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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is responsible
of variable clinical manifestations, ranging from no symptoms to severe pneumonia with
acute respiratory distress syndrome, septic shock, and multi-organ failure resulting in
death. To date no specific antiviral drug have been approved for COVID-19, so the
treatment of the disease is mainly focused on symptomatic treatment and supportive
care. Moreover, there are no treatments of proven efficacy to reduce the progression of
the disease from mild/moderate to severe/critical. An activation of the coagulation
cascade leading to severe hypercoagulability has been detected in these patients,
therefore early anticoagulation may reduce coagulopathy, microthrombus formation,
and the risk of organ damages. The role of heparin in COVID-19 is supported by a lot
of studies describing its pleiotropic activity but it must be proven in clinical trials. Several
protocols have been designed to assess the risk-benefit profile of heparin (low-molecular-
weight or unfractionated heparin) in hospitalized subjects. Although prophylactic doses
may be adequate in most patients, it is important to wait the results of clinical trials in order
to define the appropriate effective dose able to improve disease outcome.
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INTRODUCTION

The clinical manifestations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection range from asymptomatic infection to severe pneumonia with acute respiratory distress
syndrome (ARDS), septic shock, and multi-organ failure resulting in death (Wang Y. et al., 2020).

A large Chinese epidemiological study showed that among 44,672 confirmed cases, 80.9% were mild,
13.8% severe, and 4.7% critical. The fatality rate for critical patients was 49%, higher in patients with
comorbidities (cardiovascular disease 10.5%, diabetes 7.3%, chronic respiratory disease 6.5%,
hypertension 6.0%, cancers 5.6%) than those without comorbidities (0.9%) (Wang Y. et al., 2020).
Laboratory findings of Corona Virus Disease 19 (COVID-19) include lymphopenia with depletion of
CD4 and CD8 lymphocytes, prolonged prothrombin time, elevated lactate dehydrogenase (LDH), D-
Dimer, alanine transaminase, C-reactive protein (CRP), and creatinine kinase (Huang et al., 2020; Wang
D. et al., 2020).
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One of the most important mechanisms underlying the
deterioration of disease is the cytokine storm (Shimabukuro-
Vornhagen et al., 2018). This clinically severe phase is
accompanied by high level of pro-inflammatory molecules,
such as interferons a and b, and IL-6 (Mehta et al., 2020).

Severe disease is also complicated with coagulopathy and
disseminated intravascular coagulation (DIC) has been reported
in the majority of deaths (Tang et al., 2020a). Patients with
progressive, severe COVID-19 infection with acute lung injury or
ARDS have very high D-dimer and fibrinogen levels, related to a
hypercoagulable state. Moreover, severe and critically ill COVID
patients with prolonged immobilization are inherently at high
risk of venous thromboembolism (VTE) and some patients who
require mechanical ventilation may have acute pulmonary
embolism (PE) or deep vein thrombosis (DVT), even without
strong predisposing risk factors.

Thus, an early anticoagulation, which blocks uncontrolled blood
clotting and reduce micro-thrombus formation, would lower the
risk of major organ disfunction. Accordingly, even if the risk-benefit
ratio has not been established, the World Health Organization
(WHO) recommended in these patients thrombo-prophylaxis with
either unfractionated or low molecular weight heparin (LMWH)
(Driggin et al., 2020; WHO, 2020b; WHO, 2020a).

Aim of this work is to describe the link between inflammation,
immune activation, and coagulopathy and the hypothetical
pleiotropic role of heparin in COVID-19.
INFLAMMATION, SEPSIS, AND
COAGULOPATHY

A variety of disorders (sepsis, systemic inflammatory conditions,
trauma, malignant disease) lead to activation of the coagulation
system, up to the most extreme form of DIC, and microvascular
thrombosis is a frequent complication of critical illness
conditions (Dhainaut et al., 2005; Ito, 2014).

Inflammation and coagulation are clearly linked by different
molecular signals and their interactions play a major role in the
pathophysiology of sepsis and DIC (Levi and Poll, 2015; Li and
Ma, 2017).

Acute infections, including viral ones, induce a systemic
inflammatory response and coagulation disruption (Subramaniam
and Scharrer, 2018). The process is complex and multifactorial,
involving cellular disruption and plasmatic elements of the
hemostatic system and of the innate immune system to the
pathogen (Gando et al., 2016). Thrombosis under certain
circumstances plays a major physiological role in immune
defense. The coagulation system and innate immunity (the so-
called immunothrombosis system) play a beneficial role in early host
defense against pathogens (Delvaeye and Conway, 2009; Fiusa et al.,
2015), limiting microbial dissemination, protecting blood vessels,
promoting recruitment and activation of leukocytes through fibrin,
fibrinogen, and their degradation products, and stimulating cellular
immune responses at the infection sites. Moreover, intravascular
thrombi produce a distinct compartment where antimicrobial
peptides can be concentrated and kept in contact with pathogens.
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However, aberrant or uncontrolled immunothrombosis may be
harmful, determining an imbalance between pro-coagulant and
anticoagulant mechanisms (Ito, 2014).

Multiple pathogenetic mechanisms have been identified in
the coagulation cascade activation, and involving endothelial
cells, von Willebrand factor, Toll-like receptor, and tissue-
factor pathway (van Gorp et al., 1999; Ito, 2014). The effect is
the deregulated thrombin generation, further worsened by the
impairment of anticoagulant and fibrinolytic systems.

The pro-inflammatory mediators activate coagulation, which
in turn promotes inflammatory activity (Opal, 2000; Russell,
2006; Hunt, 2014). In particular, inflammation promotes
coagulation by leading to intravascular tissue factor expression,
inducing the expression of leukocyte adhesion molecules on the
endothelial cell, and down-regulating the fibrinolytic pathways
by the up-regulation of plasminogen activator inhibitor-1 (PAI-
1). On the other hand, thrombin stimulates inflammatory
response in a self-propagating feedback loop.

The simultaneous impairment of pro-coagulant pathways and
fibrinolytic systems as a result of systemic inflammation lead to
platelet activation and fibrin deposition (Simmons and Pittet, 2015;
Levi and van der Poll, 2017). It has been demonstrated that the most
important mediators for orchestrating this imbalance during sepsis
are cytokines (Levi et al., 1997), such as interleukin-1 (IL-1), IL-6,
and tumor necrosis factor-a (TNF-a), but also denatured DNA and
cationic proteins, such as histones, released from damaged cells
(McDonald et al., 2017)[21].

The final result of the uncontrolled activation of the
coagulation system is multiple organ dysfunction (Iba and
Levy, 2018; Li X. et al., 2020).

Moreover, it is relevant in the pathogenesis of specific organ
damage, such as ARDS (MacLaren and Stringer, 2007;
Frantzeskaki et al., 2017). The lung coagulopathy is related to a
localized tissue factor-mediated thrombin generation, and
depression of bronchoalveolar plasminogen activator-mediated
fibrinolysis, mediated by the PAI-1 increase (Glas et al., 2013;
Ozolina et al., 2016).

Thus, the involvement of the hemostatic system in severe
COVID-19 is not surprising, being well documented that
inflammation and sepsis are initiators of DIC (Voves et al.,
2006). The most typical findings in patients with COVID-19 and
coagulopathy are an increased D-dimer level, a modest decrease
in platelet count, and a prolongation of the prothrombin time
(Levi et al., 2020). The pattern is therefore different to that
typically seen in sepsis, in which thrombocytopenia is more
severe, and D-dimer not very high (Levi and Scully, 2018). In
particular, markedly elevated D-dimer has been detected and
associated with higher intensive care unit (ICU) admission and
mortality, likely reflecting coagulation activation, cytokine storm
development, and organ failure (Guan et al., 2020; Huang et al.,
2020; Tang et al., 2020b; Zhou et al., 2020). Furthermore, post-
mortem examinations show vascular thrombosis in small vessels
of the lungs (Carsana et al., 2020; Menter et al., 2020; Wichmann
et al., 2020), suggesting that the COVID-19 coagulopathy can
include, besides a low-grade of DIC, a so-called “Pulmonary
Intravascular Coagulopathy-PIC” (Belen-Apak and Sarialioglu,
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2020; Fogarty et al., 2020; McGonagle et al., 2020), a localized
pulmonary thrombotic micro-angiopathy determining organ
damage (Levi et al., 2020).

It is believed that the coagulation cascade in COVID-2019 can
be activated through the well-known mechanisms reported
above, which lead to the deregulated thrombin generation both
systemically and locally in the lungs, resulting in the deposition
of fibrin with subsequent tissue damage and micro-angiopathy
(Li T. et al., 2020). Moreover, SARS-CoV-2 would directly
damage vascular endothelial cells through angiotensin-
converting enzyme 2 (ACE2), which could represent the first
injury triggering the abnormal coagulation in particular in the
lung (Li H. et al., 2020). However, other studies showed that
ACE2 pulmonary expression is restricted to type II pneumocytes,
and is nearly absent in endothelial (McGonagle et al., 2020;
Rivellese and Prediletto, 2020). In this context, the strict contact
between type II pneumocytes and the pulmonary vascular
network, and the severe local inflammatory reaction, is likely
to drive the generalized pulmonary hypercoagulable state seen in
patients with COVID-19 (Li H. et al., 2020; McGonagle et al.,
2020; Rivellese and Prediletto, 2020). Nevertheless, the
mechanisms contributing to coagulopathy in COVID-19 have
to be comprehensively clarified yet.
TREATMENT STRATEGIES

To date, treatment of coagulopathy/DIC has been focused on the
target of the primary associated pathology (Levi and Scully,
2018). This is limited in the case of COVID-19, due to the lack
of approved antiviral drug treatment, so the management of
patients is mainly focused on symptomatic and supportive care.
Moreover, there are no treatments of proven efficacy to reduce
the progression of the disease from mild/moderate to severe/
critical, in particular counteracting the cytokine storm (Chen
et al., 2020). However, reducing the release or activity of pro-
inflammatory mediators can prevent or reverse the uncontrolled
hyper-inflammation, thereby improving the condition of
patients and a lot of drugs with this aim are under evaluation
in clinical trials.

The use of anticoagulants for patients with severe COVID-19
has been recommended by expert consensus and by WHO
(Driggin et al., 2020; WHO, 2020b).

The International Society of Thrombosis and Haemostasis
(ISTH) introduced a new category identifying an earlier phase of
sepsis-associated DIC, called “sepsis‐induced coagulopathy”
(SIC) (Iba et al., 2019). In this case or in patients with
markedly elevated D-dimers, LMWH at prophylactic dose
should be considered (Tang et al., 2020a).

The optimal thrombo-prophylactic regimen in patients with
COVID-19 is unknown (Driggin et al., 2020). Given drug-drug
interaction with direct oral anticoagulants and some anti-viral
regimens, heparins, either unfractionated or low molecular
weight, may be preferred.

Accurate patient assessment is necessary to balance the
individual risk of thrombosis and bleeding. Therapeutic
Frontiers in Pharmacology | www.frontiersin.org 3
anticoagulation is not required unless another indication
for therapeutic anticoagulation is documented (e.g. VTE,
atrial fibrillation, or mechanical valve). Moreover, evidence of
coagulopathy/DIC and especially elevated D-dimer levels
observed even in early phase of PIC might be useful to guide
therapeutic decision (Lillicrap, 2020).

Prophylactic dose LMWH is recommended for all hospitalized
COVID-19 patients in the absence of contraindications.

However, standard prophylactic regimens may be insufficient
in severe and critically ill patients with variable thromboembolic/
bleeding risk, and monitoring of anti-Xa activity may be
considered when LMWH is used in these patients (Duranteau
et al., 2018).

In cases where there are no contraindications, empiric
therapeutic anticoagulation has been proposed by the
American Society of Hematology in the following cases
(Ash, 2020):

• intubated patients who develop sudden clinical and
laboratory findings highly consistent with PE;

• patients with physical findings consistent with thrombosis
(superficial thrombophlebitis, peripheral ischemia or
cyanosis, thrombosis of dialysis filters, tubing, or catheters);

• patients with respiratory failure, particularly when D-dimer
and/or fibrinogen levels are very high, in whom PE or
microvascular thrombosis is highly suspected and other
causes are not identified (e.g., ARDS, fluid overload).

A normal level D-dimer level provides reasonable confidence
that anticoagulation should continue at prophylactic doses.

However, the efficacy and safety of anticoagulation as well as
the appropriate dose regimen able to improve disease outcome in
patients with COVID-19 have yet to be defined in clinical trials.
PHARMACOLOGICAL PROPERTIES OF
HEPARIN AND CLINICAL EVIDENCE
IN COVID-19

Although primarily employed for its anticoagulant properties, it is
known that heparin possesses anti-inflammatory, immunomodulatory,
anti-viral, and anti-complement activity which may offer benefit
beyond the anti-coagulation (Davidson et al., 2002; Hoppensteadt
et al., 2008; Young, 2008; Ludwig, 2009; Li et al., 2012; Li et al., 2014;
Li et al., 2015; Li and Ma, 2017; Thachil, 2020).

Heparin is a member of a family of polyanionic polysaccharides
called glycosaminoglycans (Young, 2008). It remains one of the
most important anticoagulant drugs in clinical practice, currently
used for the prevention and treatment of venous thrombosis and
PE, the management of arterial thrombosis in patients with acute
myocardial infarction and in the prevention of re-thrombosis after
thrombolysis, and the prevention of thrombosis in extracorporeal
circuits and hemodialysis.

The mechanisms behind its pleiotropic effect are complex and
not completely understood.
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Its polyanionic nature allows to bind sites proteins such as
antithrombin III, but also cytokines, chemokines, growth factors,
adhesion molecules, cytotoxic peptides, tissue destructive
enzymes, involved in inflammation (Day et al., 2004). Thus,
the binding of acute phase and complement proteins may
contribute to the anti-inflammatory activity of heparin (Weiler
et al., 1992; Young et al., 1997).

Indeed, even if the binding of released cytokines may protect
themfromproteolytic degradation, heparinmayalter the secondary
and tertiary structure of cytokines and prevent the binding to their
specific receptors (Balasubramanian and Ramanathan, 2000;
Mummery and Rider, 2000; Jayanthi et al., 2017), thus,
influencing their biological activity, limiting accumulation of
inflammatory cells and activation and subsequent tissue damage.
When given in pharmacological doses, exogenous heparin and
heparinoids demonstrated to attenuate tissue damage, neutralizing
a variety of mediators released from inflammatory cells (Elsayed
and Becker, 2003).

In line with this assumption, a large number of studies have
revealed that LMWH reduce the release and the biological
activity of IL-6 and IL-8 (Qian et al., 2014; Shastri et al., 2015;
Li et al., 2016; Liu et al., 2019).

In addition, heparin binding to P-selectin showed to inhibit
leukocyte adhesion to endothelial cells, independently by its
anticoagulant activity (Lever et al., 2000).

The dysfunction of endothelial cells and the reduction of
glycocalyx are key characteristics of sepsis. Heparin, as a heparan
sulphate (HS) analogue, may reconstitute the protective layer of
proteoglycans to restore the natural vascular barrier (Nelson
et al., 2008). The protective function on the endothelial tight
junctions has been demonstrated in a model of lung damage
induced by lipopolysaccharide, where heparin administration
decreased edema and vascular leakage (Liu et al., 2019).

Moreover, the protective responses observed with heparin in
experimental models of sepsis seem to be mediated by blocking
the pro-inflammatory signaling pathways regulated by
MAPK, NF-kB, and STAT3 (Iba and Levy, 2018; Li X. et al.,
2020). It has been demonstrated that heparin is readily bound
and internalized into the cytosolic compartment, where it can
prevent the NF-kB translocation to the nucleus through the
binding of the positively charged nuclear localization sequence
(Letourneur et al., 1995; Akimoto et al., 1996; Dudas et al., 2000).
Blocking of this transcriptional factor can reduce inflammatory
gene activation and regulate the production of pro-inflammatory
cytokines, chemokines, and adhesion molecules.

A novel immune-modulating mechanism of heparin related
to blockage of circulating histones has been studied in vitro and
in septic mouse models (Wildhagen et al., 2014). It is noteworthy
that extracellular histones released from dead cells play
important role in cellular damage and are robustly associated
with endothelial dysfunction, organ dysfunction and even death
during sepsis (Xu et al., 2009; Ekaney et al., 2014; Iba et al., 2015).
Heparin demonstrated a strong affinity for extracellular histones
and prevents their interaction with platelets, a potential
mechanism contributing to the regulation of inflammation
(Fuchs et al., 2011; Alhamdi et al., 2016).
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Finally, the putative antiviral role of heparin has been studied
in experimental models. Thanks to its polyanionic nature,
heparin can bind to several proteins, such as cell surface
glycoproteins and thus inhibit herpes simplex virus attachment
(Shukla and Spear, 2001). Furthermore it has been demonstrated
that in zika virus infection it prevents virus-induced cell death
(Ghezzi et al., 2017).

Interestingly, in vitro and in vivo experimental studies have
shown that human coronaviruses utilize heparin sulfate
proteoglycans for attachment to target cells (Milewska et al.,
2014), and interaction between the SARS-CoV-2 Spike S1
protein receptor binding domain (SARS-CoV-2 S1 RBD) and
heparin has been recently showed, supporting the role of heparin
in the therapeutic armamentarium against COVID-19 beyond
the anticoagulant effect (Courtney Mycroft-West et al., 2020).

However, the exact benefit and safety of heparin as anti-
inflammatory and antiviral agent in clinical setting are yet to be
defined and conflicting results have been reported by previous
clinical trials.

According to systematic reviews and meta-analyses regarding
the use of heparin as a potential treatment for patients with
sepsis, treatment with low doses of heparin is associated with
significantly reduced 28-day mortality in sepsis (Liu et al., 2014;
Wang et al., 2014; Zarychanski et al., 2015; Fan et al., 2016).

Another meta-analysis shows a reduction of the risk of 7-day
and of 28-day mortality, and a significant improvement of PaO2/
FiO2 ratio in patients with ARDS treated with high-dose LMWH
(Li et al., 2018), demonstrating that treatment with heparin may
be helpful in mitigating the pulmonary coagulopathy found
in ARDS.

The existing evidence on the use of heparin to prevent or
treat thrombotic complications in COVID-19 derives from
retrospective and observational data.

Recently, a retrospective cohort study analyzed the relieving
effect of LMWH in patients with COVID-19, to investigate the
anti-inflammatory effects of heparin and the delay of disease
progression (Shi C et al., 2020). Compared to the control
group, patients treated with heparin had an improvement of
hypercoagulability, a reduction of IL-6 and neutralization of
its biological activity, and an increase in the percentage
of lymphocytes. A large retrospective cohort showed lower
mortality in COVID-19 patients treated with heparin, even after
adjustment for age and gender (OR 95% CI 0.55, 0.37–0.82; p =
0.003), saturation of oxygen <90%, and temperature >37°C (OR
0.54, 0.36–0.82; p = 0.003), and use of concomitant medications
(OR 0.42, 0.26–0.66; p < 0.001) (Ayerbe et al., 2020). Moreover, a
recent observational study conducted in US found a reduced risk of
mortality among patients (n = 786) hospitalized with COVID-19
who received anticoagulation (Paranjpe et al., 2020).

Randomized controlled trials are necessary to confirm these
preliminary observations.

Ongoing Clinical Trials in COVID-19
As reported on the COVID-19 clinical trials registry (http://
www.covid-trials.org, 2020) which collects all trials from
International Clinical Trials Registry Platform (Chinese Clinical
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Trial Registry, ClinicalTrials.gov, Clinical Research Information
Service—Republic of Korea, EU Clinical Trials Register, ISRCTN,
Iranian Registry of Clinical Trials, Japan Primary Registries Network,
andGerman Clinical Trials Register), 16 clinical trials are ongoing (9/
16 recruiting and 7/16 not-recruiting) to evaluate the effect of
anticoagulation with heparin (low-molecular-weight—mainly
enoxaparin—or unfractionated heparin) in hospitalized patients
with COVID-19 (Appendix 1). More than 80% of these studies
are open-label, randomized, two-arm trials, and at least 75% of
protocols include a comparison between therapeutic anticoagulation
(investigational arm) and thromboprophylaxis (control arm), in line
with the uncertainty about the benefit/risk ratio of the two treatment
strategies. As reported in Appendix 2, the primary outcome
measures of heparin clinical trials are hard endpoints such as
mortality or composite measure of clinical events and/or survival,
as recommended by the WHO guidelines (WHO, 2020d).

Overall, almost 10,000 patients are expected to be enrolled.
However, the completion of some studies (expected in the second
half of 2020 and in 2021) would be difficult at least in European
countries and China due to the reduction in the number of new
cases and hospitalizations (WHO, 2020c).
CONCLUSION

Coagulation activation has been reported in COVID-19,
determining pathological changes specifically involving the lung
Frontiers in Pharmacology | www.frontiersin.org 5
microvasculature, and an increased risk of DVT, PE, and DIC in
severe phase. The use of anticoagulants, in particular heparin, is
recommended by expert consensus for patients with severe
COVID-19, although a final guidance cannot be implemented yet.

There are several ways in which probably heparin
administration can benefit patients with COVID-19, beyond the
anticoagulant effect.

Although prophylactic doses may be adequate in most
patients, it would be important to administer therapeutic
dosage based on the individual risk of coagulopathy and
thrombosis. To assess the efficacy and safety in patients with
COVID-19 in clinical trials is crucial in order to find the
appropriate effective dose of LMWH/UFH and improve disease
outcomes. Different well-designed clinical trials (randomized,
controlled, with appropriate outcome measures, even if not-
blinded) are ongoing. However, the completion of trials and the
consequent definition of risk/benefit profile of drugs candidate
for COVID-19 would be complicated by the reduced (albeit
strongly awaited) spread of the virus.
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APPENDIX 1 | Ongoing clinical trials with heparin in patients with COVID-19 (update May 28, 2020).

ID Country Treatment Phase Completion Trial
status

Design Blinding Arms Patient
setting

Size

2020-001709-21 France Enoxaparin, tinzaparin,
dalteparin, nadroparin

IV NA Recruiting Randomized Open-label 2 Hospital 550

2020-001823-15 France Enoxaparin IV NA Recruiting Single-arm Open-label 1 ICU 200
2020-001891-14 Spain Enoxaparin II NA Recruiting Randomized Open-label 2 Hospital 140
CHICTR2000030700 China Enoxaparin / 2020-Sep Not

recruiting
Randomized Open-label 2 Hospital 60

CHICTR2000030701 China Enoxaparin / 2020-Sep Not
recruiting

Randomized Open-label 2 Hospital 60

CHICTR2000030946 China LMW heparin IV 2020-Apr Recruiting Non-
randomized

Unspecified 2 Hospital 120

NCT04344756 France Tinzaparin, enoxaparin,
dalteparin, unfractionated
heparin

II 2020-Jul Not
recruiting

Randomized Open-label 2 Hospital,
ICU

808

NCT04345848 Switzerland Enoxaparin
Unfractionated heparin

III 2020-Nov Recruiting Randomized Single 2 Hospital,
ICU

200

NCT04354155* United States Enoxaparin II 2022-Sept Not
recruiting

Single-arm Open-label 1 Hospital 38

NCT04359277 United States Enoxaparin
Unfractionated heparin

III 2021-Apr Recruiting Randomized Open-label 2 Hospital 1,000

NCT04360824 United States Enoxaparin IV 2021-Apr Not
recruiting

Randomized Open-label 2 Hospital 170

NCT04362085 Canada LMW heparin
Unfractionated heparin

III 2020-Nov Recruiting Randomized Open-label 2 Hospital 462

NCT04366960 Italy Enoxaparin III 2020-Aug Recruiting Randomized Open-label 2 Hospital 2,712
NCT04367831 United States Enoxaparin

Unfractionated heparin
IV 2020-Nov Recruiting Randomized Single 4 ICU 100

NCT04372589 Canada Enoxaparin, tinzaparin,
dalteparin, unfractionated
heparin

/ 2021-Jan Not
recruiting

Randomized Open-label 2 Hospital 3,000

NCT04377997 United States Enoxaparin
Unfractionated heparin

II 2021-Jan Not
recruiting

Randomized Open-label 2 Hospital,
ICU
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Four trials recently approved in Italy and not yet reported in the online registry are not included.
NA, not available; ICU, intensive care unit. *Pediatric subjects.
APPENDIX 2 | Main outcome measures of ongoing clinical trials with heparin in patients with COVID-19.

ID Primary outcome measures

2020-001709-21 Onset of a symptomatic venous thromboembolic event, or symptomatic pulmonary embolism, or unexplained death when a pulmonary embolism
cannot be excluded

2020-001823-15 Measurement of the anti-Xa activity of enoxaparin
2020-001891-14 Need for oxygen therapy escalation or invasive mechanical ventilation or mortality
CHICTR2000030700 Time to Virus Eradication
CHICTR2000030701 Time to Virus Eradication
CHICTR2000030946 Biochemical indicators
NCT04344756 • Survival without ventilation (NIV or mechanical ventilation) in patients not requiring ICU who need for oxygen but no NIV or high flow.

• Ventilator free survival in patients with respiratory failure and requiring mechanical ventilation
NCT04345848 Composite outcome of arterial or venous thrombosis, disseminated intravascular coagulation, and all-cause mortality
NCT04354155 Safety of in-hospital thromboprophylaxis
NCT04359277 All-cause mortality, cardiac arrest, symptomatic deep venous thrombosis, pulmonary embolism, arterial thromboembolism, myocardial infarction,

hemodynamic shock
NCT04360824 Mortality
NCT04362085 Composite outcome of ICU admission, non-invasive positive pressure ventilation, invasive mechanical ventilation, or all-cause death
NCT04366960 Incidence of venous thromboembolism
NCT04367831 Composite of being alive and without clinically-relevant venous or arterial thrombotic events at discharge from ICU
NCT04372589 Need for invasive mechanical ventilation or mechanical ventilation, and occurrence of death
NCT04377997 Composite efficacy endpoint of death, cardiac arrest, symptomatic deep venous thrombosis, pulmonary embolism, arterial thromboembolism,

myocardial infarction, or hemodynamic shock
ICU, intensive care unit; NIV, non-invasive ventilation.
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