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Allergic asthma has been considered as a respiratory disorder with pathological features of
airway inflammation and remodeling, which involves oxidative stress. Formononetin (FMT) is a
bioactive isoflavone obtained from Chinese herb Radix Astragali, and has been reported to
have notable anti-inflammatory and antioxidant effects in several diseases. The purpose of our
study was to elaborate the effects of FMT on asthma and the underlying mechanisms. To
establish allergic asthma model, BALB/c mice were given ovalbumin (OVA) sensitization and
challenge, treated with FMT (10, 20, 40 mg/kg) or dexamethasone (2 mg/kg). The effects of
FMT on lung inflammation and oxidative stress were assessed. In OVA-induced asthmatic
mice, FMT treatments significantly ameliorated lung function, alleviated lung inflammation
including infiltration of inflammatory cells, the elevated levels of interleukin (IL)-4, IL-5, and IL-
13, immunoglobulin (Ig) E, C-C motif chemokine ligand 5 (CCL5, also known as RANTES),
CCL11 (also called Eotaxin-1), and IL-17A. In addition, FMT treatments eminently blunted
goblet cell hyperplasia and collagen deposition, and remarkably reduced oxidative stress as
displayed by decreased reactive oxygen species (ROS), and increased superoxide diamutase
(SOD) activity. Furthermore, to clarify the potential mechanisms responsible for the effects, we
determined the inflammation and oxidation-related signaling pathway including nuclear factor
kappa b (NF-kB), c-Jun N-terminal kinase (JNK), and the transcription factor nuclear factor
erythroid 2-related factor 2 (Nrf2). FMT treatments appeared to dramatically inhibit the
activation of NF-kB and JNK, significantly elevated the expression of heme oxygenase 1
(HO-1) but failed to activate expression of Nrf2. In conclusion, our study suggested that FMT
had the therapeutic effects in attenuating airway inflammation and oxidative stress in asthma.

Keywords: asthma, formononetin, airway inflammation, oxidative stress, nuclear factor erythroid 2-related factor 2,
nuclear factor kappa b, c-Jun N-terminal kinase
INTRODUCTION

Asthma is a chronic respiratory disorder of the conducting airways where the epithelial barrier
working together with the adaptive and innate immune cells respond to a diverse range of
exogenous inhaled stimuli such as allergens and air pollutants (Holgate, 2011). Asthma has long
been considered as “type-2-high” asthma with hallmark features of airway hyperresponsiveness
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(AHR), infiltration of inflammatory cells and airway wall
remodeling, which contribute to repeated periods of wheezing,
chest tightness, and shortness of breath in susceptible people
(Lambrecht and Hammad, 2015; Lambrecht et al., 2019). In
asthmatic patients, the direct and indirect medical costs bring
a heavy burden to their families and society. Inhaled
corticosteroids (ICS) and long-acting b2-agonist (LABA) are
known as the most common pharmacological options for
management of asthma. Although these medications can
attenuate airway inflammation and relieve respiratory symptoms,
some asthmatic patients respond poorly to corticosteroid-based
therapies, and even experience the severe adverse effects
(Williams et al., 2004; Aalbers et al., 2016). Consequently,
alternative therapeutic options designed to alleviate airway
inflammation and remodeling (such as herbal medicines which
has long been used for treatment of bronchial asthma) are urgently
required and expected to have better efficacy and safety in
asthma therapy.

Oxidative stress is involved in the pathogenesis of asthma
(Adcock et al., 2008; Dozor, 2010). Allergens exposure are known
to increase the production of oxidants like reactive oxygen species
(ROS) and reactive nitrogen species (RNS),which contributes to
the imbalance between the oxidants and antioxidants, termed
as oxidative stress (Kirkham and Rahman, 2006; Mishra et al.,
2018). The existing antioxidant system, composed of enzymatic
and non-enzymatic molecules, has capability to remove ROS. The
antioxidant enzymes include superoxide dismutases (SODs),
catalase, glutathione peroxidase (GPx) and glutathione-S-
transferase (GST) etc. In addition, heme oxygenase 1 (HO-1)
has been considered as a crucial antioxidant protein, and regulated
by the transcription factor nuclear factor erythroid 2-related factor
2 (Nrf2) which translocates into the nucleus and initiatives the
expression of antioxidant molecules (Uchida et al., 2017; Liu et al.,
2019). Furthermore, oxidative stress plays a crucial role in
orchestrating airway inflammation and airway remodeling.
Findings from previous study have shown that ROS released by
mitochondria promoted TGF-b-mediated collagen production
(Jaffer et al., 2015). Elevated oxidative stress has been considered
as a driving force behind the inflammation and AHR (McGovern
et al., 2016). Hence, aside from alleviating airway inflammation
and obstruction, suppression of oxidative stress should be
considered in asthma therapy.

A growing number of evidences implicate that nuclear factor
kappa b (NF-kB) signaling is involved in airway inflammation. In
response to allergen challenge, cytokines, chemokines, and bacterial
and viral infections, NF-kB acting as a proinflammatory
transcription factor binds to the proinflammatory genes promoter
region, and thereby upregulates the expression of many mediators
and growth factors important in inflammatory cascade of asthma
(Adcock et al., 2008; Papi et al., 2013). In addition, enhanced activity
of c-Jun N-terminal kinase (JNK) has also been reported in allergen-
induced inflammation and remodeling (van der Velden et al., 2014;
Wu et al., 2015; Wu et al., 2016).

Formononetin (FMT, 7-Hydroxy-4′-methoxyisoflavone) is a
bioactive isoflavone isolated from Radix Astragali (the root of
Astragalus membranaceus var. mongholicus or A. membranaceus,
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described as Huangqi in Chinese herb), which has been
common applied for treatment of airway inflammation and
allergic disease (Shen et al., 2008; Jin et al., 2013; Luo et al.,
2014; Luo et al., 2018), whose chemical structure is depicted in
Figure 1. Our previous studies determined FMT is one of main
bioactive ingredients of Bu-Shen-Yi-Qi formula (BSYQF), a
Chinese formula widely used to treat respiratory diseases, such
as asthma and chronic obstructive pulmonary disease (COPD)
(Luo et al., 2014; Nurahmat et al., 2014). FMT has a bioavailability
of 21.8% and shows different absorption in all gastrointestinal
segments (Luo et al., 2018). An increasing body of evidence
suggests that FMT exerts notable anti-inflammatory, anti-
allergic, antioxidant, anti-hepatic steatosis, antiproliferative, and
anticancer effects in vitro and animal models of many disease
(Wang et al., 2012; Xu and An, 2017; Fei et al., 2018; Li et al., 2018;
Ong et al., 2019; Wang X. S. et al., 2019). Some reports
demonstrate that FMT has neuroprotective effect in LPS-
stimulated BV2 microglia and high-fat diet-induced cognitive
disorder mice (El-Bakoush and Olajide, 2018; Fu et al., 2019;
Wang Y. et al., 2019). Recently, FMT has already been reported to
exert a significant effect in protecting epithelial integrity via G
protein-coupled estrogen receptor in an animal model of asthma
(Yuan et al., 2020). However, its therapeutic effects to allergic
asthma need to be further identified, and their possible
mechanisms also need to be further explored. Therefore, our
study aims to investigate whether FMT has a therapeutic effect
on chronic allergic asthma. To further explore the unrevealed
mechanisms, we assess the ability to attenuate lung inflammation
and restore the oxidant-antioxidant balance in murine model of
allergic asthma.
A

B

FIGURE 1 | The chemical structure of Formononetin and the flow chart of
OVA-induced asthmatic model and treatment (A). The chemical structure of
Formononetin (FMT, 7-Hydroxy-4'-methoxy-isoflavone) (B). Asthmatic model
and treatment protocol. Mice were grouped, sensitized, challenged,
administered and sacrificed from day 0 to 49. Sensitization was performed on
day 0 and 14. Challenged and treatment were performed every other day
from day 21 to 48. After 24h, mice were sacrificed.
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MATERIALS AND METHODS

Animals
Female SPF BALB/c mice (aged 6 weeks), bought from Shanghai
Jiesijie Laboratory Animal Co. Ltd (license number: SCXK (Hu)
2013-0006), were accommodated in pathogen-free cage with
constant temperature and humidity, food, and water available. All
animal experimental protocols in our study were in accordance with
the Guide for the Care and Use of Laboratory Animals, and ratified
by the Animal Care and Use Committee of the Fudan University
(authorization number: 2018-10-HSYY-DJC-01).

OVA−Induced Asthmatic Model and
Treatment
We established OVA-induced murine model of allergic asthma
and set doses of formononetin and dexamethasone based on
previous studies with minor modification (Wang et al., 2016;
Campa et al., 2018; Li et al., 2018; Luo et al., 2018; Wang X. S.
et al., 2019). Sixty mice were randomly assigned to six groups (10
mice/group) as follows: normal control group; asthma group;
asthma + formononetin 10 mg/kg group (Winherb Medical
Science Co. Ltd, Shanghai, China); asthma + formononetin 20
mg/kg group; asthma + formononetin 40 mg/kg group; asthma +
dexamethasone 2 mg/kg group. In the stage of sensitization on
days 0 and 14, mice were injected intraperitoneally with 0.2 ml
0.9% saline solution containing 100 µg chicken egg ovalbumin
(OVA grade V; Sigma-Aldrich, St. Louis, MO) and 1 mg
aluminum hydroxide (Thermo Scientific). During the period of
nasal challenge from day 21, mice were exposed to aerosolized
ovalbumin (3% ovalbumin dissolved in 0.9% saline solution)
through an ultrasonic nebulizer for 30 min every other day for
four consecutive weeks (depicted in Figure 1). At the same time,
the control group was sensitized and challenged with saline
instead of OVA. From day 21 to day 48, formononetin were
administered intragastrically with corresponding dose of 10, 20,
40 mg/kg per day. For dexamethasone treatment, mice were
given intragastric administration of 2 mg/kg dexamethasone for
28 consecutive days from day 21 to day 48. Apart from that, mice
of control and asthma groups were only orally administered
with saline.

Measurement of AHR
24 h after the last OVA challenge, mice were anesthetized
with an intraperitoneal injection of 2% phenobarbital sodium
(50 mg/kg) to maintain a spontaneous breath. After that, mice
were tracheostomized, intubated, and placed in a whole-body
plethysmograph connected to the ventilator (Buxco Electronics,
Troy, NY) to detect lung function. To evaluate AHR, lung dynamic
compliance (Cdyn) and airway resistance (RL) were recorded when
mice were exposed toMethacholine (Mch, Sigma-Aldrich; St. Louis,
MO) at increasing dose of 0, 3.125, 6.25, and 12.5 mg/ml.

Assessment of Bronchoalveolar Lavage
Fluid
Mice were anesthetized as above, and then intubated with a
cannula inside the trachea. Bronchoalveolar lavage fluid (BALF)
Frontiers in Pharmacology | www.frontiersin.org 3
was collected by intratracheal instillation with 300 µl aliquots of
cold PBS twice, centrifuged at 500g for 10 min at 4°C. The
supernatants were separated and preserved at −80°C for cytokine
detection. The cell pellets were resuspended in 50 µl PBS to
calculate the number of leukocytes and counts of different
populations using an automated cell counter (Hemavet950
instrument; Drew Scientific Group, UK).

Lung Histopathology
The left lung was resected, fixed with 4% phosphate-buffered
formalin, embedded in paraffin, and cut into 4-µm sections. The
tissues were stained with H&E, Masson’s trichrome and Periodic
Acid Schiff (PAS). The images were viewed and captured under a
light microscopy connecting to a digital camera with a
magnification of 100. Inflammation was scored in the light of
previous protocols (Kwak et al., 2003). In brief, a subjective value
of 0 to 3 was assigned to indicate the degree of inflammation around
bronchi or vessels. If no inflammation was detected, a score of 0 was
given; if only occasional inflammatory cells were observed, a value
of 1 was assigned; if most bronchi or blood vessels were surrounded
by a thin layer of (1 to 5 cells thick) inflammatory cells, a score of 2
was set; if most bronchi or blood vessels were surrounded by a thick
layer of (more than 5 cells thick) inflammatory cells, a score of 3 was
given. Total lung inflammation was expressed as the average of the
peribronchial and perivascular inflammation scores.

Detection of Cytokine, Chemokine, and
IgE
IL-4, IL-5, IL-13, IL-17A, eotaxin, CCL-5, IgE levels in BALF
were determined by ELISA Kits (Cayman Chemical, Michigan,
USA) in accordance with the manufacturer’s protocol.

Quantification of Lung Th17, Regulatory T
Cells, and Eosinophils
Inflammatory cells in lung tissue were analyzed to identify
eosinophils (CD45+CD11b+Ly6C-SiglecF+), Th17 cells (CD45
+CD4+IL-17A+), regulatory T (Treg) cells (CD45+CD4+CD25
+Foxp3+) by flow cytometry as previously described (Zhao et al.,
2013; Cossarizza et al., 2017; Dong et al., 2018). Briefly, the excised
right lung was digested by using lung dissociation kits
(MiltenyiBiotec Technology & Trading Co. Ltd, Shanghai, China)
to prepare single cell suspensions following the instructions. And
then the cells were stained with the monoclonal anti-murine
fluorochrome-conjugated Abs and detected by an Attune NxT
instrument (Life Technology). Besides, the antibodies used were
bought from BioLegend, including eflour506-labeled anti-CD45,
Zombie NIR™ Fixable Viability Kit, Brilliant Violet 421™-labeled
anti-CD11b, APC-labeled anti-Siglec-F, PE-labeled anti-Ly-6C,
APC-labeled anti-CD25, FITC-labeled anti-CD4, PE-labeled anti-
IL-17. PE-labeled anti-Foxp3 was purchased from eBioscience.

Evaluation of Lung Oxidative Stress
The same weight of the lung tissue homogenates was prepared
with 0.05 M Tris–HCl buffer (pH 7.4). The supernatant of
homogenates was applied to determine the concentration of
SOD and nitric oxide (NO) using commercial kits (Jianchen,
September 2020 | Volume 11 | Article 533841
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Nanjing, China) as manufacturer’s protocol. In addition, frozen
lung sections were stained with dihydroethidium (DHE, Sigma-
Aldrich; St. Louis, MO) to detect ROS, analyzed by Image-Pro
Plus 6.0. At least three 200× fields of image were randomly
selected from each lung sections for photographing. The level of
ROS was expressed as area density which is the ratio of the
integrated optical density value (IOD) to the pixel area of the
tissue (AREA).

Western Blotting
Total protein was extracted from lung tissue. In brief, lung tissues
were minced and homogenized in cold RIPA Lysis Buffer
containing phosphatase inhibitors and a protease inhibitor,
followed by centrifugation at 14,000g for 10 min, 4°C. Before
adding sample loading buffer, a small part of the supernatant was
retained for protein quantitation. The concentration of total
protein was detected by Pierce BCA Protein Assay Kit
(Thermo Scientific). Samples were separated by 10% SDS-
PAGE and transferred to 0.25 um PVDF membranes. Then,
the membranes were blocked with 5% milk at room temperature,
incubated with primary antibodies (1:1000) overnight at 4°C and
then incubated with HRP-conjugated secondary antibody
(1:15000) 1.5 h, and ultimately exposed by LAS-4000 mini
(Fujifilm Corporation, Tokyo, Jap). Primary antibodies used in
Frontiers in Pharmacology | www.frontiersin.org 4
this experiment were purchased from Cell Signaling Technology
Inc, including anti-HO-1 Abs, anti-SOD1 Abs, anti-NF-kB Abs,
anti-phospho NF-kB Abs, anti-JNK1/2 Abs, and anti-phospho
JNK1/2 Abs, except for anti-Nrf2 Abs bought from Proteintech.
Statistical Analysis
GraphPad Prism 8 (GraphPad Software, La Jolla, CA) was used
for all data, which were expressed as the mean ± SD and analyzed
by one-way or two-way analysis of variance (ANOVA).When P
value < 0.05, it is statistically significant and expressed as: * p <
0.05, ** p < 0.01, and *** p < 0.001.
RESULTS

FMT Improves Lung Function in OVA-
Induced Murine Asthma
FMT alleviated AHR in response to the growing doses of Mch as
shown in Figure 2. In the experiment, asthma group showed a
dose-dependent decline in Cydn (Figure 2B) and an increase in
RL at Mch dose of 6.25 (p = 0.068) and 12.5 mg/ml (p < 0.001)
(Figure 2A) compared with normal control group, which
revealed that mice exposed to OVA have developed significant
A B

DC

FIGURE 2 | Effect of FMT treatments on lung function in murine asthmatic model. (A, B) Increase of lung resistance (RL%) (A) and decrease of lung dynamic
compliance (Cydn%) (B). Data are shown as the mean ± SD analyzed b two-way ANOVA. (C, D) Increase of RL% (C) and decrease of Cydn % (D) at Mch dose of
12.5 mg/ml. Data are shown as the mean ± SD analyzed by one-way ANOVA. N = 4-6 mice/group. *p < 0.05, **p < 0.01, ***p < 0.001 vs NC group, #p < 0.05,
##p < 0.01, ###p < 0.001 vs Asthma group.
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AHR. Compared with the asthma group, a markedly decreased
RL was observed in the mice treated with FMT and Dex at Mch
concentration of 12.5 mg/ml (Figures 2A, C). The RL of mice in
the asthma +FMT 40 mg/kg group also decreased at the Mch
level of 6.25 mg/ml (p < 0.05). In addition, FMT exhibited a
significant increment in Cydn especially in the asthma +FMT 40
mg/kg group, which was able to gradually normalize Cydn
responding to Mch of 6.25 and 12.5 mg/ml (p < 0.05) (Figures
2B, D). However, mice in both asthma +FMT 10 mg/kg group
and asthma+ Dex 2 mg/kg group also showed a modest increase
in Cydn, but these were not statistically significant.

FMT Attenuates OVA-Induced Airway
Inflammation and Remodeling
To identify OVA-induced airway inflammation and remodeling,
we detected histological changes in lungs using H&E, PAS, and
Frontiers in Pharmacology | www.frontiersin.org 5
Masson’s trichrome staining (Figure 3). We found that a
significant number of inflammatory cells infiltrated into
peribronchiolar and perivascular tissues in asthma group
compared with NC group (Figures 3A, B). In contrast, FMT
could remarkably decrease airway inflammation at high dose of
40 mg/kg, similar to asthma+ Dex 2 mg/kg group. In addition,
mucus production in the bronchi was evaluated by PAS staining.
The results indicated that the lung tissues of asthma group mice
showed mucus hypersecretion and a significantly elevated
percentage of goblet cells (PAS+ cells) compared with
NC group mice (Figures 3C, D). However, FMT attenuated
mucous secretion and the number of PAS+ cells in asthma
+FMT 40 mg/kg group compared with asthma group. The
lung tissues of asthma group mice developed a marked
increment of collagen deposition in the peribronchiolar areas.
In contrast, mice treated with FMT 10 mg/kg or FMT 40 mg/kg
A

B

D

E

F

C

FIGURE 3 | Effects of FMT on OVA-induced airway inflammation and remodeling in lung tissue. (magnification: x200). (A, B) H&E-staining and scores of airway
inflammation. (C, D) Periodic acid-Schiff (PAS) staining and the percentage of PAS + epithelial cells. (E, F) Masson’s trichrome staining and collage and volume
faction. Bars, 100 mm. Data were shown as mean ± SD analyzed by one-way ANOVA. N = 5 mice/group. ***p < 0.001 vs NC group. #p < 0.05, ##p < 0.0.1,
###p < 0.001 vs Asthma group.
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or Dex 2 mg/kg showed a significantly decrease in collagen
deposition in the peribronchial regions (Figures 3E, F).
FMT Regulates Lung Th17, Treg, and
Eosinophils
Previous study revealed that Th2/Th17-predominant asthma was
characterized by increased eosinophils but not neutrophils in
BALF (Liu et al., 2017). Therefore, we determined Th17, Treg,
and eosinophils populations in lung tissue by flow cytometric
Frontiers in Pharmacology | www.frontiersin.org 6
analysis. We found that the percentage of eosinophils and Th17
cells in asthma group were significantly higher than that in
control group (p < 0.05). Administrated with FMT 40 mg/kg or
Dex 2 mg/kg, the mice displayed a remarked decrease in the
frequency of eosinophils compared with asthma group (p < 0.01
or p < 0.001) (Figures 4A, B, D, E). The asthma+ FMT 40 mg/kg
group also showed a significantly declining proportion of Th17
cells (p < 0.05) (Figures 4B, E). However, no differences were
observed in the percentage of Treg cell between any two groups
(Figures 4C, F).
A

B

D

E

F

C

FIGURE 4 | The effect of FMT treatments on lung eosinophils. Th17 and Treg cells in murine asthmatic model. (A–C) Flow cytometric identification of lung of each
group. (D–F) Percentages of eosinophils (D), Th17 cells (E) and Tregg cells (F) in each group. Bar shows the mean ± SD (samples from 4 to 5 mice/group)
***p < 0.001 vs NC group, #p < 0.05, ##p < 0.01, ###p < 0.001 vs Asthma group determined use one-way ANOVA.
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FMT Decreases Inflammatory Cells, Ig E,
and Cytokines in BALF
The elevated inflammatory cells infiltration, Ig E level, and
cytokines production in BALF are features of allergic airway
inflammation. We determined the total number of cells and
different populations in BALF. As depicted in Figure 5A, asthma
group displayed remarkable infiltration of inflammatory cells,
such as neutrophils (Neu), lymphocytes (Lym), eosinophils (Eos)
(p < 0.0001). FMT 40 mg/kg induced a significant decline in the
number of total cell, Neu, Lym (p < 0.05), and a modest decrease
in Eos (P = 0.505) compared with asthma group. Besides, Dex
significantly reduced the total cell and Lym counts (p < 0.05).
FMT 10 mg/kg also diminished the total cell number (p < 0.05).

The above results from flow cytometric analysis of lung tissue
and quantification of BALF pointed out that Th2 cells worked
togetherwith eosinophils andTh17cells in themechanismofOVA-
induced asthma. Therefore, we measured some chemokines and
mediators related to migration and infiltration of eosinophils,
including IgE, CCL5 (also called RANTES), CCL11 (also called
Frontiers in Pharmacology | www.frontiersin.org 7
Eotaxin). The results demonstrated the significant elevation of
total Ig E, CCL5, and CCL11 level in asthma group compared
with control group (p < 0.05). However, this increment was
abolished by FMT and Dex treatment (Figures 5B–D). It is now
generally accepted that Th2 cells and Th17 cells significantly
contributed to atopic asthma, hence we detected Th2-derived
cytokines—IL-4, IL-5, IL-13, and Th17-derived cytokines—IL-
17A in BALF. Our data confirmed this. The findings suggested
that OVA exposure contributed to the remarkable elevation of IL-
4, IL-5, IL-13, and IL-17A level in asthma group mice compared
with control group mice. However, FMT treatments significantly
decreased OVA-induced increment of IL-4, IL-5, IL-13, and IL-
17A. Dex appeared to exert a slight decrease in IL-4 and IL-5 level
but not in IL-13 and IL-17A (Figures 5E–H).

FMT Reduces Oxidative Stress in Lung
Tissue
To determine whether oxidative stress is involved in the induction
of asthma, and whether FMT alleviates OVA-induced airway
A B

D E

F G H

C

FIGURE 5 | Effects of EMT on inflammatory cells and inflammatory mediators in BALF. (A) The number of leukocytes. (B–H) The levels of Ig E, CCL5, CCL11, IL-4,
IL-5, IL-13, and IL-17A. Data are shown as mean ± SD by one-way ANOVA. N = 4-7/mice/group. *p < 0.05, **p < 0.01, ***p < 0.001 vs NC group, #p < 0.05,
##p < 0.001, ###p < 0.001 vs Asthma group.
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inflammation and remodeling through restoring the equilibrium
between the oxidants and anti-oxidants, we examined the oxidative
stress indicators, including ROS, SOD, and NO. The level of ROS
and NO was markedly increased in asthma group mice. However,
mice treated with FMT exerted noticeable amelioration in ROS level
but no effect in NO production (Figures 6A–C). Apart from
inhibiting OVA-induced ROS generation, FMT also promoted
pulmonary antioxidant defense. FMT treatment significantly
restored OVA-induced reduction of SOD in lung tissue where all
doses protected lung from oxidative injury (Figure 6D).
FMT Inhibits NF-kB and JNK Signaling
Pathway
To explore the signaling mechanisms about the effects of FMT
on lung inflammation, the phosphorylation statuses of NF-kB and
JNK were evaluated (Figure 7). The results displayed that NF-kB
and JNK phosphorylation were remarkably activated in asthma
group mice compared with control group mice. However, the
phosphorylation of NF-kB and JNK were significantly suppressed
after FMT 40 mg/kg treatment, similar to Dex 2 mg/kg treatment.
FMT 10 mg/kg administration also enormously blunted the
activation of JNK but failed to affect NF-kB activation. FMT 20
mg/kg appeared to be ineffective at inhibiting phosphorylation of
NF-kB and JNK (Figures 7A–C).
Frontiers in Pharmacology | www.frontiersin.org 8
FMT Activates Nrf2 Signaling Pathway and
SOD1 Expression
To investigated whether FMT mitigates OVA-induced airway
inflammation and remodeling by scavenging oxidants, we
measured anti-oxidative signaling—Nrf2, HO-1, and SOD1
protein expression in lung tissue (Figure 7). The results
demonstrated that the expressions of Nrf2 and SOD1 were
slightly decreased while the expression of HO-1 was moderately
increased in asthma group mice compared with control group, but
there were not statistical significance. However, compared with
asthma group, the asthma + FMT 40 mg/kg group mice showed a
robust increase in the expression of SOD1 and HO-1. Besides, the
expression of SOD1was notably increased in asthma+FMT20mg/
kg group mice. Interestingly, the administration of FMT and Dex
increased the expression of Nrf2 but that was not statistically
significant. Apparently, Dex failed to affect the expression of
SOD1 and HO-1 (Figures 7A–F).
DISCUSSION

BSYQF has frequent application in clinical treatment of
respiratory diseases such as asthma. Our previous research
suggested that BSYQF exerted anti-inflammatory, anti-oxidant
A

B DC

FIGURE 6 | Effects of FMT on oxidative stress in lung tissue. (A, B) The level of in situ ROS, stained with DHE in frozen lung tissue (magnification: x200) The
fluorescence values are expressed as the areal density, the ratio of the integrated optical density value (IOD) to the pixel area of the tissue (AREA). (C) The level of
NO. (D) Total SOD activity in lung tissue. Data are shown as mean ± SD. N = 4–7mice/group. Bars 100 mm. *p < 0.05, **p < 0.01, ***p < 0.001 vs NC group,
#p < 0.05, ##p < 0.01 vs Asthma group.
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and anti-remodeling effects in asthma, and we identified sixteen
main bioactive components including FMT (Luo et al., 2014;
Nurahmat et al., 2014; Cui et al., 2019). As previously demonstrated,
FMT has therapeutic properties in hyperlipidemia and obesity
(Fu et al., 2019; Wang Y. et al., 2019), cancers (Hu et al., 2019;
Tay et al., 2019) and inflammatory diseases (Li et al., 2018;
Aladaileh et al., 2019; Luo et al., 2019; Wang X. S. et al., 2019).
Recent reports have demonstrated that FMT alleviated atopic
contact dermatitis and allergic asthma by protecting epithelial
integrity (Li et al., 2018; Yuan et al., 2020). These inspiring
published findings impeled us to explore how FMT could benefit
asthma. In this study, we demonstrated that FMT inhibited the
pathological progress of allergic asthma in a murine model with
typical features of AHR, leukocytes infiltration, multiple
cytokines overexpression, goblet cell metaplasia, and collagen
deposition. Moreover, our findings indicated that FMT exerted
a promising pharmacological effect in alleviating airway
Frontiers in Pharmacology | www.frontiersin.org 9
inflammation and lung oxidative injury in OVA-induced
asthmatic mice, possibly through inhibiting NF-kB and JNK
signaling and augmenting Nrf2 signaling.

AHR and lung inflammation are considered as the most
prominent features of asthma, constantly evidenced by increased
RL, decreased lung Cydn and leukocytes infiltration in vivo
experiments, which has led to the use of bronchodilators and
corticosteroids as the mainstream of asthma treatments (Adcock
et al., 2008; Lambrecht and Hammad, 2015). A previous study
indicated that FMT 10 mg/kg administrated by intraperitoneal
injection could significantly alleviate AHR and decrease Th2
cytokines (IL-4, IL-5, and IL-13) levels in the HDM-induced
inflammation of allergic asthma (Yuan et al., 2020). Here, we
developed an OVA-induced asthma model following by FMT or
Dex administration and performed lung function, lung
histopathology, and BALF analysis. Our results also confirmed
that FMT could suppress AHR, alleviated leukocytes infiltration,
A B

D E F

C

FIGURE 7 | Effect of FMT on inflammation and oxidative stress signaling pathway. (A) The protein expression of NF-kB and JNK, as well as Nrf2/HO-1 and SOD 1,
was determined by western blotting. (B, C) The relative density quantification of NFkb and JNK. The results were expressed as the ratio of phosphorylated proteins
relative to total proteins. (D–F) The relative density quantifications of Nrf2, HO-1, and SOD1. The results were expressed as the ratio of Nrf2, HO-1, and SOD1
relative to GAPDH, respectively. Data were shown as mean ± SD analyzed by one-way ANOVA. N = 4 mice/group. *p < 0.05, ***p < 0.001 vs NC group, #p < 0.05,
##p < 0.01, ###p < 0.001 vs Asthma group.
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mucus hypersecretion, and collagen deposition. However, FMT 10
mg/kg and FMT 20 mg/kg seemingly have modest effects or even
have no effect in OVA-induced inflammation and AHR of allergic
asthma.Theoptimal effectivedoseofFMTappeared tobe40mg/kg,
similar to the effects of Dex 2 mg/kg. That is because FMT
was administrated intragastrically not intraperitoneally to
mice, potentially consistent with the published data that the
pharmacokinetics and bioavailability of formononetin between
oral and intravenous administration are different (Luo et al.,
2018). Interestingly, BALF cell analysis demonstrated that FMT
seemingly exerted a modest decrease in eosinophils counts without
statistical significance, potentially a limitation of cell counting in
BALF. To identify whether FMT could alleviate eosinophils-rich
inflammation in lung, we conducted flow cytometric analysis of
lung tissues. We found that FMT reduced lung eosinophils
infiltration by nearly half at a dose of 40 mg/kg. The airway
recruitment of inflammatory cells is associated with the
chemokines. CCL11 (Eotaxin) and CCL5 (RANTES) have been
shown to be served as potent chemoattractant for inflammatory
cells, especially eosinophils, and is highly expressed in the
allergic airway inflammation (Berkman et al., 1996; Chihara et al.,
1997; Geslewitz et al., 2018). It has also been reported that the
two chemokineshave effects on lungfibroblastmigration correlated
with airway remodeling (Puxeddu et al., 2006; Zhou et al., 2012;
Isgro et al., 2013). Indeed, we confirmed the elevated expression
of CCL5 and CCL11 in BALF samples from OVA-induced
asthma model. FMT was able to remarkably inhibit CCL5
and CCL11 overproduction. These data indicated that FMT
exhibits extraordinary anti-inflammatory effects in eosinophils-
rich inflammation.

The renowned type-2-high immunity occurs in almost half of
asthma patients, manifested as features of eosinophilia, AHR, the
elevation of IL-4, IL-5, IL-13, and Ig E in lung and blood (Fahy,
2015; Lambrecht et al., 2019). The biomarkers of type-2-high
asthma are believed to develop the pathological progress of
asthma. IL-4 promotes the synthesis of Ig E from B cells, and IL-
13 induces goblet cell metaplasia associated with mucus
hypersecretion, and IL-5 accelerates influx of eosinophils into
airways (Grunig et al., 1998; Xia et al., 2018; Busse et al., 2019;
Melo et al., 2019). In addition, IL-17 can drive goblet cellmetaplasia
and mucus hypersecretion in primary human airway epithelia
(Pezzulo et al., 2019).Our results suggested that FMT treatments
suppressed OVA-induced inflammatory biomarkers expression of
IL-4, IL-5, IL-13, IL-17A, and Ig E, and thereby contributed to the
reduction of influx of leukocytes and goblet cell metaplasia
evidenced by lung histopathology. Besides, Th17 cells have been
reported to participate in the pathological process of asthma,
especially airway inflammation and remodeling, and abolished
Treg cells activity (Zhao et al., 2013). Some studies reported that
Th2 and Th17 inflammation aremutually regulated in asthma, and
suppression of Th2 cytokines promotes Th17 response, indicating
that combination therapies inhibiting both inflammation patterns
may exert optimal efficacy in asthma managements (Choy et al.,
2015; Liu et al., 2017). Therefore, based upon flow cytometric
detection of Th17 cell population from mice lung tissues and
Elisa analysis of Th17-inducing cytokines, we found that FMT
Frontiers in Pharmacology | www.frontiersin.org 10
markedly inhibited OVA-induced Th17 responses. However, our
observations showed that Th17 population accounted for a small
proportion of CD4+T cells, potentially consistent with the
published data about the frequency of cells expressing T-helper-
cell-associated cytokines (Tibbitt et al., 2019). Treg cells play a
crucial role in maintaining tolerance to allergens, and thereby
contributed to controlling inflammation in asthma (Zheng et al.,
2019), but sometimes Treg cells could convert to a pathogenic
phenotype (Th17-like cells) that exacerbates airway inflammation
(Massoud et al., 2016; Noval and Chatila, 2016). Our results
suggested OVA exposure induced immune responses in mice, but
this involved Th17 cells and not Treg cells, and FMT treatment in
mice did not promote Treg cells activation as evidenced by flow
cytometric analysis of lung cells. Thus, we inferred that FMTmight
regulate Th2 and Th17 dysfunctions to reduce the expression
of inflammatory mediators, and thereby attenuate airway
inflammation in asthma.

In the pathogenesis of asthma, oxidative stress is associated
with inflammation and remodeling (Mahut et al., 2004; Kirkham
and Rahman, 2006; Dozor, 2010). Growing evidence suggest that
both airway inflammation and remodeling trigger increased ROS
and NO production in asthma (Thomassen et al., 1999; Mahut
et al., 2004; Silveira et al., 2019), and conversely, inhibition of
excessive ROS and RNS level alleviates airway inflammation,
goblet cells hyperplasia, collagen production, and AHR induced
by OVA (Jaffer et al., 2015; Sebag et al., 2017). Interestingly, NO
appears to play a dual role in asthma. Some studies indicate that
NO exerted beneficial effects on allergen-induced AHR
(Schuiling et al., 1998), inflammatory response (Thomassen
et al., 1999), and downregulates NF-kB activity (Raychaudhuri
et al., 1999). FMT has been reported to prevent methotrexate-
induced acute kidney injury through suppressing oxidative
injury as evidenced by decreased ROS and NO production
(Aladaileh et al., 2019). Here, we detected the oxidative
biomarkers in lung tissue. Consistent with the published
studies, we found OVA exposure significantly increased ROS
and NO level in asthmatic mice lung, however, FMT attenuated
oxidative injury through diminishing in situ level of ROS rather
than NO. In the lung oxidative biology, the endogenous
antioxidant system can eradicate excessive oxidants to avoid
oxidative stress. The three SOD proteins acts as the important
antioxidant to neutralize and remove ROS, and that includes Cu/
Zn superoxide dismutase (SOD1), manganese superoxide
dismutase (SOD2) and extracellular superoxide dismutase
(SOD3) (Kirkham and Rahman, 2006). Meanwhile, the activity
and production of total SOD are attenuated when oxidative stress
occurs in lung inflammation (Shen et al., 2017; Ye et al., 2017).
SOD1 was reported to effectively account for all SOD activity in
BALF, as part of lung antioxidant defense (DiSilvestro et al.,
1998). Previous published data suggested mice received FMT 10,
20, or 40 mg/kg exhibited a noticeable enhancement of SOD
activity (Aladaileh et al., 2019). In accordance, the activity of
SOD was decreased in the lung tissue from OVA-challenged
mice. FMT treatment significantly boosted it and produced a
stronger increase than DEX. Furthermore, we detected SOD1
expression in lung tissues through western blotting, and the data
September 2020 | Volume 11 | Article 533841
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also confirmed this. Thus, our findings concluded that FMT
treatment remarkably restoring antioxidant defenses in lung
tissue where all doses protected lung from oxidative injury.

To gainmore insight into the potential mechanisms of the anti-
inflammatory and antioxidant effects of FMT on asthma, we
detected inflammation and oxidative stress signaling. NF-kB is
known to acts as one of major contributors to inflammatory
pathways. The phosphorylation of NF-kB p65 and IkB kinase is
highly activated in airway inflammation (Papi et al., 2013; Ye et al.,
2017). Consistently, our study found thatOVA exposure promoted
NF-kB activation in mice from asthma group compared with
control group. Moreover, NF-kB activation has been associated
with mechanisms of ROS-mediated oxidative stress (Morgan and
Liu, 2011;Mishra et al., 2018).Here,OVAexposure inducedNF-kB
activation and ROS overproduction in lung tissue of asthmatic
mice, and that may be explained by the crosstalk between ROS and
NF-kB. NF-kB promoted IL-1b–induced nitric oxide synthase
expression so as to enhance free radical NO formation, and FMT
could inhibit the activation of NF-kB signaling (Wang et al.,
2012).Here, Interestingly, a previous study pointed out the role of
NO in blocking NF-kB activation including IL-1b, TNF-a
production (Raychaudhuri et al., 1999). In this study, upregulated
NF-kB signaling was suppressed by FMT, whose efficacy was
similar to Dex. In addition, JNK signaling is closely related to
airway inflammation. TNF-a or TGF-b1 treatment induced
increased phosphorylation of JNK in bronchial epithelial cells
(Ma et al., 2016). Inhibition of JNK significantly reduced OVA-
induced inflammatory cell infiltration, mucus hypersecretion and
cytokine production (Wu et al., 2015; Wu et al., 2016). House dust
mite exposure caused less lung collagen deposition in JNK1-/-mice
than wild mice (van der Velden et al., 2014). Rhinovirus infection
induced glucocorticoid resistance can be reversed by inhibitors of
JNK and IkB kinase in asthma (Papi et al., 2013). Here, our data
showed that OVA induction of JNK activation was completely
suppressed by FMT. Nrf2/HO-1 signaling was known to act as an
important part of antioxidant system.Nrf2 activation facilitated the
expression of HO-1, the fundamental antioxidant enzyme, to
regulate oxidative stress in asthma (Liu et al., 2019). The previous
study indicated that HO-1 displayed anti-inflammatory effects in
OVA-induced neutrophilic airway inflammation, as demonstrated
by inhibition of Th17 cell responses (Zhang et al., 2013). OVA
exposure downregulated the Nrf2 signaling, evidenced by the
diminished Nrf2 and HO-1 expression (Ye et al., 2017). Nrf2
activator could enhance the lung levels of ROS scavengers and
decrease the proinflammatory cytokines release when allergen
exposure occurred (Uchida et al., 2017). FMT was reported to
enhance Nrf2 signaling and consequent expression of HO-1 and
SOD (Aladaileh et al., 2019). Consistent with these studies, our
results suggested that FMT remarkably elevated the expression of
HO-1, but unfortunately, the increment ofNrf2was not significant.
Absolutely, multiple mechanisms have been involved in the anti-
inflammatory and antioxidant effects of FMT. For example, the
induction of ROS-mediated oxidative stress and inflammation
correlate with mitochondrial dysfunction. Mitochondrial-targeted
antioxidant therapy abrogates AHR, inflammation, TGF-b-
mediated collagen deposition, decreases ROS production, and
Frontiers in Pharmacology | www.frontiersin.org 11
downregulates NF-kB activity in allergic asthma (Jaffer et al.,
2015; Sebag et al., 2017). However, we do not determine whether
mitochondrial structural and functional alterationoccurs in asthma
and whether FMT could reverse mitochondrial dysfunction to
alleviate airway inflammation and oxidative stress. That
undoubtedly deserves further exploration in future studies.
CONCLUSION

Our study demonstrated the potential therapeutic effect of FMT in
the asthmatic murine model, which might be mediated through its
anti-inflammatory and antioxidant activities. In summary, our data
suggested that FMT exerted anti-inflammatory effects as evidenced
by (a) alleviating AHR, inflammatory cell infiltration, goblet cell
hyperplasia, and collagen deposition in airways; (b) diminishing
elevated expression of IL-4, IL-5, IL-13, IL-17A, IgE,CCL5,CCL11;
(c) reducing Th17 cells and eosinophil recruitment in lung tissue;
(d) inhibiting the inflammatory signalingmediated throughNF-kB
and JNK. Our finding also indicated that FMT restored OVA-
induced imbalance of the oxidation and antioxidation as
demonstrated by (e) decreasing in situ ROS production, increasing
SOD activity; (f) upregulating the antioxidative signaling pathway of
Nrf2/HO-1. Thus, these results provided new information about the
protective effects of FMT against asthma.
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