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Human Melanoma Cells and Inhibits
Tumor Growth in Xenograft
Zebrafishes Through P53- and
JNK-Related Mechanism
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7 School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China, 2 The First
Affilated Hospital, Zhejiang Chinese Medical University, Hangzhou, China, S Research and Development Department, Hunter
Biotechnology, Inc., Hangzhou, China

Theaflavin (TF) is a major active pigment and polyphenol of tea, possessing anti-cancer
activities. However, little is known about its activity and mechanism on melanoma cells. To
fill this gap, we conducted in vitro experiments (cell viability assay, morphology
observation, DAPI staining, and flow cytometry) and in vivo experiment by using a
xenograft model of larval zebrafishes. Real-time PCR (gPCR) and Western blot (WB)
analyses were conducted to explore the mechanism of TF. The in vitro data showed that
TF exerted significant anti-proliferative and pro-apoptotic effects on A375 cells in a
concentration-dependent manner. In vivo, TF significantly inhibited A375 tumor growth
in larval zebrafishes at 0.67 and 2.0 ug/ml (1.3 to 3.9 uM). gPCR and WB data showed
that TF significantly activated the P53 pathway-related proteins (ATM, CHK1/2, P53, and
CASP8/3) and the JNK pathway-related proteins (ASK1, JNK, and C-JUN) through
phosphorylation and cleavage, followed by activation of pro-apoptotic molecules (PARP,
BAX, BIM, PUMA, and P53). In sum, TF possessed cytotoxic pro-apoptotic and tumor-
inhibitory effects on A375 cells through activations of P53 and JNK pathways. This is the
first report on TF regarding its effects and mechanism on A375 cells, making it a promising
candidate of natural products for clinical treatment of melanoma.

Keywords: green tea, theaflavin, melanoma, zebrafish, P53, JNK

Abbreviations: DAPI, 4’-6-diamidino-2-phenylindole; DMEM, Dulbecco’s modified Eagle’s medium; DMSO, dimethyl
sulfoxide; dpf, days post fertilization; FBS, fetal bovine serum; FI, fluorescence intensity; LSD, Fisher’s least significant
difference; NOAEL, no observed adverse effect level; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;
PARP, poly ADP-ribose polymerase; SDS-PAGE, denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis; TCM,
theaflavin; TF, Traditional Chinese medicine.
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INTRODUCTION

Melanoma is a fatal type of skin cancer, with high metastatic potential
and intractability (Yang et al., 2018). Melanoma patients at advanced
stages are always unresectable and have a worse prognosis (Leonardi
et al, 2018). Chemotherapy is a mainstay of clinical treatment for
melanoma, but the efficacies of chemotherapeutics are limited due to
their side effects on healthy tissues (Oliveira Pinho et al, 2019).
Recently, several immunotherapies, including CTLA-4 or PD-1
receptor inhibitors, have been developed as new options for
treating melanoma, but their efficacies are unreliable and their side
effects are still non-negligible (Rodriguez-Cerdeira et al., 2017).
Therefore, new strategies with satisfactory effectiveness and safety
are urgently needed. Traditional Chinese medicine (TCM) is a
complementary approach and has been clinically applied for
thousands of years, possessing certain efficacy and fewer side
effects. According to the TCM theory, cancer is associated with
body accumulation of phlegm, toxins or inflammation, and the anti-
phlegm, anti-toxic, or anti-inflammatory herbs may possess anti-
cancer effects (Wang and Cheng, 2019). The theory has been
supported by many cases. For example, curcumin in Rhizoma
Curcumae longae exerted cytotoxic effects by inducing apoptosis
and inhibiting angiogenesis of melanoma cells (Mirzaei et al., 2016),
and vitexin in Vitex negundo suppressed melanoma cell growth by
inducing DNA damage and increasing ROS levels (Liu et al.,, 2018).
Therefore, TCM herbal components have great potential for
treatment of cancers, such as melanoma.

Tea [Camellia sinensis (L.) O. Kuntze] is one of the most
prevalent beverages in the world. It is well-known not only for the
peculiar flavor but also for the benefits to health. Due to the
difference of process, tea has three main types, including
unfermented green tea, partially fermented oolong tea, and fully
fermented black tea or pu-erh tea (Kuo et al,, 2005). Tea leaves
have been characterized as a TCM herb with anti-phlegm and
anti-toxic properties, indicating its anti-cancer potential. Modern
studies have reported that tea drink is effective in preventing and
treating cancers (Jin et al., 2018). Recently, tea polyphenols have
been found to possess anti-cancer activity, which have superior
effect to tea drink (Mao et al.,, 2019). Theaflavin (TF) is such a
polyphenol component produced by oxidation of catechins of tea
leaves during fermentation, acting as a main pigment for the color,
flavor and bioactivity of tea (Roberts et al., 1957). It is capable of
inducing apoptosis in a variety of cancer cell lines, such as human
breast carcinoma cell lines (MCF-7, MDA-MB-231, T47D, and
ZR-75-1), colon carcinoma cell lines (HCT-15 and HT-29), and
hepatic carcinoma cell lines (HCCLM3 and Huh-7), indicating
anti-cancer potential (Adhikary et al., 2009; Lahiry et al., 2010; Li
etal., 2012; Shao et al., 2016). Nevertheless, little attention has been
given to its effect towards melanoma as yet.

In view of the reported pro-apoptotic effects of TF on many
cancer cell lines (Lahiry et al., 2008), we put forward a hypothesis
that TF exerts pro-apoptotic effects on melanoma cells. To verify
this, the present performed in vitro experiments to evaluate the
cytotoxic pro-apoptotic effect of TF on human melanoma cells
and conducted in vivo experiment by using a xenograft model in
larval zebrafishes to determine its tumor-inhibitory effect.
Moreover, the mechanism of TF was also explored.

MATERIALS AND METHODS

Materials and Chemicals

Theaflavin (TF, >95% of purity) was provided by Theabio Co., Ltd
(Hangzhou, China) (Batch number: 20181211061). Dulbecco’s
modified Eagle’s medium (DMEM) containing high glucose
(4.5 g/l) was obtained from HyClone Laboratories (UT, USA).
Fetal bovine serum (FBS) was obtained from Cell Max (Beijing,
China). Trypsin (0.25%) were obtained from Gibco (NY, USA). 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) and dimethyl sulfoxide (DMSO) were obtained from
Sigma (St. Louis, MO, USA). Annexin-V: FITC apoptosis
detection kit was obtained from BD Biosciences (CA, USA). 4’-
6-diamidino-2-phenylindole (DAPI) staining solution was
obtained from Thermo Fisher Scientific (MA, USA). Primary
antibodies were obtained from Cell Signaling Technology (MA,
USA). Trizol reagent and real time polymerase chain reaction (real
time PCR) kit were obtained from TaKaRa (Dalian, China).

Cell Line Preparation

Human HFF-1 skin fibroblast and A375 melanoma cell line were
obtained from Shanghai Cell Bank of Chinese Academy of
Sciences (Shanghai, China), and human A875 melanoma cell
line was obtained from Kunming Cell Bank of Chinese Academy
of Sciences (Kunming, China). These cell lines were cultured in
DMEM medium containing 10% FBS at 37°C in a humidified 5%
CO, incubator. The medium was daily changed, and the cells
were treated with TF in their logarithmic growth phase.

Zebrafish Preparation

Wild-type AB strain of zebrafishes was obtained from the China
Zebrafish Resource Center, Institute of Hydrobiology, China
Academy of Science (Wuhan, China) and accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care International (SYXK 2012-0171). Larval
zebrafishes at 2 dpf (days post fertilization) were produced by
natural pair-mating and housed in a light-controlled aquaculture
facility with a standard 14:10 h day/night photoperiod and fed
with live brine shrimp twice a day and fry flakes once a day.

Cell Viability Assay and Morphological
Observation

MTT assays were conducted to determine the inhibitory effects
of TF on melanoma cell lines, as previously described (Zhou
et al,, 2017). Cells were seeded into 96-well plates at 6x10> cells/
well in 200 pl medium for 24h adherence, followed by treatment
with TF at concentrations of 0, 50, 100, 150, 200, 250, 300, and
400 pg/ml for 24, 48, and 72 h. Then 20 pl of MTT solution (5.0
mg/ml) was added to each well and incubated at 37°C for 4h.
DMSO (150 pl) was added in each well and the optical density
value (OD value) was measured at 490 nm with Biorad
microplate reader (CA, USA). Inhibitory rate (%) = [1-(TF-
treated OD/untreated OD)] x 100%. The 50% inhibitory
concentrations (ICsy) for 24, 48, and 72 h were calculated by
regression analysis. Accordingly, 120, 240, and 360 ug/ml (232.3,
464.7, and 697.0 UM) were designated as low, middle, and high
doses of TF. Then, HFF-1, A375, and A875 cell lines were seeded
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into 96-well plates as above, and treated with middle dose of TF
at 24 h. The cell morphology of A375 cells was observed under
Carl Zeiss fluorescence microscope (Gottingen, Germany).

Apoptosis Analysis by DAPI Staining and
Flow Cytometry

Cell apoptosis was determined by DAPI staining and annexin-V/
PI staining-based flow cytometry. For DAPI staining, A375 cells
were seeded into 96-well plates and treated with TF at low,
medium, and high concentrations for 24 h, followed by fixation
with 4% paraformaldehyde in PBS for 30 min at room
temperature and staining with DAPI for 10 min in dark. After
thrice wash, cells were observed using five coverslips under Carl
Zeiss fluorescence microscope (Gottingen, Germany) and the
apoptotic cells were counted. Flow cytometry was conducted
according to the manufacturer’s instruction. Briefly, A375 cells
were seeded into 6-well plates at 3x10° cells/well for 24 h and
treated with TF at low, medium, and high concentrations for
another 48 h. Afterwards, the cells were washed twice and labeled
with annexin V-fluorescein isothiocyanate solution and PI in
binding buffer. Fluorescence intensity of the cells was detected by
BD C6 flow cytometry (CA, USA). The analysis was replicated
and the early apoptotic and late apoptotic cell rates (%)
were calculated.

Xenograft Animal Assay

For determining the dose range of TF, totally 300 larval
zebrafishes at 3 dpf were used and randomly cultured into 6-
well plates with 30 fishes each. TF were dissolved into each well at
0, 3.47, 104, 31.25, 62.5, 125, 250, 500, 1,000, and 2,000 pg/ml,
respectively, for 24 h. Afterwards, fishes in each group were
observed under a stereoscopic microscope to record mortality
and adverse events. As described by our previous study, no
observed adverse effect level NOAEL) of TF was estimated, and
1/9 NOAEL, 1/3 NOAEL and NOAEL were applied as the low,
middle, and high doses for the following experiment (Jin
et al., 2018).

To establish the xenograft model, A375 cells were stained
with CM-Dil (red fluorescence) at a dilution of 1:1,000 and
microinjected into the yolk sac of larval zebrafishes (2 dpf) at a
dose of 200 cells/fish. After tumor growth for 24 h, all fishes were
observed under a fluorescent microscope (AZ100, Nikon, Tokyo,
Japan) for model verification. The A375-bearing fishes were
grouped into 5 groups (30 fishes each) and treated with 0 pg/ml,

TABLE 1 | Primer sequences used for gPCR analysis.

1/9 NOAEL, 1/3 NOAEL, and NOAEL of TF, as well as 15 ug/ml
(50 uM) of cisplatin, respectively, for 24 h. The fluorescence
intensity (FI) of A375 cell mass of zebrafishes was detected and
the inhibitory rate was calculated as: inhibitory rate (%) = [1-(FI of
treated group/FI of untreated group)] x 100%.

Real Time PCR (qPCR) Analysis

To reveal the molecular actions of TF on A375 cells, gPCR was
employed on an ABI QuantStudio ™ 7 Flex Real-Time PCR
System (Applied Biosystems, CA, USA). The total RNA of A375
cells was extracted using Trizol reagent and synthesized to cDNA
via reverse transcription. The qPCR reaction system had a 20.0
ul volume: 10 pl SYBR® Premix Ex Taq II (Tli RnaseH Plus), 0.8
pl PCR forward primer, 0.8 ul PCR reverse primer, 2.0 pl
template cDNA, 0.4 pl ROX reference dye, and 6.0 ul ddH,O.
The qPCR reaction condition was set to 95°C for 30 s initial
denaturation, 40 cycles of 95°C for 5 s denaturation, 60°C for 34 s
annealing, and 72°C for 40 s extension. At the end of each
reaction, a melting curve analysis was performed. B-ACTIN was
used as the reference gene and the 2"**“T method was applied to
analyze the relative expression of each gene (Table 1).

Western Blot (WB) Analysis

The protein expression of A375 cells with TF treatment at 0 pg/
ml and 120 pg/ml (232.3 uM) was analyzed by WB analysis. The
total proteins were extracted using a lysis buffer (50 mM Tris-
HCI pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton, 0.1% SDS,
5 pg/ml leupeptin, and 1 mM PMSF) for 30 min on ice with
repeated freezing and thawing. Targeted proteins were separated
using denaturing sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) (8~12%) and then transferred onto
a polyvinylidene fluoride (PVDF) membrane (Millipore, MA,
USA). The membrane was blocked with 5% non-fat milk for
2 h, followed by overnight incubation at 4°C with the antibodies
against: ACTIN, ASK1, ATM, phosphorylated ATM (p-ATM),
ATR, phosphorylated ATR (p-ATR), cleaved caspase 3 (c-CASP3),
cleaved caspase 8 (c-CASP8), CHK1, CHK2, phosphorylated
CHK1 and CHK2 (p-CHK1 and p-CHK?2), JNK, phosphorylated
JNK (p-JNK), C-JUN, phosphorylated C-JUN (p-C-JUN), cleaved
PARP (poly ADP-ribose polymerase), P53, and phosphorylated
P53 (p-P53). After incubation with the secondary antibody, these
proteins were visualized with an enhanced chemiluminescence kit
(Amersham Pharmacia Biotech, Little Chalfort, UK) and detected
using a chemiluminescence analyzer.

Gene Forward primer Reverse primer

B-ACTIN 5'-CATGTACGTTGCTATCCAGGC-3' 5'-CTCCTTAATGTCACGCACGAT-3'

BAX 5'-CC CTACTTTGCCAGCAAAC-8 5'-GAGGCCGTCCCAACCAC-3’

BCL-2 5'-ATGTGTGTGGAGAGCGTCAACC-3' 5'-TGAGCAGAGTCTTCAGAGACAGCC-3'
BIM 5'-ACCAAACCAAAGCCGTCATCA-3 5'-GGAGCCAGTAAACGTATTGGAAG-3'
C-MYC 5'-GCCACGTCTCCACACATCAG-3' 5'-TGGTGCA CGGTTGTTG-8

P21 5'-GGCAGACCAGCATGACAGATT-3' 5'-GCGGATTAGGGCTTCCTCT-3'

P53 5'-TCAACAAGATG GCCAACTG-3' 5'-ATGTGCTGTGACTGCTTGTAGATG-3'
PUMA 5'-GACCTCAACGCACAGTACGAG-3' 5'-AGGAGTCCCATGATGAGATTGT-3'
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Statistical Analysis

Data were expressed as mean values + SD and subjected to one-
way ANOVA, followed by Fisher’s least significant difference
(LSD) comparison. All analyses were performed using an
updated version of DPS software (Tang and Zhang, 2013).

RESULTS

Anti-Proliferative Effect of TF

As shown in Figure 1A, TF at 50 ug/ml (96.8 uM) significantly
inhibited the viability of A375 cells, and the inhibitory rates were
increased with increasing TF concentrations from 50 to 400 pg/
ml (96.8 to 744.4 uM) (each P < 0.01 vs. normal level), indicating
a concentration-dependent manner. The inhibitory rates were
also increased with TF treatment from 24 to 72 h, with ICs, of
218.9 to 84.9 ug/ml (423.8 to 164.4 UM), respectively. Then, we
applied 120, 240, and 360 pg/ml (232.3, 464.7, and 697.0 uM) as
the doses of TF-L, TF-M and TF-H, respectively. As shown in
Figure 1B, TF-M obviously inhibited the viability of A375 and
A875 cells but exerted little effect on HFE-1 cells. As shown in
Figure 1C, the morphology of A375 cells was obviously altered
and the living cell number was decreased with TF treatment at
increasing concentrations.

Pro-Apoptotic Effect of TF

DAPI staining and flow cytometry were performed to evaluate
the pro-apoptotic effect of TF on A375 cells. The result of DAPI
staining showed apoptotic morphology, including shrunken
shape, karyopyknosis, and nuclear fragmentation, in A375 cells
with TF treatment from 120 to 360 pg/ml (232.3 to 697.0 uM)

(Figure 2A). The apoptotic cell numbers were significantly
increased with TF treatment at 240 and 360 pg/ml (464.7 and
697.0 UM) (each P < 0.01 vs. NC) (Figure 2C). The result of flow
cytometry showed TB-induced early apoptosis and late apoptosis
of A375 cells (Figure 2B). The numbers of early and late
apoptotic cells were increased with TF treatment from 120 to
360 pg/ml (232.3 to 697.0 uM) (Figure 2B), and their
proportions were significantly higher with TF treatment at 360
pg/ml (697.0 uM) (P < 0.01 and P < 0.05 vs. normal level)
(Figures 2D, E). The results indicated that TF induced apoptosis
of A375 cells in a concentration-dependent manner.

In Vivo Effect of TF on Xenograft
Zebrafishes

The curves of mortality and adverse events of zebrafishes with TF
treatment were shown in Fig. 3A. Fish death was caused by TF at
31.25 pg/ml (60.5 uM), and no fish was survived with TF at 125
pg/ml (242.0 uM), indicating the maximum non-lethal dose of
TF less than 31.25 ug/ml (60.5 uM). The adverse events,
including abnormal body roll over and edema, were observed
with TF treatment from 3.47 ug/ml (6.7 uM) to its higher doses,
indicating the NOAEL of TF less than 3.47 pug/ml (6.7 uM). After
replicated tests, the NOAEL was finally estimated as 2.0 ug/ml
(3.9 uM). Thereby, 0.22, 0.67, and 2.0 pg/ml (0.4, 1.3, and 3.9
UM) were used as the low, middle, and high doses of TF for the
subsequent experiment.

As shown in Figure 3B, a xenograft model of A375 cells was
established in larval zebrafishes and the fluorescent intensities of
the cell mass in the fishes were tested. After 24 h treatment, TF
from 0.22 to 2.0 ug/ml (0.4, 1.3, and 3.9 uM) obviously inhibited
the A375 tumor growth, with inhibitory rates from 1.0 to 46.4%.
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FIGURE 1 | Cell viability of A375 cells with TF treatment at 24, 48, and 72 h (A), cell viability of HFF-1, A375, and A875 cells with TF treatment at 24 h (B), and
morphology of A375 cells with theaflavin (TF) treatment at 24 h (C). Data were mean = SD (n = 5). By means of Fisher’s least significant difference (LSD) multiple
comparisons, data (mean + SD) with same lowercase letter (b vs. bc; be vs. cd; ¢ vs. ¢; cd vs. d; d vs. d) indicate no significant difference between each other, while
data with different letters (a vs. b vs. c vs. b vs. e vs. f vs. g) indicate significant difference with each other. Scale bar = 200 um.
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The inhibitory effects of TF at 0.67 and 2.0 pg/ml (1.3 and 3.9
uM) were significant, if compared with the model group (P <
0.01), and the effect of TF at 2.0 pug/ml (3.9 uM) was even higher
than that of cisplatin at its NOAEL (50 uM).

Molecular Action of TF on mRNA
Expressions in A375 Cells

The relative mRNA expressions of TF-targeted genes were tested
by qPCR assay. As shown in Fig. 4, the expressions of BAX, BIM,
C-MYC, P21, P53, and PUMA were significantly up-regulated by
TF (each P < 0.01 vs. NC level), except for that of BAX with TF
treatment at its low concentration. Although the expression of
BCL-2 was up-regulated by TF, the ratios of BAX/BCL-2 were
significantly higher with TF treatment at its middle to high
concentrations than that of NC level (P < 0.01), indicating the
major role of BAX in the action of TF.

Molecular Action of TB on Protein
Expressions in A375 Cells

WB was applied to determine the expression and phosphorylation
of proteins targeted by TF. As shown in Figure 5, the expressions
of ATM, p-ATM, CHKI, p-CHKI, p-CHK2, p-P53, c-PARP,
ASK1, JNK, p-JNK, C-JUN (48 kd), p-C-JUN (Ser 63), c-
CASPS8, and ¢-CASP3 were significantly up-regulated by TF at
120 pg/ml (232.3 uM) (each P < 0.01 vs. NC level). Besides, the
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FIGURE 2 | DAPI staining observation (A) and flow cytometry analysis (B) on A375 cells with theaflavin (TF) treatment. Statistical analysis of apoptotic cell rate (C),
statistical analysis of early apoptotic rate (D) and statistical analysis of late apoptotic rate (E). By means of Fisher’s least significant difference (LSD) multiple
comparisons, data (mean + SD) with same lowercase letter (a vs. ab; ab vs. b; b vs. b; ¢ vs. c) indicate no significant difference between each other, while data with
different letters (a vs. b vs. ¢) indicate significant difference with each other. Scale bar = 100 um.

actions of TF on ATR, p-ATR, CHK2, P53, C-JUN (43 kd), and p-
C-JUN (Ser 73) were insignificant (each P > 0.05 vs. NC level).

DISCUSSION

Although the anti-cancer activities of TF has been well
documented (Sur and Panda, 2017; Takemoto and Takemoto,
2018; Sajadimajd et al., 2020), the knowledge of its effectiveness
on melanoma is still little. To fill this gap, the present study
conducted in vitro and in vivo experiments to study the effects
and mechanism of TF against melanoma cells. For the first time,
we demonstrated the cytotoxic pro-apoptotic and tumor-
inhibitory effects of TF on melanoma A375 cells. Its
mechanism was suggested to be associated with P53 and JNK
pathways. The innovation of this study is the finding of TF's
anti-melanoma efficacy, while previous reports only focused on
TF's effects on other tumors (Lin, 2002; Sur and Panda, 2017).
Furthermore, this is also the first report on the molecular action
of TF on JNK pathway, while the P53 pathway-associated
mechanism of TF’s pro-apoptotic effect on carcinoma cells has
been previously reported (Lahiry et al., 2008).

Recently, xenograft tumor models using larval zebrafishes
have attracted increasing attention for anti-cancer studies, owing
to the advantages of larval zebrafishes compared to other animal
models: (1) the lack of immune rejection against human cells
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FIGURE 3 | Mortality and adverse events of larval zebrafishes induced by theaflavin (TF) and observation of larval zebrafishes xenotransplanted with A375 cells with
treatment of TF or cisplatin (A) as well as the fluorescence intensity and inhibitory rates of TF (B). Fluorescent area in red represents the A375 cell mass. By means
of LSD multiple comparisons, data (mean + SD) with same lowercase letter (a vs. a; ¢ vs. c) indicate no significant difference between each other, while data with

provides higher success rate for xenotransplantation; (2) body
transparency provides in vivo visible observation of tumor
growth and drug toxicity; and (3) large-scale generation and
rapid organogenesis provides shorter experimental periods
(Langheinrich, 2003; Pardo-Martin et al., 2010; Konantz et al.,
2012). In this study, TF exerted dose-dependent inhibitory effect
on A375 tumor mass in larval zebrafishes (Figure 3B), with
inhibitory rate of 46.4% at its NOAEL (3.9 uM). The inhibitory
rate was higher than that of cisplatin, indicating that TF was
more effective than cisplatin within their respective safe dose
range. Moreover, the inhibitory rate was higher than that of
another tea pigment (theabrownin) (Jin et al., 2018), suggesting
TF as the most effective component of tea. However, the effective
in vivo dose range (1.3 to 3.9 uM) of TF is much lower than its
effective in vitro dose range (96.8 to 774.4 pM). The reason for
such difference may be that, after oral administration, the
metabolized TF derivatives have higher effect than that of TF.
It indicates that oral application may be more efficient than other
routes for TF.

According to the dose conversion rule, the effective doses (1.3
and 3.9 uM) of TF in larval zebrafishes can be estimated as 0.03
to 0.09 mg/kg in human (Zhang et al., 2003). It suggests that oral

administration of TF at such a low dose range may be effective in
treating patients with melanoma, indicating a good cost-
effectiveness of this compound. Up to our knowledge, there are
only a few reports regarding the clinical application of TF. A
double-blind, randomized, placebo-controlled, parallel-group
trial has applied TF-enriched green tea extract to treat patients
with mild to moderate hypercholesterolemia for 12 weeks
(Maron et al,, 2003). In that trial, the daily intake of TF was 75
mg in green tea extract, which significantly reduced total
cholesterol, LDL-C, and triglyceride in hypercholesterolemic
adults without observation of significant adverse events
(Maron et al,, 2003). In this study, the effective dose range of
TF was much lower than the reported one, suggesting a greater
potential of TF for melanoma treatment in clinic. However,
although the effective dose range of TF was small, its lethal dose
threshold to zebrafish larvae was also low (<60.5 uM) and was
lower than other tea pigments (Figure 3A) (Jin et al.,, 2018),
leaving a concern for the potential toxicity of TF to human
beings. Interestingly, we found that TF exerted little effect on the
normal cell line (HFF-1 skin fibroblast) (Figure 1B), suggesting a
clinical feasibility for its external use which can avoid the
potential toxicity of its internal use.
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Our mechanistic experiment showed that TF activated ATM,
CHK1/2, P53, CASP8/3 in P53 pathway and also activated ASK1,
JNK, and C-JUN in JNK pathway, associating with A375 cell
apoptosis. The apoptosis was determined by DAPI staining and
flow cytometric analysis at cellular level (Figure 2) and mediated
by the overexpression of pro-apoptotic genes (P53, BAX, BIM,
and PUMA) and the activation of apoptosis-related proteins
(caspases and PARP) at the molecular level (Figures 4 and 5).
P53 (TP53) encodes a DNA-binding nuclear phosphoprotein
with tumor suppressor activity, which acts as transcription factor
at the center of a network for the control of apoptosis in response
to cellular stresses (Martin et al., 2002). It activates apoptosis
by stimulating the transcription of Bcl-2 family genes, such as
BAX, BIM, and PUMA (Levine and Oren, 2009). BAX and BIM
encode pro-apoptotic members that provoke apoptosis and cell
death by activating caspase cascade in response to apoptotic
stimuli (Rossé et al., 1998; Youle and Strasser, 2008). PUMA, as a
P53 up-regulated modulator of apoptosis, encodes a BH3
domain-containing protein that localizes to the mitochondria,
interacts with Bax and Bak, and activates the caspase cascade by
cleavage of CASP3 (Nakano and Vousden, 2001; Letai, 2009).
In this study, CASP8 and CASP3 were cleaved in response
to P53 activation. CASP8 is an initiating caspase in the
apoptotic cascade, which activates CASP3 for apoptotic DNA
fragmentation, resulting in subsequent cleavage of PARP (c-
PARP) to execute the apoptotic process (Jinicke et al., 1998;
Stennicke et al., 1998; Boulares et al., 1999). PARP is responsible
for DNA repair and cell viability in response to exogenous stress
(Satoh and Lindahl, 1992). It can be cleaved by CASP3 and
thereby facilitates the cellular disassembly in apoptosis (Oliver
et al., 1998). Thus, the amount of cleaved PARP (¢c-PARP) can be
used as marker of cell apoptosis.

In our previous studies, we have reported that DNA damage
induction was associated with P53 pathway-mediated pro-
apoptotic mechanism of theabrownin (Wu et al, 2016; Jin

et al, 2018). However, although both TF and theabrownin
activated P53 pathway and induced tumor cell apoptosis, we
did not find DNA damage induction with TF treatment in this
study. Alternatively, we found the activation of ASK1-JNK-C-
JUN cascade, which also functions as apoptotic pathway. In this
signaling module, ASK1 (apoptosis signal-regulating kinase 1) is
a mitogen-activated protein kinase that plays a key role in
cytokine- and stress-induced apoptosis by triggering
mitochondria-dependent pathway (Matsuzawa and Ichijo,
2001; Zhang et al., 2003). It activates downstream JNK
signaling in response to different types of stress, leading to cell
apoptosis through C-JUN activation and subsequent
overexpression of pro-apoptotic genes (Tobiume et al., 2001).
Chemotherapeutics, such as cisplatin, docetaxel, and paclitaxel,
have been reported to induce apoptosis of melanoma cells
through the JNK pathway independent of the P53 pathway
(Mandic et al., 2001; Mhaidat et al., 2008; Selimovic et al.,
2008). This indicates that TF might have an advantage
compared to these drugs due to its dual-pathway-mediated
mechanism of action, which has been preliminarily
demonstrated by the higher tumor-inhibitory effects of TF
than that of cisplatin in this study. However, there are some
limitations of this study as follows: (1) the actions of P53 and
JNK pathways in the proposed dual-pathway-mediated
mechanism of TF has not been verified; (2) the interaction
between P53 and JNK pathways has not been investigated, and
which pathway plays the main role is unknown; and (3) the in
vitro dose range and the in vivo dose range are quite different, the
reason of which has been explained but needs experimental
evidence. To address these issues, further studies are needed in
future. For instance, siRNAs or inhibitors of P53 and JNK should
be used to verify the actions of these pathways and to explore the
interaction between each other, and the serum metabolites of TF
should be chemically analyzed and pharmacologically studied to
test our hypothesis that the metabolized TF derivatives have
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higher effect than that of TF. Moreover, since there are no clinical
reports of TF for cancer treatment, the therapeutic efficacy and
benefits of TF on cancer patients should be further studied.

CONCLUSION

Since the anti-cancer potential of TF has been well documented,
it remains uncertain whether TF is effective in treating
melanoma. In this study, by using melanoma cell line and
xenograft zebrafish model, we found cytotoxic pro-apoptotic
and tumor-inhibitory effects of TF on melanoma cells and
revealed its mechanism in association with the activations of
P53 and JNK pathways. This is the first study describing the
effects and mechanism of TF against melanoma cells. Since the
mechanism of TF was not only dependent on the P53 pathway, it
can be expected that TF may be effective in treating P53-mutated
cell lines. Further studies are warranted to verify this deduction.
Altogether, this study provides evidence for the efficacy of TF
against melanoma, which contributes to the development of TF-
derived agents for melanoma therapy.
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