuroinflammation Mechanisms:

i. Inhibit the nuclear translocation of NF-kB, thereby
preventing the activation of proinflammatory molecules,
such as COX-2, iNOS, IL-1b, TNF-a (Kim et al., 2017).

ii. Reduce the intracellular signaling pathways of mitogen-
activated protein kinases (MAPKs): c-Jun N-terminal kinase
(JNK) and P38 mitogen-activated protein kinases (p-38
MAPK), also reducing the activation of proinflammatory
cytokines (Amin et al., 2017).

iii. Antiinflammatory effect, by inhibiting the activity of COX-2
enzyme (Mulabagal et al., 2009).

Antiapoptotic Mechanisms:

i. Prevent the release of apoptosis-inducing factor (AIF) from
mitochondria and its migration into the nucleus, where it
triggers DNA fragmentation by a caspase-independent
pathway (Min et al., 2011),

ii. to increase the expression of the proapoptotic factor B cell
lymphoma-2 (Bcl-2),

iii. to reduce the expression of the antiapoptotic factor B-cell
lymphoma protein associated X (Bax) (Ali Shah et al., 2013;
Khan M.s. et al., 2019).

These have proved that ACNs can prevent the onset and
progression of neurodegenerative diseases as well as that they can
improve learning and memory in aging model mice.
Frontiers in Pharmacology | www.frontiersin.org 5
The first evidence of the neuroprotective effect of ACNs was
obtained when 19 months-old aged rats (comparable to 60 years
old humans) fed with blueberry extracts for 8 weeks showed a
significant improvement in motor function in the accelerated
rotarod test and effectively reversed age-related deficits in
neuronal and cognitive function in a test of learning and
memory, such as the Morris water performance (Joseph et al.,
1999). More recently, similar results were obtained in galactose-
induced aging models or aged rats fed with ACNs, showing a
delayed age-related decline in spatial learning and memory
(Andres-Lacueva et al., 2005; Rehman et al., 2017; Wei J.
et al., 2017).

Concerning Alzheimer diseases (AD), the APP/PS1 transgenic
mouse, carrying mutations in amyloid precursor protein (APP)
and presenilin-1 (PS1), fed with blueberry extract from 4 months
of age showed no deficits in Y-maze performance (at 12 months of
age) with no difference in Ab plaques compared to nontransgenic
mice (Joseph et al., 2003). Since then, it was shown that dietary
ACNs from mulberry extracts applied to a senescence-accelerated
mouse model of AD (SAMP8) reduced Ab plaques and improved
learning and memory ability in avoidance response tests, by
activating the Nrf2-dependent antioxidant defense system (Shih
et al., 2010).

Using an Ab-induced model of AD in rats, intragastrically
applied ACNs from black soybean were shown to reverse Ab-
induced neuronal apoptosis by suppressing protein expression of
intrinsic apoptotic pathway (Bax, cytochrome C, caspase-9 and
caspase-3) (Badshah et al., 2015). More recently, dietary
supplementation of ACNs from Korean black beans to the APP/
PS1 mouse model of AD demonstrated that ACNs reduce oxidative
stress induced by Ab aggregation by activation of the p-PI3K/Akt/
GSK3b pathway, which has been found to promote nuclear
translocation of Nrf2 and the activation of HO-1 and glutathione
cysteine ligase modulatory subunit (GCLM) target genes.

ACNs prevent apoptosis and neurodegeneration by suppressing
the activation of caspase-3. As a result, memory-related pre- and
post-synaptic protein markers and memory functions in both
Morris water maze and the Y-maze tests were improved (Ali
et al., 2018).

Concerning Parkinson Disease, an interesting epidemiological
study highlighted that a regular intake of ACNs, based on
consuming strawberries and blueberries, results in a significantly
lower PD risk (Gao et al., 2012). In a MPTP-induced mouse model
of PD, oral supplementation of ACNs from a mulberry extract
showed a significant reduction in bradykinesia, in loss of
dopaminergic neurons in substantia nigra and in depletion of
dopamine depletion, related to a reduced expression of the
proapoptotic Bax protein (Kim et al., 2010). Studies in
rotenone-induced cell models of PD suggest that ACNs
attenuate mitochondrial dysfunction by reducing the rotenone-
induced damage of mitochondrial complex I of the electron
transport system, and reduce neuroinflammation resulting from
microglial activation, thus preserving dopaminergic neurons
(Strathearn et al., 2014).

Only one study assessed the potential of ACNs in preventing
the onset and progression of ALS, characterized by loss of motor
August 2020 | Volume 11 | Article 1300
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neurons in brain, brainstem and spinal cord (Winter et al., 2018).
Oral administration of an ACN-rich extract from strawberries in
a mouse model of ALS, carrying a G93A mutation in the human
SOD1 gene (hSOD1G93A), modestly but significantly delayed the
onset of ALS (about 17 days) and extended the survival (about 11
days) when to untreated hSOD1G93A mice, in which ALS onset
occurred at about 90 days of age and progress to end-stage of disease
at about 120 days age. Supplementation with ACNs significantly
preserved grip strength and neuromuscular junctions in
gastrocnemius muscle, but did not prevent motor neuron loss
in spinal cord. On the other hand, a significant reduction in
neuroinflammation (i.e. activated astrocytes) was observed in
spinal cord (Winter et al., 2018).

Multiple sclerosis (MS) is a result of a neuronal demyelination
process and not neuron loss, but shares some common
pathological mechanisms with neurodegenerative diseases
(Padureanu et al., 2019). Recent studies have highlighted that
ACNs have a protective effect on the onset and progression of
MS by reducing oxidative stress, neuroinflammation and the
activity of ion pumps. (Carvalho et al., 2015).

ACNs reduced demyelination in a rat model of MS by restoring
glutathione level and SOD activity, suggesting that a possible Nrf2-
mediated antioxidant mechanism of protection may occur
(Carvalho et al., 2015). In the same study, ACNs were found to
reduce infiltration of inflammatory cells, the expression of
proinflammatory cytokines, such as IL-1b and TNF-a, to increase
the expression of antiinflammatory cytokines, like IL-10, and finally
to increase the expression of Na+, K+-ATPase and Ca2+-ATPase,
thus restoring neuronal functions (Carvalho et al., 2015).
Frontiers in Pharmacology | www.frontiersin.org 6
Other neuroprotective effects of ACNs were recently demonstrated
in animal models of neurotoxicity or inflammatory pain.
Cerebral Ischemia
Antioxidant defense in cerebral ischemia: ACNs promote
activation of Nuclear factor erythroid 2-related factor 2 (Nrf2)
and the consequent increase in the expression of the Heme
oxygenase-1 (HO-1) and g-glutamyl cysteine synthase (g-GCS)
genes, contributing to decrease brain levels of superoxide and
lipid peroxidation (Min et al., 2011; Di Giacomo et al., 2012; Cui
et al., 2018) (Figure 3).

In addition, Nrf2 activation has been recently found to inhibit
nod-like receptor protein 3 (NLRP3) inflammasome by
regulating the thioredoxin1/thioredoxin interacting protein
complex (TRX1)/TXNIP (Hou et al., 2018). This complex
inhibits caspase-1, IL-6 and IL-1b activation, thereby inhibiting
apoptosis and inflammatory responses and reducing brain
damage (Cui et al., 2018; Padureanu et al., 2019; Mititelu
et al., 2020).

These studies have shown the neuroprotective effect of ACNs
in rat or mouse models of cerebral ischemia and defined some of
the possible mechanisms of protection (Zhang et al., 2019).

Pre-treatment of middle cerebral artery occlusion (MCAo) rat
models with orally administered high dose of ACNs (up to 300
mg/kg) significantly reduced cerebral infarct size (Shin et al.,
2006; Cui et al., 2018). On the other hand, both pre-treatment
(1h) and post-treatment (i.e. during reperfusion) with lower
doses of purified C3G (2 mg/kg i.p administered or 10 mg/kg
FIGURE 3 | In cerebral ischemia, anthocyanins (ACNs) reduce neuroinflammation by: (i) decreasing the expression of Toll-like receptor 4 (TLR4), an activator of
nuclear factor kappa B (NF-kB), and tumor necrosis factor-a (TNF-a) proinflammatory cytokine expression (Cui et al., 2018). (ii) Reducing the expression of inducible
nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), targets of NF-kB, and as a consequence NO content at cerebral level, thus reflecting a
reduction in brain damage (Di Giacomo et al., 2012; Cui et al., 2018). A significant increase of eNOS was observed which may result in vasorelaxation with a
consequent attenuation of the ischemic insult and promotion of functional recovery of the ischemic zone (Di Giacomo et al., 2012). (ii) Direct antiapoptotic role, since
they partially blocked AIF, but not cytochrome c release from mitochondria, thus indicating that guanine nucleotide exchange factor (C3G) reduced apoptosis by
suppressing a caspase-independent pathway (Min et al., 2011).
August 2020 | Volume 11 | Article 1300
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orally administered) also efficiently reduced cerebral infarct size
in MCAo rat model (Min et al., 2011) and increased the survival
rate at 24 h post transient cerebral ischemia obtained due to
bilateral carotid occlusion (Di Giacomo et al., 2012).

CVD Protection
The beneficial effects of dietary ACNs in the prevention of CVDs
were shown by several epidemiological studies. Preventive
effects of dietary ACNs concerning hypertriglyceridemia,
hypercholesterolemia (total cholesterol and LDL-cholesterol) and
platelet hyperactivity were reported in rat models of atherosclerosis
induced by high-fat or high-fructose diets (Guo et al., 2007; Salgado
et al., 2010; Yang et al., 2011) (Figure 2). In addition to their
protective effect against atherosclerosis, ACNs also have protective
effects at cardiac level against oxidative stress observed in ischemia/
reperfusion condition. In rats fed with ACN-rich corn, the cardiac
tissue damaged by ischemia was reduced for 39% when compared
to rats fed with ACN-free corn (Toufektsian et al., 2008).

Similar results on CVD-related biomarkers were obtained in
several human intervention studies on patients taking berries or
purified ACNs, showing significantly increased HDL-cholesterol,
reduced LDL-cholesterol, triglycerides, blood pressure, flow-
mediated dilation and inflammatory markers (Garcıá-Conesa
et al., 2018; Luıś et al., 2018).

Higher ACN intake from berries significantly lowered to 32%
the risk of myocardial infarction in young and middle-aged
women (Cassidy et al., 2013; Cassidy et al., 2016) and
decreased the incidence of coronary heart disease (CHD) and
CVD-related mortality (Mink et al., 2007; Mccullough et al., 2012).

Other studies suggested an inverse correlation between high
ACN consumption and CVD-related risk biomarkers, such as
lower arterial stiffness and blood pressure (Cassidy et al., 2011;
Jennings et al., 2012), reduced levels of C-reactive protein (Sesso
et al., 2007; Chun et al., 2008) and reduced overall inflammation
score (Jennings et al., 2014; Cassidy et al., 2015).

The cardioprotective effect of dietary ACNs may be attributed
to: increase in plasma antioxidant capacity and NO levels;
reduction of LDL oxidation and platelet aggregation (Erlund
et al., 2008; Basu et al., 2010b; Chiva-Blanch et al., 2012;
Santhakumar et al., 2015; Zhang et al., 2016; Thompson et al.,
2017a; Thompson et al., 2017b).

Cardioprotection was associated with enhanced glutathione
levels in pre-ischemic myocardial and marine omega-3 levels in
the blood, suggesting that a physiological dose of dietary ACNs
(12 mg/kg body weight/day) increase antioxidant effects and
omega-3 fatty acids synthesis (Toufektsian et al., 2011).

Consistent with these results, ex vivo cardiac perfusion
with low concentrations of bilberry ACNs resulted in a strong
cardioprotective activity following ischemia/reperfusion, as
shown by the low release of LDH and decrease of incidence
and duration of reperfusion arrhythmias. On the contrary, high
concentrations of ACNs resulted in a cardiotoxic effect, indicating
a concentration-dependent cardioprotection of bilberry ACNs
(Ziberna et al., 2010).

The cardioprotective activity is mediated by direct intracellular
transport of C3G by the bilirubin-specific plasma membrane
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transporter bilitranslocase, as demonstrated by the lack of
cardioprotective activity of C3G when antibodies against
bilitranslocase were used before ischemia reperfusion. This
shows that the entry of C3G (or other ACNs) into the
endothelium is necessary to interact with intracellular targets
and trigger an antioxidant response in cells or isolated organs
(Ziberna et al., 2012).

CVDs: Brief Data on Pathophysiology
CVDs including diseases of the heart, blood vessels and the
cerebrovascular system, are the killer number one, accounting for
31% of deaths worldwide (Canon, 2013).

Among CVDs, myocardial infarction, ischemic heart disease and
stroke are primarily caused by atherosclerotic plaques, progressively
growing and causing arterial stenosis or obstruction or eventually
plaque rupture and thrombus formation (Sharifi-Rad J. et al., 2020).
The process of atherosclerosis is mainly caused by oxidized low-
density lipoproteins (oxLDL), typically associated to elevated
plasma total- and LDL-cholesterol levels. LDL particles adhere to
arterial walls and enter into the intima where they are retained and
where resident macrophages and macrophages originating from
circulating monocytes which bind to adhesion molecules and also
enter the intima phagocytize them. Macrophage activation involves
ROS production, which in turn triggers the activation of NF-kB and
thereby proinflammatory cytokines and adhesionmolecules causing
also endothelial dysfunction. As a consequence, endothelial cells
express on their surface intercellular adhesionmolecule-1 (ICAM-1)
and vascular adhesion molecule-1 (VCAM-1), thus attracting
monocytes from the bloodstream. Once in the intima, monocytes
differentiate into macrophages and massively phagocytize oxLDLs,
thus becoming “foam cells”, recruiting other monocytes by releasing
the chemokine monocyte chemoattracting protein-1 (MCP-1) and
activated macrophages secrete proatherogenic growth-factors
and cytokines.

The progression of atherosclerotic plaques involves further lipid
accumulation from LDL particles, but also migration of smooth
muscle cells from media to intima and their proliferation, collagen
deposition, which then form a fibrous cap which covers the lipid
core of the plaque. In advanced lesions, macrophage foam cells
undergo apoptosis but are not effectively cleared by macrophages
(defective efferocytosis), initiating a secondary cellular necrosis
process and overtime to the formation of a necrotic lipid core
(Moore and Tabas, 2011).

Inflammatory cells at the shoulders of the plaque cause the
release of collagenases and elastase from the foam cells which
might cause rupturing of the atheroma fibrous cap, platelet
aggregation and thrombus formation.

Cardioprotective Mechanisms:

i. Prevention of atherosclerosis using apolipoprotein E (apoE)-
deficient mice, a model characterized by hypercholesterolemia
and plaques on aorta with morphological features similar to
human advanced atherosclerotic lesions,

ii. those directed toward cardioprotection using Langendorff
ischemia/reperfusion injury and drug-induced cardiotoxicity
and/or myocardial infarction.
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In Vivo Studies
Concerning the apo E-deficient mice, supplementation of ACN-
rich diet, extracts or ACN metabolites (e.g., protocatechuic acid)
showed a significant decrease in the formation of atherosclerotic
plaques (Xia et al., 2003; Xia et al., 2006; Mauray et al., 2009;
Wang et al., 2010; Jiang et al., 2017; Joo et al., 2018), associated to
an improvement of dyslipidemia, such as increased HDL-
cholesterol (Xia et al., 2003), reduced triglycerides (Xia et al.,
2006; Jiang et al., 2017), reduced total cholesterol and LDL-
cholesterol in serum (Xia et al., 2003; Xia et al., 2006; Jiang et al.,
2017; Joo et al., 2018) and in plaques on aorta (Xia et al., 2003;
Wang et al., 2010).

In apoE-deficient mice, ACN supplementation protects LDL-
cholesterol from oxidation, as proven by reduced levels of serum
anti-oxLDLs (Xia et al., 2003) and of lipid peroxidation markers,
malondialdehyde (MDA) and F2-isoprostane (Wu et al., 2010;
Jiang et al., 2017). The reduced formation of oxLDLs may be
partly accomplished by a direct scavenging activity of ACNs
embedded in cellular membranes or in the cytosol of endothelial
cells, where they are transported by a bilitranslocase transporter
(Youdim et al., 2000; Youdim et al., 2002; Maestro et al., 2009),
but this may more probably result from an increase of gene
expression and activity of antioxidant enzymes, such as SOD1,
SOD2, glutathione reductase (GR), thioredoxin reductase 1
(TrxR1), paraoxonase 1 (PON1) in the aorta (Wu et al., 2010)
and serum SOD1, GPx as well as CAT (Jiang et al., 2017). Lower
levels of oxLDLs resulted in lower expression of VCAM-1 and
ICAM-1 in aorta (Wang et al., 2010; Wu et al., 2010) and lower
inflammatory response, reduced activation of NF-kB and iNOS
gene expression and protein levels in the aorta (Xia et al., 2003;
Xia et al., 2006; Wang et al., 2010), reduced leukocyte infiltration
and circulating proinflammatory cytokines (Xia et al., 2003; Joo
et al., 2018).

Daily supplementation of a physiological dose of C3G (10mg/kg
body weight/day) for one week prior to surgery and eight weeks
post-surgery in a rat model of myocardial infarction was able to
significantly prevent cardiac dilation and improve cardiac function
until four weeks after myocardial infarction. Nevertheless it was
unable to sustain this cardioprotection since cardiac dysfunction
was not significantly improved after 8 weeks (Raj et al., 2017).

Physiological doses of ACNs were also effective against
cardiotoxicity induced by the chemotherapeutic drug doxorubicin
(Dox) since in mice fed with dietary ACNs from purple corn treated
with Dox, medium-term but not long-term survival was improved,
and Dox-induced cardiac histopathological alterations were
prevented when compared to animals fed with ACN-free diet
from yellow corn (Petroni et al., 2017).

Decrease of the cardiac injury induced by cyclophosphamide,
another widely used chemotherapeutic drug, was also achieved
with a low dose of an ACN-rich extract from blueberry (20 mg/
kg body weight/day) and it correlated to the antiinflammatory
and antioxidant effects of ACNs (Liu et al., 2015). On the other
hand, high concentrations of ACNs (200-250 mg/kg body
weight/day) were found to be effective in experimental models
of myocardial infarction induced by isoproterenol, which
is known to cause an extensive oxidative damage, associated
Frontiers in Pharmacology | www.frontiersin.org 8
to degradation and subsequent exhaustion of enzymatic
antioxidants (SOD and CAT), causing formation of free radicals
and severe lipid peroxidation (Jana et al., 2017;Wei H. et al., 2017).

Antiobesity and Antidiabetic Effects
Obesity is the result of the accumulation of adipose tissue, and it
causes many metabolic disorders. A healthy lifestyle and a diet
rich in ACNs have beneficial antiobesity effects (Parveen et al.,
2019; Salehi et al., 2019a).

One mechanism by which dietary ACNs could act as
antiobese effect is the increase of energy expenditure.
Berries containing ACNs (petunidin 33% and malvidin 57%)
were effective to lower HFD induced metabolic damage by
increased energy expenditure. In adipose tissue, a reduction in
mitochondrial respiration and dissipation of the mitochondrial
proton gradient (proton leak) were also reported (Skates et al.,
2018). Malvidin decreases the lipopolysaccharide (LPS)-
induced NF-kB, activation of poly ADP-ribose polymerase,
MAPK, depolarization of mitochondria, and generation of
ROS, (Bognar et al., 2013).

Another way to spend the energy is by changing thermogenesis.
The upregulation of regulating uncoupling proteins (UCP1 and
UCP2), in brown and white adipose tissue respectively, suppress fat
accumulation in adipose tissue in case of increased dietary
consumption of black soybean seed. (Kanamoto et al., 2011).

The role of dietary ACNs in AMPKmodulation is very interesting.
AMP-activated protein kinase (AMPK) is one of the

main regulators of energy balance. AMPK can modulate the
energetic expenditure and fat accumulation in many ways: i)
increasing mitochondrial biogenesis, ii) reducing lipid
metabolism and triglyceride synthesis, iii) increasing fatty acid
oxidation, iv) reducing hypertriglyceridemia and triglyceride
storage in muscles and liver and by regulating the food intake.
It seems that dietary ACNs induce AMPK activation by
increasing its phosphorylation (Hardie and Ashford, 2014;
López, 2018).

ACNs from bilberry extract also increased AMPK activity in
skeletal muscle and the liver. In skeletal muscle, AMPK activation
stimulated the upregulation of glucose transporter 4 (GLUT4),
resulting in an increased glucose uptake and utilization. In the
liver, AMPK activation decreased glucose production, improving
hyperglycemia. A decrease in liver lipid content and serum
lipoproteins was achieved through upregulation of peroxisome
proliferator-activated receptor (PPAR)a and acyl-CoA oxidase
(Takikawa et al., 2010). ACNs also improved chronic diabetic
complications and insulin resistance (Guo and Ling, 2015).

Dietary ACNs can also affect lipid metabolism.
The key molecules of lipid metabolism are fatty acid synthase

(FAS) and sterol regulatory element-binding proteins (SREBPs).
ACNs from different dietary sources could downregulate mRNA
and protein levels of FAS and SREBP1, reducing hyperglycemia
and inhibiting hepatic lipogenesis (Tsuda et al., 2003; Hwang et al.,
2011; Qin and Anderson, 2012; Park et al., 2015; Wu et al., 2016a).

ACNs from black soybeans were effective in preventing
obesity even in normal conditions by hypothalamus modulation.
A healthy diet showed a decrease in body weight and food intake
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when receiving daily intra-gastric administered ACNs (Salehi
et al., 2020b). These effects seem to be mediated by neuropeptide
Y and c-amino butyric acid receptor (GABAB1R) in the
hypothalamus (Badshah et al., 2013). ACN-rich extract from
black soybean decreased saturated, monounsaturated and n-6
polyunsaturated fatty acid levels in subcutaneous (but not
visceral) fat. Since these long-chain fatty acids play a role in
inflammation regulation, their reduction could help in
suppressing inflammation in obese subjects (Sato et al., 2015)

Finally, ACNs seem to affect gut microbiota as well. The
change in microbiota in obese people might contribute to the
development of obese-related metabolic disorders. A recent
review examined the role of ACNs in obesity regulation by gut
microbiota modulation (Jamar et al., 2017)

Considering the antidiabetic role of ACNs, they provide
protection to pancreatic b cells (INS-1) against H2O2-induced
necrosis and apoptosis in a time- and concentration-dependent
way. These substances in b cells and primary islets also
upregulate the HO-1 gene expression and activate ERK1/2 and
PI3K/Akt signaling, while ERK1/2 and PI3K inhibitors partially
decreased ACN-mediated induction of HO-1 (Zhang
et al., 2011).

The supplementation with a daily intake of 4 cups of freeze-
dried strawberry beverage during 8 weeks in 27 diabetic subjects
caused a reduction in total and LDL-cholesterol levels as well as
inhibition of VCAM-1 circulating levels (Basu et al., 2010a).

The simultaneous use of ACNs and apple polyphenols in five
postmenopausal women and 20 men showed the initial
postprandial glycemic response. Both substances suppressed
the early reactions (0–30 min) of plasma glucose and insulin,
and reduction of postprandial glycemia. Insulin and incretin
excretion were reduced as the secondary results (Castro-Acosta
et al., 2017). ACNs consumption during 12 weeks also
modulated the lipids and glucose-metabolism, and had
antioxidant and antiinflammatory effects l in 37 humans with
metabolic syndrome (Kim et al., 2018). In addition, ACNs rich
beverages lowered the concentrations of interferon-g (IFN-g) and
urinary level of 8-isoprostane (Kim et al., 2018).

Wu et al. (2013) have found that ACNs, including cyanidin-3-
rutinoside, cyanidin-3-glucoside, and pelargonidin-3-glucoside
significantly inhibit the body weight gain, reduction in IR,
adipocytes size, decrease lipid accumulation, and reduce leptin
secretion. ACNs improved glucose tolerance, enhanced insulin
sensitivity and decreased hepatic accumulation of lipids via
modulating the AMPK activity and lipid metabolism-
associated gene expression (Overall et al., 2017).
Obesity: Brief Data on Pathophysiology
The number of obese people is dramatically increasing
worldwide, affecting every year an increasing number of adults,
but also children and adolescents (Xie et al., 2018). Obesity is
closely related to a decrease in life expectancy and an increase in
healthcare expenditures, it is a risk factor for many diseases such
as some types of cancer, diabetes mellitus and CVDs (Swinburn
et al., 2015).
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The localization of the accumulated fat is crucially important:
intraabdominal fat is mainly responsible for the development of
the metabolic syndrome (MS), which is defined as the
combination of impaired glucose tolerance or diabetes mellitus,
insulin resistance, high blood pressure, atherogenic dyslipidemia,
and obesity (Engin, 2017).

The effects of ACNs on MS have been recently highlighted
(Naseri et al., 2018; Xie et al., 2018).

ACNs Antiobesity Mechanisms:

i. Increase in energy expenditure, and regulation of lipid
metabolism

ii. reduction of fat absorption
iii. suppression of food intake
iv. gut microbiota modification.
In Vitro Studies
In the treatment of LPS-activated human umbilical vein
endothelial cells (HUVECs), pelargonidin inhibited LPS-
induced barrier disruption, migration of neutrophils to human
endothelial cells, and expression of cell adhesion molecules
(CAMs) and adhesion.

Blueberry ACN extract (malvidin, malvidin-3-glucoside, and
malvidin-3-galactoside) has effects on high glucose-induced
injury in human retinal capillary endothelial cells (HRCECs)
by multiple pathways such as enhancement of cell viability,
reduction of ROS, suppression of Nox4 expression, increase in
enzyme activity of CAT and SOD, inhibition of Akt pathway,
reduction of VEGF level, suppression of high glucose-induced
intercellular adhesion molecule-1 and NF-kB, (Huang et al.,
2018). The administration of 300 µM H2O2 in WI-38 human
diploid fibroblasts showed enhanced lipid peroxidation, lowered
cell viability, and shortened cells lifespans. In contrast, cyanidin
supplementation suppressed oxidative stress via cell viability
enhancement and lipid peroxidation inhibition. Cyanidin
treatment also enhanced the cells life spans, decreased the NF-
kB expression at mRNA and protein level, as well as iNOS, and
COX-2 (Choi et al., 2010).

Recent studies showed that pelargonidin inhibited LPS-induced
hyperpermeability and leukocytes migration. Furthermore,
suppression of activation of NF-kB and production of TNF-a, IL-
6, and ERK1/2 by LPS were reported. In addition, pelargonidin
resulted in suppressing LPS-induced lethal endotoxemia (Lee
et al., 2019).
In Vivo Studies
ACNs inhibit fat accumulation in mice: purple corn extract and
purified ACNs from blueberries or strawberries can prevent body
fat accumulation and obesity induced by a HFD in C57BL/6J
mice (Tsuda et al., 2003; Howard et al., 2008).

Increased AMPK activity has been shown in 3T3-L1 cell line
treated with C3G (Guo et al., 2012), in rats treated with black
carrots extract (Park et al., 2015) and in obese mice fed with
ACNs from purple sweet potato (Hwang et al., 2011). In these
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studies, AMPK activation was accompanied by a lack of increase
in LDL-cholesterol and triglycerides but with an improved serum
lipids profile and inhibited accumulation of triglycerides in the
liver (Hwang et al., 2011; Park et al., 2015).

Pure ACNs and ACN extract were able to reduce the body
and liver weight, the triglycerides accumulation in the liver and
the adipocyte size in mice treated with HFD (Jayaprakasam et al.,
2006; Zhang et al., 2013; Park et al., 2017).

Blueberry-derived ACNs were effective in reducing body
weight and serum glucose and in improving lipid profile in
high-fat-fed mice (Wu et al., 2016a), while ACNs derived from
adzuki bean decreased lipid accumulation and triglyceride/
cholesterol levels in mice fed with high-fat and high-
cholesterol diet (Kim et al., 2016).

A very recent study analyzed the effect of ACNs supplementation
from Sango sprout juice (SSJ) in obese rats. The results showed that
supplementation of SSJ is more effective causing positive effects on
liver, ileum and prostate when compared with a switch from a HFD
to a regular. Moreover, the SSJ supplementation together with the
diet switch is more effective (in respect to a simple diet switch) in
opposing the caecal Enterococcus decrease and the Clostridium
perfringens increase registered in obese animals. These results
demonstrate a potential therapeutic role of ACNs in obese-
induced intestinal dysbiosis (Vivarelli et al., 2018).

The adipose tissue secretes various adipocytokines, i.e.,
leptin, adiponectin, and resistin that causes obesity to be a
metabolic disease.

Supplementation of ACNs-rich grape–bilberry juice to
experimental rats lowered the concentrations of cholesterol,
triglycerides, resistin, and leptin. This supplementation also
decreased the saturated fatty acids and increased polyunsaturated
fatty acids in plasma (Graf et al., 2013). ACNs decreased the
secretion of adipocytokines (adiponectin and leptin) and
increased lipoprotein lipase (LPL), PPARg, UCP2, and adipocyte
fatty acid-binding protein (aP2) expression in isolated rat adipocytes
(Tsuda et al., 2004). Furthermore, ACNs-rich extracts have an
improving effect against D-galactose-induced senescence in a mice
model via lowering the uric acid level (Lu et al., 2014). ACNs have
also beneficial affects against prostatic hyperplasia (Jang et al., 2010).
In sickle cell disease, ACNs stabilize the erythrocyte membrane and
suppress the hemoglobin polymerization (Mpiana et al., 2010).
Supplementation of ACNs to C57BL/6J mice caused a significant
reduction in concentrations of serum cholesterol, insulin resistance
(IR), lipid accumulation and leptin secretion. These substances also
have the potential to change MAPK and NF-kB stress signaling
pathways (Wu et al., 2013).

In another study reported by Seymour et al. (2011), they
investigated the administration of blueberry ACNs on white
adipose tissue (WAT) and skeletal muscle in Zucker-fatty rats
at the concentration of 2% (wt/wt). They have found that ACNs
decreased the intraperitoneal fat weight and increased PPAR
activity. Likewise, administration of ACNs at concentration of
8% (wt/wt) during 8 weeks decreased the inflammatory markers,
enhanced the blood adiponectin levels, decreased the adipose
tissue hypertrophy, hepatic steatosis, and insulin resistance in
WAT and improved dyslipidemia (Vendrame et al., 2013).
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Consistent with this, supplementation of mice under HFD
with an ACNs-rich extract from purple corn resulted in lower
recruitment and proliferation of macrophages into crown-like
structures in the adipose tissue caused by a suppression of NF-kB
signaling. Besides attenuating adipose tissue inflammation in
vivo, ACNs also showed a long-lasting reprogramming of
adipose tissue macrophages and adipocyte profiles toward the
antiinflammatory phenotype (Tomay et al., 2019). Alteration in
genes expression involved in lipid metabolism protect the induced
fatty acid oxidation, and decrease the in vivo biosynthesis of fatty
acids and cholesterol (Wu et al., 2013; Song et al., 2016).

Antioxidant and Antiinflammatory Effects
ACNs extracts from different natural sources were able to
decrease the oxidative stress. (Figure 2) Dietary ACNs are
known to be more effective antioxidants than vitamins E and
C (Rice-Evans et al., 1997). ACNs can modulate the antioxidant
defense mechanisms, activate antioxidant enzymes and promote
glutathione synthesis. They are capable of chelating metal
ions, such as iron and copper, thus reducing the production of
free radicals by Fenton and other reactions (Jomova and
Valko, 2011).

Several studies showed that ACNs activate nuclear factor
erythroid 2-related factor 2 (Nrf2) and the antioxidant
enzymes, such as superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx) as well as directly enhance their
enzymatic activity (Speciale et al., 2011; Speciale et al., 2013).

ACNs are also able to oppose the harmful action of toxic
agents. ACNs from blueberry extract suppress the effects of
acrylamide, attenuating ROS overproduction and glutathione
depletion in liver. They were also effective in inhibiting
cytochrome P450 2E1 (CYP2E1) protein expression in
acrylamide-treated mice. CYP2E1 is the first protein involved
in acrylamide epoxidation that was shown to cause different toxic
effects (Zhao et al., 2015). The inhibition of CYP2E1 protein is
also involved in the ACN-mediated protection of ethanol- and
ROS-mediated damage. Ethanol, in fact, activates CYP2E1 that
causes ROS production and antioxidant defense mechanisms
impairment; ACNs in Gynura bicolor (Roxb. ex Willd.) DC.
restored the glutathione content and decreased the ROS and
glutathione disulfide levels in livers of ethanol-treated mice by
reduction of CYP2E1 activity (Yin et al., 2017).

Inflammation: Brief Data on Pathophysiology
Oxidative stress occurs when reactive oxygen and nitrogen
species production (ROS and RNS) exceeds the antioxidant
mechanisms of cells or tissues, thus resulting in damage of
macromolecules (i.e. proteins, lipids and DNA) in chronic
diseases and aging process. Acute inflammation is the primary
response against injury and pathogens, and it is usually followed
by the resolution of inflammation (Salehi et al., 2019b). Chronic
inflammation resulting from the failure of resolution is reported
to promote the progression of many chronic diseases, such as
CVDs, neurodegenerative diseases, diabetes mellitus and cancers
(Pham-Huy et al., 2008; Salehi et al., 2018; Sharifi-Rad et al.,
2018) (Medzhitov, 2008; Docea et al., 2020).
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Antiinflammatory Molecular Mechanisms:

i. ACNs suppress the activation of the nuclear factor kappa B
(NF-kB), a transcription factor regulating many genes in
inflammatory response, such as inducible NO synthase
(iNOS), cycloxygenase-2 (COX-2) and proinflammatory
cytokines [tumor necrosis factor-a (TNF-a), interleukin
(IL)-1b and IL-6] (Tsuda et al., 2002; Poulose et al., 2012).

ii. ACNs inhibit the mitogen-activated protein kinase (MAPK)
signaling cascade involving p38, JNK, and ERK, also
inducing suppression of proinflammatory cytokines, iNOS
and COX-2 (Hou et al., 2005).

iii. ACNs directly inhibit COX-1 and COX-2 enzymes and as a
consequence of this, the production of prostaglandin E2
(PGE2) (Graf et al., 2013; Hassimotto et al., 2013).

iv. ACNs suppress LRR, NACHT and PYD domains-containing
protein 3 (NLRP3) inflammasomes by activation of Nrf2 and
the thioredoxin-1/thioredoxin-interacting protein (Trx1/
TXNIP) inhibitory complex (Cui et al., 2018; Hou et al.,
2018). The NLRP3 inflammasome is a multimeric protein
complex that initiates an inflammatory form of apoptosis, by
triggering the release of proinflammatory cytokines IL-1b,
IL-18 and caspase-1 and has been implicated in several
diseases (Yang et al., 2019).
In Vivo Studies
The antioxidant activity of ACNs is well known for decades.
(Pojer et al., 2013; Khoo et al., 2017). ACN extracts and pure
ACNs increase the hepatic and serum levels of SOD and CAT in
mice and rats while decreasing free radicals’ generation (Chiang
et al., 2006; Roy et al., 2008).

A purple sweet potato color (PSPC) prevents the HFD-induced
endoplasmic reticulum-mediated oxidative stress in mice liver.
PSPC improved the hepatic redox state of mice treated with
HFD by suppressing ROS production and by restoring the
glutathione content and the activity of antioxidant enzymes
(Zhang et al., 2013).

Similar results were observed in mice under HFD
supplemented with ACNs from cherry or mulberry. Significant
increases in SOD and GPx activities were detected. It was shown
that monoglycoside ACNs might have higher antioxidant effects
than di-glycoside or tri-glycoside ACNs (Wu et al., 2016b).
Cyanidin 3-glucoside (C3G) was efficient in reducing the
oxidative stress induced by lipid peroxidation, neutrophiles
infiltration, and hepatic steatosis in diabetic mice. C3G
increased glutathione synthesis by the induction of the
glutamate-cysteine ligase catalytic subunit mediated by protein
kinase A (PKA) and cAMP-response-element binding protein
(CREB) (Zhu et al., 2012).

ACNs can improve ROS-caused damage in the brain. ACNs
from Korean black bean inhibited ROS production induced by
ethanol in the hippocampus of the postnatal rats (Shah et al.,
2015). ACNs from black soybean suppressed neuroinflammation
and neurodegeneration caused by oxidative stress and ROS
increase in the cortex of adult mice (Khan et al., 2016).
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ACNs as Natural Compounds With Potential
Anticancer Properties
ACNs have attracted interest in the last several decades as
potential antitumoral agents (Pojer et al., 2013; Lin et al., 2017).

There are several pathways involved in cancer, and some of them
are not yet explained. Uncontrolled cell proliferation, resistance to
apoptosis and migration are the main characteristics of tumor cells,
which can be due to malfunctioning of Notch, Wnt/b-catenin, NF-
kB and MAPK pathways (Dreesen and Brivanlou, 2007). Dietary
berry ACNs can modulate the levels of Notch1 and Wnt1 proteins
and their downstream mediators. In particular, ACNs mixture
showed an enhanced reduction of all the proteins when
compared with the single purified ACNs, indicating that some
pathways may overlap in the induction of cell growth inhibition
(Kausar et al., 2012).

The ACNs-mediated cancer prevention and inhibition mainly
includes pathways involved in cell survival, proliferation,
apoptosis control and inflammation. PI3K/Akt, NF-kB and
COX-2 signaling and activity are the most studied mechanisms.

Although inflammation and oxidative stress play an
important role in cancer progression (Kristo et al., 2016), it
seems that ACNs, and not anthocyanidins, are responsible for
the interaction with different molecules. In contrast, the
glucosidic part may reduce the beneficial properties and
interactions (Song et al., 2012).

NF-kB is downstream of the PI3K/Akt pathway, which is
important for cell survival and proliferation. Still, if activated, it
can cause deregulation of cell growth, malignant transformation
and, often, therapy resistance (Hennessy et al., 2005). NF-kB has
been indicated as the mediator between chronic inflammation
and cancer. It can regulate tumor angiogenesis, metastatic
process and apoptosis inhibition (Salehi et al., 2019d).

It has been suggested as a possible target in cancer therapy,
even if its prolonged inhibition can cause deleterious effects (Xia
et al., 2014). Its expression, together with COX-2, another factor
involved in inflammation, and PI3K/Akt pathway, are modulated
by ACNs, leading to reduced inflammatory response and cancer
progression due to reduced proliferation (Song et al., 2012; Peiffer
et al., 2014; Medda et al., 2015; Choi et al., 2016; Fragoso
et al., 2018).

The main problem with chemotherapy is that some cancers can
develop resistance to treatment after several months. Angiogenesis,
metastasis progression and cell migration can severely worsen the
patient status and compromise the success of chemotherapy
(Mishra et al., 2018). Trastuzumab (Herceptin®) is a recombinant
humanized monoclonal antibody that is targeted against human
HER2 tyrosine kinase receptor, and it has been successfully used to
treat patients with HER2-positive breast cancer. However, some
trastuzumab-treated patients, who initially responded well, showed
disease progression within a year after the end of the treatment (Li
X. et al., 2016). C3G can enhance trastuzumab (Liu et al., 2014; Li X.
et al., 2016).

Potential Mechanisms of Anticancer Properties:

i. Inhibition of tumor growth
ii. promoting apoptosis and autophagy of malignant cells
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iii. modulating signal transduction pathways
iv. inhibition of angiogenesis and metastatic migration
v. antiinflammatory and antioxidant properties
In Vitro Studies
Delphinidin, a substance belonging to ACNs, dose-dependently
suppresses cell proliferation and invasion, it induces apoptotic
cell death and autophagy in human epidermal growth factor
receptor (HER)-2 positive breast cancer MDA-MB-453 and
BT474 cells. Moreover, it causes induction of autophagy via
inhibiting mTOR signaling pathway and activation of the AMPK
signaling pathway in HER-2 positive breast cancer cells (Chen J.
et al., 2018).

In a recent study by Zhou et al. (2017), they investigated
whether ACNs from black rice could have suppressive effect on
HER-2 positive human breast cancer cell metastases in different
human cancer cells lines—MCF-7, MCF-10A, and MDA-MB-
453 cells. ACNs significantly inhibited the migration and cell
invasion, lowered the migration distance of HER-2 positive
human breast cancer cells, phosphorylation of cSrc, FAK, and
p130C, lowered the levels of mesenchymal markers (fibronectin,
vimentin), decreased the interaction between HER-2 and FAK,
FAK and cSrc, and inhibited the epithelial-mesenchymal
transition (Zhou et al., 2017).

The antitumor effect of ACNs in human hepatoma cells
(SMMC-7721) and the murine hepatoma cells (H22) studies
were also highlighted. ACNs significantly suppressed the cell
growth, blocked the cell cycle in G2/M phase, induced DNA
damage and induced apoptosis

C3G is a strong anticancer agent in different human breast
cancer cell lines such as Hs‐578T and MDA‐MB‐231 cells. It
achieves it by inhibiting the vascular endothelial growth factor
(VEGF) expression and secretion, by decreasing the activator of
transcription 3 (STAT3) and signal transducer expression at
both mRNA and protein level. Additionally, induction of miR-
124 expression was also reported after ACNs treatment (Salehi
et al., 2019e).

A study conducted by Mazewski et al. (2018) was looking
whether ACNs have inhibitory effects in concentrations (IC50)
such as 0.9–2.0 mg/ml on human colon cancer cells (HT-29 and
HCT-116) proliferation by inducing apoptotic cell death, decreasing
the levels of antiapoptotic proteins (cIAP-2, survivin, XIAP),
arresting cells in G1 phase as well as having a tyrosine kinase
inhibitory potential. They have confirmed all these effects.

In another study, ACNs in a human gastrointestinal model
(Colonic Caco-2 cancer cells and nontumorigenic colonic CCD-
112CoN cells) cause cytotoxicity and lower cell viability (Kubow
et al., 2017). Kuntz et al. (2017) showed that ACNs decreased
cells migration, reactive oxygen production, NF-kB as well as
matrix metalloproteinase (MMP)-2 and MMP-9 mRNA
expression levels in different pancreatic cancer cells (PANC-1
and AsPC-1).

In another study conducted by Giampieri et al. (2018), ACNs
have cytotoxic effects on hepatocellular carcinoma cells in a dose/
time-dependent manner via enhancing cellular apoptosis and
impairing mitochondrial functionality.
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Cyanidin 3-rutinoside can inhibit the motility of RKO human
colon cancer cells, as demonstrated by a wound-healing assay
(Fragoso et al., 2018). Moreover, VEGF-induced angiogenesis was
strongly inhibited by black raspberry extract on two organ-specific
primary cells [i.e. human intestinal microvascular endothelial cells
(HIMEC) and human esophagal microvascular endothelial cells
(HEMEC)], isolated from surgically resected human intestine and
esophagus (Medda et al., 2015).

In Vivo Studies
Xenograft tumors’ dimension in nude mice is severely reduced
by pure C3G, ACNs from black soybean and by berry
anthocyanidins mixture (C3G, malvidin, peonidin, petunidin,
and delphinidin) (Kausar et al., 2012; Chen et al., 2015; Ha
et al., 2015).

In different colorectal cancer models [DMH and TNBS-
induced colitis-associated carcinogenesis in rat, azoxymethane
(AOM)/dextran sodium sulfate (DSS) mouse model, APCMIN

mice] the administration of ACNs sources, like açai pulp (Choi
et al., 2016; Fragoso et al., 2018), purple sweet potato extract
(Asadi et al., 2017) and bilberry extract (Lippert et al., 2017),
resulted in reduced tumor growth, slower tumor development
and reduced number of adenoma.

ACN extract of roselle (Hibiscus ACNs) was supplemented in
the diet of the rat model of N-methyl-N-nitrosourea (NMU)
-induced leukemia, and it significantly reduced the elevated
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) levels in serum and blood, and prevented NMU-induced
leukemic cell infiltration and subsequent tissue damage (Tsai
et al., 2014). Not only ACNs but also their metabolites can
prevent tumor growth (Peiffer et al., 2014). In the same study
protocatechuic acid, a major metabolite of blackberry ACNs, was
able to reduce esophagal carcinogenesis in N-nitroso methyl
benzylamine (NMBA)-induced rats carcinogenesis. They also
provoked the death of tumor cells, inhibited tumor growth, and
improved the survival status of H22 tumor-bearing mice. These
effects were associated with an increase of the antioxidant
mechanism (SOD, GPx, and glutathione) and a decrease of the
lipid peroxidation (MDA). The levels of immune cytokines,
including IL-2, IFN-g, and TNF-a, were also regulated by
ACNs (Zhou et al., 2018).

In AOM/DSS-treated C57BL/6J mice, ACNs enhanced the
decreased probiotics (Eubacterium rectale, Faecalibacterium
prausnitzii, and Lactobacillus) and the enhanced pathogenic
bacteria (Desulfovibrio sp. and Enterococcus spp). These
substances caused demethylation of the secreted frizzled
related protein 2 (SFRP2) gene promoter, resulting in an
increased expression of SFRP2, both at the mRNA and protein
levels. In addition, they also down-regulated the DNMT31 and
DNMT3B, and p-STAT3 expression (Chen L. et al., 2018).

Topical application of C3G can also reduce COX-2 levels
and NF-kB activation in the skin of UV-B exposed mice
(Pratheeshkumar et al., 2014). The PI3K/Akt pathway can also
induce mTOR activation (Hennessy et al., 2005). In a study
performed on thyroid cancer cells (SW1736 and HTh-7),
mulberry ACNs induced apoptosis by severely enhanced
autophagy caused by the suppression of Akt/mTOR signaling
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(Long et al., 2018). ACNs in vitro induced apoptosis in cancer
cells by the increase of cleavage/activation of caspase-3, p53
expression, and Bax/Bcl-2 ratio together with increased NAD+/
NADH ratio (Kausar et al., 2012; Ha et al., 2015).
DISCUSSION, THERAPEUTIC
LIMITATIONS, AND CLINICAL PITFALLS

There is a great interest in general public in the consumption of
colorful phytochemicals such as ACNs, carotenoids and
flavonoids, which are present in food and dietary supplements
as well as in nutraceuticals. Polyphenolic substances, including
flavonoids, are one of the most important classes of natural
compounds that have a remarkable biological activity (Sharifi-
Rad et al., 2020a).

Phenol-derived compounds including polyphenols, flavonoids
and anthocyanidins have been recognized among the most
promising secondary metabolites of naturally occurring
compounds with therapeutic potentials. ACNs could be directly
absorbed and found in animal or human plasma, while
anthocyanidins have low bioavailability. The increased number
of attached sugars in the aglycon might negatively affect the
binding ability of ACNs to different targets (Sogo et al., 2014).

The main limitation in clinical therapy emerge from the low
bioavailability of ACNs (Czank et al., 2013), their instability at
physiological pH (Kay et al., 2009) and their massive conversion
into metabolites once absorbed as well as by the intestinal
microbiota (Aura et al., 2005; Czank et al., 2013). These
aspects suggest that ACNs mainly accomplish their role of
direct scavengers in the gut.

In order to improve the bioavailability and clinical usage of
ACNs, chemical modifications and new drug design, such as
nanotechnology were developed (Braga et al., 2018; Pinzaru
et al., 2018).

The protection and especially the controlled release of various
organic molecules is achieved almost exclusively by means of
encapsulated compounds.

Cyclodextrins are part of the most used class receptors in
host-guest inclusion chemistry. Advantages of encapsulation
in cyclodextrins of active substances biological effects are:
improving bioavailability, increasing stability, reducing side
effects. However, they can function as molecular signals, being
able to activate the endogenous antioxidant defense mechanisms
(Virgili and Marino, 2008).

Nanoencapsulation is an example of a new research possibility
that allows enhancing the bioavailability and optimizing the delivery
of phytochemicals (Khan H. et al., 2019), including ACNs.
Advantages of nanoencapsulation are: preservation of flavor,
enhancing thermal and oxidative stability of chemical compounds,
overcoming the limitations of high volatility, controlling the release
of substances and improving bioavailability. Nanoencapsulation is
more efficient and has better encapsulation properties than
microencapsulation. All of these characteristics increase the
possibilities of applications of phytochemicals in food and
beverages. (Wyspianska et al., 2019).
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The combination of carriers, e.g., chitosan with protein,
improve the capsule efficiency and functionality (Ge et al.,
2019). ACNs are hydrophilic natural chemical substances and
cannot cross the plasma membrane by passive diffusion.
Therefore, they need a hydrophilic carrier (Walton et al.,
2006b). Their bioaccessibility potential is also depending upon
their mineral contents, particularly potassium. In vitro digestion
procedures can be used to evaluate the bioaccessibility (Gomes
et al., 2019). Usually are used gastric simulation and small
intestinal digestion models, sometimes followed by Caco-2 cells
uptake (Vaidyanathan and Walle, 2001).

The preparation parameters of nanocomplexes with chitosan
hydrochloride, inulin, and carboxymethyl chitosan as carrier
showed maximum ACNs retention rate, preferred particle size
and high encapsulation efficiency. For instance, to increase the
bioavailability, the ACN source was encapsulated with liposomal
micelles. The taste, smell and color of ACNs became more
acceptable to consumers with encapsulation of isotonic drinks
and extracts of fruits. Besides, the beverages enriched with inulin
microcapsules had also better stability during storage (Tarone
et al., 2020).

The main clinical pitfall of ACNs therapeutics usage is that
certain drugs interact with ACNs. Studies have shown that the
cytochrome P450 enzyme, which is involved in drug metabolism,
is inhibited by flavonoids. An efflux transporter called P-
glycoprotein, which decreases the absorption of certain drugs,
is also affected. ACNs also interact with certain nutrients. They
can bind to iron, thus decreasing its absorption in the intestine.
Some of ACNs also inhibit cellular absorption of vitamin C
(Ayabe and Akashi, 2006).
OVERALL CONCLUSIONS AND FUTURE
PERSPECTIVES

ACNs are a diverse group of phytonutrients found in almost
all fruits and vegetables. Along with carotenoids, they are
responsible for the vivid colors of fruits and vegetables.
Anthocyanidins include malvidin, pelargondin, peoidin, and
cyanidin. Good sources of anthocyanidins are red, purple
and blue fruits, such as pomegranates, plums, red wine and
red and black grapes. Anthocyanidins are associated with
heart health, antioxidant effects and help prevent obesity
and diabetes.

ACNs are also widely used as natural dyes in the food
industry. They have a wide range of color tones, ranging from
orange to red to purple and blue, depending on the molecular
structure and pH value. Interest in ACNs is not only based
on their coloring effect, but also due to their health-beneficial
properties. Due to the growing environmental and health
problems in terms of synthetic dyes, natural dyes are an
excellent alternative as an environmentally friendly dye for the
food and drug industry.

ACNs are rapidly absorbed and appear in the bloodstream only
few minutes after consumption. Future studies need to be planned
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to enable better understanding of the mechanisms by which food
components achieve their effects and their pharmacokinetic
characteristics. Antioxidant and antiinflammatory effects of ACNs
are proven and it seems that ACNs also have an important role in
CVDs, neurodegenerative diseases, diabetes and cancer. The
potential of ACNs to affect mammalian metabolism is
demonstrated in in vitro and in vivo studies. Dietary ACNs may
be a potential regulator of obesity-derived inflammation and
associated chronic diseases.

Future clinical studies, using food rich in ACNs and purified
ACNs need to be performed, better understand the therapeutic
potential of these antioxidant substances.
Frontiers in Pharmacology | www.frontiersin.org 14
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