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Chronic inflammation is part of the pathological process during atherosclerosis (AS). Due
to the abundance of monocytes/macrophages within the arterial plaque, monocytes/
macrophages have become a critical cellular target in AS studies. In recent decades, a
number of long noncoding RNAs (lncRNAs) have been found to exert regulatory roles on
the macrophage metabolism and macrophage plasticity, consequently promoting or
suppressing atherosclerotic inflammation. In this review, we provide a comprehensive
overview of lncRNAs in macrophage biology, highlighting the potential role of lncRNAs in
AS based on recent findings, with the aim to identify disease biomarkers and future
therapeutic interventions for AS.
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INTRODUCTION

Atherosclerosis (AS) is a multifaceted chronic inflammatory disease characterized by the formation
of atherosclerotic plaques predominantly at branch points of arteries and bifurcations due to the
disturbed laminar flow at these sites (Shapouri-Moghaddam et al., 2018). Atherosclerotic plaques
consist of lipids, foam cells, calcified sites, and necrotic cores (Donaldson et al., 2018; Moore et al.,
2013; Shapouri-Moghaddam et al., 2018; Tabas and Bornfeldt, 2016). Monocytes and macrophages
are dynamically involved in the initiation and development of AS and ultimately contribute to plaque
rupture. An altered metabolism dictates macrophage activities and subsequent AS progression
(Koelwyn et al., 2018).

During early atherogenic stages, apolipoprotein B-lipoproteins accumulated in the intima
initiate an early inflammatory response and formation of fatty streak lesions (Williams and Tabas,
1995; Moore and Tabas, 2011; Liu et al., 2014). The inflammatory response progresses through
various modifications in the endothelium, such as oxidation (causing altered expression of
adhesion molecules and elevating secretion of chemokines) (Moore and Tabas, 2011). Activated
endothelial cells produce monocyte chemoattractant protein-1 (MCP-1). On monocytes, MCP-1
can interact with cognate chemokine receptors and promote monocyte migration in a specific
direction (Moore and Tabas, 2011). Later, the recruited monocytes are tethered and roll along the
endothelium. The interaction between P-selectin glycoprotein ligand-1 molecules on monocytes
and endothelial selectins further triggers firm adhesions (Mestas and Ley, 2008). After entering
the intima, monocytes gradually differentiate into macrophages and internalize native and
modified lipoproteins (Johnson and Newby, 2009; Paulson et al., 2010). Atherosclerosis is a
nonresolving inflammatory condition characterized by monocytes continually entering the
intima and lesion plaques and constantly differentiating into macrophages (Moore and
Tabas, 2011).
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Lipid uptake, cholesterol esterification, and efflux are three distinct
processes of a normal cholesterol metabolism in macrophages
(Chistiakov et al., 2017). Disturbances of the cholesterol
metabolism are a key contributor to AS, resulting in the
accumulation of lipids in macrophages and the formation of
“foam cells” (Crowther, 2005; Maguire et al., 2019). In the early
plaque, uptake of modified low-density lipoprotein (LDL)
(Kunjathoor et al., 2002), phagocytosis of matrix-retained LPs, and
pinocytosis of fluid native LDL contribute to foam cell formation
(Tabas et al., 1993; Kruth et al., 2005; Moore and Tabas, 2011). Key
scavenger receptors such as the CD36, SR-A class, and lectin-like ox-
LDL receptor-1 play regulatory roles on cholesterol uptake and the
formation of foam cells (Moore and Freeman, uhu2006).

In advanced AS lesions, macrophage apoptosis, incomplete
clearance, and defective phagocytosis of apoptotic macrophages
give rise to necrotic cores, which exacerbate inflammation, incite
thrombosis, and increase inner stress on the fibrous plaques
(Virmani et al., 2002; Tabas, 2010). Notably, thinning of the
fibrous cap and necrotic core size increments are critical features
of vulnerable plaques. The sites on the shoulder of necrotic cores
are vulnerable to rupture. Functions and biological mechanisms
of all lncRNAs we discussed below are summarized in Table 1.

LONG NONCODING RNAS

Long noncoding RNAs (lncRNAs) are defined as a large class of
non-protein-coding transcripts. They consist of more than 200
nucleotides in length. Knowledge on the biological function of
lncRNAs has been expanding with new publications in the fields
of epigenetic activity regulation (McHugh et al., 2015), cis-
(Engreitz et al., 2016) and trans- (Atianand et al., 2016) gene
transcription regulations, protein translation (Carrieri et al.,
2012), RNA (Hansen et al., 2013) or protein “sponging,”
(Tichon et al., 2016), and nuclear/cytoplasmic “shuttling” (Yap
et al., 2018; Maguire and Xiao, 2020).

In accordance with the positional association between
lncRNAs and protein-coding genes (Gao et al., 2020), the
lncRNAs can be classified as exonic sense, anti-sense, intronic
sense, bidirectional (enhancer), and intergenic sense classes
(Derrien et al., 2012). At the transcriptional level, lncRNAs
can also be divided into four models (signals, decoys, guides,
or scaffolds) to regulate gene expression (Chang, 2011; Mathy and
Chen, 2017; Wang and Chang, 2011).

LONG NONCODING RNAS IN
MACROPHAGE DIFFERENTIATION

Monocyte chemotaxis is triggered by chemokines or cytokines
released from cells in damaged tissue or infection areas and
stimulates monocytes to migrate to pathologic sites and begin
differentiation into macrophages. These macrophages effectively
take infections under control and remove dead cells and debris for
tissue repair and wound healing. On the other hand,
macrophages are involved in the inflammatory tissue damage
caused by inflammatory diseases (Moore and Tabas, 2011).

In the development of AS, MCP-1 secreted by endothelial cells
is a potent chemokine for monocyte migration involved in the
initiation of the inflammatory response (Panee, 2012). MCP-1
attracts monocytes in the circulation, triggering migration via its
interaction with the membrane CC chemokine receptor 2 on
monocytes. Under normal blood flow conditions, monocytes can
firmly adhere to the vascular endothelium through interactions
with MCP-1, IL-8, or CXC ligand-8 (Melgarejo et al., 2009,
Shapouri-Moghaddam et al., 2018; Moghaddam et al., 2018).
After entering the intima, phagocytic monocyte-derived
macrophages start to internalize native and modified
lipoproteins (Johnson and Newby, 2009; Paulson et al., 2010;
Moore and Tabas, 2011).

Long noncoding monocytic RNA (lnc-MC) and miR-199a-5p,
both PU.1-regulated noncoding RNAs, work together during
human monocyte/macrophage differentiation. The dominant
transcription factor PU.1 commits the monocytic lineage
during hematopoiesis and promotes the maturation of
monocytes/macrophages (Anderson et al., 1998; Lin et al.,
2014). PU.1 transcriptionally regulates lnc-MC. Increased
expression of lnc-MC reinforces the role of PU.1 by
sequestering and soaking upmiR-199a-5p, relieving the
suppression on the expression of activin A receptor type 1B,
an important regulator of monocyte/macrophage differentiation.
This suggests that lnc-MC acts as an antagonist of miR-199a-5p
and strengthens the role of PU.1 in cell differentiation (Chen
et al., 2015).

LONG NONCODING RNAS IN
MACROPHAGE PHENOTYPIC SWITCHING

Plasticity and polarization are hallmarks of macrophages (Wang
L. X. et al., 2019). Phenotype switching of macrophages, in
response to cues from the local microenvironment, is
necessary for a diversity of indispensable functions during host
defense responses and tissue repair (Koelwyn et al., 2018).
Reciprocal skewing of macrophage polarization is modulated
by many intricate factors like the daily dietary intakes and
transcriptional factors (Chinetti-Gbaguidi and Staels, 2011).
Macrophages can be broadly categorized into two types: M1
and M2 phenotypes. Classically, M1-activated macrophages
enhance the production of pro-inflammatory cytokines (TNF,
IL-6, IL-1β, IL-12, and IL-23 in humans) and lower the secretion
of IL-10 (Verreck et al., 2004), whereas M2 macrophages are
characterized by their improved endocytic clearance capacity that
can protect local tissues from detrimental inflammatory damages
and eliminate inflammation (Mantovani et al., 2004; Chinetti-
Gbaguidi and Staels, 2011). Therefore, metabolic reprogramming
in macrophages has a direct influence on cell functions and
energy homeostasis (Koelwyn et al., 2018). In AS, both
macrophage phenotypes are present in fibrous caps of
established lesions (Anderson et al., 2002), with a
predominance of M1 over M2 in progressing atherosclerotic
lesions (Khallou-Laschet et al., 2010; Chinetti-Gbaguidi and
Staels, 2011; Khallou et al., 2010). TCONS_00019715 was the
first reported lncRNA expressed in human macrophages with
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phenotype switching functions. The expression level of
TCONS_00019715 in macrophages was drastically induced by
IFN-γ + LPS stimulation, and it underwent a strong reduction
after IL-4 treatment. Knockdown of TCONS_00019715 reduced
the expression of M1 markers in IFN-γ + LPS-stimulated
macrophages, and it elevated the M2 phenotype markers in
IL-4-stimulated ones. PAK1 (p21-activated kinase 1), an
important protein-coding gene associated with
TCONS_00019715, has been speculated to mediate
TCONS_00019715’s macrophage polarization effects (Huang
Z. et al., 2016). The myocardial infarction–associated
transcript 2 (Mirt2) is another lncRNA that has been proved
to affect macrophage phenotypic switching. It can block the
expression of the M1 polarization and has anti-inflammatory
functions through its control of NF-κB activation (Du et al.,
2017). Detailed information about the function of Mirt2 will be
covered in a later section.

LONG NONCODING RNAS IN
MACROPHAGE APOPTOSIS

Macrophage apoptosis occurs during the atherosclerotic plaque
development process. Apoptosis in the early stages is protective
because it cleans up macrophage foam cells residing inside the
plaque lesions (Shapouri-Moghaddam et al., 2018).

LincRNA-p21 has been shown to modulate cell proliferation
and apoptosis in AS. In apolipoprotein E–deficient (ApoE−/−)
mice with atherosclerotic plaques, lincRNA-p21 expression was
dramatically reduced at the transcription level. Small interfering
RNA–induced lincRNA-p21 inhibition greatly increased the total
number of RAW274.7 and HA-VSMC cells. P53 could
transcriptionally target lincRNA-p21. In the mouse carotid
artery injury model, blockade of lncRNA-p21 dysregulated
many p53 downstream targets, leading to neointimal
hyperplasia and enhanced cell proliferation with reduced
apoptosis (Wu et al., 2014).

Cytoplasmic lncRNA CERNA1 can stabilize atherosclerotic
plaques by promoting an important apoptosis inhibitor named
apoptosis inhibitor 5 (API5). API5 is capable of inhibiting
apoptosis of VSMCs and anti-inflammatory macrophages in
apolipoprotein E−/− (Apo E−/−) mice (Lu et al., 2019).

In a most recent study, an lncRNA associated with the
progression and intervention of AS named RAPIA was
increasingly expressed in advanced atherosclerotic sites and in
macrophages. Blockade of RAPIA greatly attenuated the
development of advanced AS in ApoE−/− mice (Sun et al.,
2020). RAPIA exerted a regulatory role by targeting miR-183-
5p in macrophages. miR-183-5p contains two binding sites for
RAPIA. As RAPIA binds to miRNA-183-5p, miRNA loses its
ability to inhibit proliferation or to promote macrophage
apoptosis. Interestingly, suppression of RAPIA has
atheroprotective effects in ApoE−/− mice fed with a high-fat
diet which is similar to those of atorvastatin on advanced
atherosclerotic plaques, by attenuating lipid accumulation,
decreasing plaque size, increasing collagen content, and
decreasing macrophage accumulation in advanced

atherosclerotic plaques. Therefore, repressing RAPIA
expression may be an alternative treatment for advanced
atherosclerotic lesions, especially in patients resistant or
intolerant to statins (Sun et al., 2020).

LONG NONCODING RNAS IN
MACROPHAGE PYROPTOSIS

Pyroptosis is a programmed cell death of macrophages controlled
by the NF-ĸB pathway (Bergsbaken et al., 2009; Sunami et al.,
2012; Shen et al., 2014; Sheng et al., 2014). It causes cell lysis.
Inflammatory responses can be induced upon cytosolic content
release to the extracellular space (Xu et al., 2018). However, this
type of cell death, once mislabeled as apoptosis, is attributable to
the involvement of caspase 1 (Shi et al., 2017). Pyroptosis can be
induced in macrophages in lesions by ox-LDL and cholesterol
crystal–triggered increases in NLRP3 inflammasome and caspase
1, leading to AS progression. In advanced atherosclerotic lesions,
the formation of necrotic cores and unstable plaques may be
attributed to macrophage pyroptosis (Xu et al., 2018).

MALAT1 in diabetic AS has been reported to participate in
macrophage pyroptosis after sinapic acid (SA) treatment. Gain-
and loss-of-function approaches have demonstrated that in
normal macrophages, MALAT1 shows a modestly beneficial
effect against pyroptosis. Chronic low-dose SA treatment could
block the inflammasome activation, macrophage pyroptosis, and
the systemic inflammatory response by mediating MALAT1
(Yong et al., 2018).

LONG NONCODING RNAS IN
MACROPHAGE DURING
ATHEROSCLEROTIC INFLAMMATION
Many studies have shown that lncRNAs affect the expression
profiles of inflammatory pathways in different diseases. For
example, in response to LPS stimulation, LIN28B-AS1 (Xie Z.
et al., 2019) and Mirt2 (Du et al., 2017) associate with pro- and
anti-atherosclerotic inflammation factors in macrophages
through NF-κB. Mathy’s review provided detailed information
about lncRNAs’ classification and functions in transcriptional
control (Mathy and Chen, 2017). In this review, we focused on the
functions and effects of individual lncRNAs in the context of
atherosclerotic inflammation.

The canonical NF-κB signaling is critical for regulation of
innate and adaptive immune responses and is involved in cell
proliferation and apoptosis, migration, and invasion (Taniguchi
and Karin, 2018). The activation of NF-κB is induced by
inflammatory chemokines, notably LPS, TNF-α, IL-1, and
many toll-like receptors (TLRs) (Qin et al., 2005; Mathy and
Chen, 2017). Under inactive conditions, IκBα sequesters
cytoplasmic p50-p65 dimers, hindering the translocation of
p50-p65 dimers to the nucleus. After receiving activating
signals, IκBα is phosphorylated by a IκB kinase complex and
get degraded into free NF-κB dimers. Free NF-κB dimers
translocate to the nucleus, where they interact with specific
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DNA-binding sites to augment transcription and expression of
different genes (Baker and Ghosh, 2010; Hayden and Ghosh,
2014; Mitchell and Carmody, 2018).

A number of studies have mentioned lncRNAs’ diverse
regulatory roles in inflammatory diseases, including AS, by
controlling NF-κB–regulated transcription in both the cytosol
and nucleus.

TOLL-LIKE RECEPTOR
LIGATION-STIMULATED LONG
NONCODING RNAS
In response to LPS stimulation, lncRNA-Mirt2 (Du et al., 2017),
LINC00305, LIN28B-AS1 (Zhang et al., 2017), and MALAT1
(Zhao et al., 2016) show remarkable effects on the progression of
AS through NF-κB–dependent mechanisms. LINC00305 is a pro-
inflammatory agent during AS progression. In Zhang’s work,
LINC00305 in the cytosol interacted with the transmembrane
protein lipocalin-1 interacting membrane receptor (LIMR) and
promoted the expression of inflammatory genes in human THP-1
cells. Notably, LINC00305 has been associated with LPS-
stimulated inflammation by targeting the transmembrane
receptor LIMR. The inflammation promotor in LPS shock,
aryl-hydrocarbon receptor repressor (AHRR), is a binding
partner of LIMR (Brandstätter et al., 2016) that tends to
enhance NF-κB activity when cotransfected with LIMR.
LINC00305-LIMR interaction strengthened LIMR–AHRR
binding and promoted AHRR nuclear localization in addition
to promoting NF-κB activation, which in turn inhibited the
downstream aryl-hydrocarbon receptor signaling (Zhang et al.,
2017).

In the nucleus, a novel insulin-like growth factor 2 mRNA-
binding protein 1 (IGF2BP1)–binding lncRNA (LIN28B-AS1)
has been associated with pro-inflammatory activity. TLR4
ligation activates canonical NF-κB pathways, followed by
release and activation of p65-p52 heterodimers. The p65–p52
heterodimers then shuttle to the nucleus and enhance pro-
inflammatory responses, including facilitating gene
transcriptions of IL-6, IL-1β, and TNF-α by interacting with
IGF2BP1 (Perkins, 2007; Rahman and McFadden, 2011; Xie
J. et al., 2019). It is noteworthy that LIN28B–AS1–IGF2BP1
binding is essential for IGF2BP1–p65–p52 complex formation,
because nuclear LIN28B-AS1 could interact with IGF2BP1 and
assemble the IGF2BP1-p65-p52 complex in THP-1 cells (Xie Z.
et al., 2019).

Unlike LIN28B-AS1, anti-inflammatory lncRNA-Mirt2
regulates inflammation by blocking the NF-κB signaling in the
cytosol. Mirt2 expression was potently up-regulated in response
to LPS. LPS-triggered signaling pathways required the adaptor
protein myeloid differentiation marker 88 (MyD88) and toll-
interleukin-1 receptor domain–containing adaptor-inducing
IFNβ (TRIF) (Kawai and Akira, 2010). The TLR4-MyD88
binding at the membrane contributed to recruiting and
phosphorylating IL-1 receptor associated kinase 1 (IRAK1)
and IRAK4 that promote oligomerization and ubiquitination
of TNF receptor-associated factor 6 (TRAF6) (Hirotani et al.,

2005; Skaug et al., 2009). However, Mirt2 can bind to TRAF6 in
the cytosol and attenuate oligomerization and its Lys63 (K63)-
linked ubiquitination, which restricts MyD88-dependent NF-κB
and MAPK activation and TRAF6-mediated M1 polarization of
macrophages. In addition to repressing macrophage
inflammation, exotic Mirt2 expression remarkably facilitates
IL-4–stimulated expression of multiple M2 markers, including
Arg1, CD206, and Ym1, suggesting Mirt2 participates in M2
polarization. But the underlyingmechanism remains unclear, and
more studies are needed to gain a deeper understanding of the
mechanism by which Mirt2 facilitates M2 polarization (Du et al.,
2017).

Several findings have confirmed MALAT1 as a key controller
of inflammation. Following LPS treatment, NF-κB–dependent
enhancement of MALAT1 expression initiates a negative
feedback loop. In human THP-1 cells, nuclear NF-κB triggered
the transcription ofMALAT1, and after that, MALAT1 interacted
with the p50/p65 complex sequestering NF-κB and repressing its
DNA-binding activity, which subsequently led to transcription of
inflammatory cytokines TNF-α, IL-6, and IL-1β. MALAT1
knockdown enhanced the binding ability of p65 to TNF-α and
IL-6 promoters (Zhao et al., 2016).

OX-LDL-STIMULATED LONG NONCODING
RNAS

In addition to responding to TLR4 ligation, MALAT1 facilitates
ox-LDL–induced inflammation by controlling CD36 expression.
CD36 on the membrane of macrophages is a key scavenger
receptor participating in lipid uptake and forming foam cells,
and it has a strong affinity for ox-LDL (Tarhda et al., 2013;
Chistiakov et al., 2017). Ox-LDL stimulation initiates MALAT1
transcription via NF-κB. ß-catenin is a transcription factor for
CD36 expression, and ß-catenin gets recruited to the binding site
on the CD36 promotor by the enhanced expression of MALAT1
that facilitates lipid uptake in macrophages (Huangfu et al., 2018).

SNHG16, an ox-LDL-sensitive long noncoding small
nucleolar RNA, was found to be highly expressed in patients
with AS. In an in vitro study, exogenous SNHG16 expression
augmented production of pro-inflammatory cytokines by
activating NF-κB signaling cascades. Conversely, SNHG16
knockdown resulted in inhibited IKKβ expression, IκBα
phosphorylation, and p65 phosphorylation. Functionally,
SNHG16 gets released into the cytoplasm in response to ox-
LDL; then, SNHG16 acting as a sponge binds directly to and
absorbs miR-17-5p to abolish the inhibitory effect of miR-17�5p
on NF-κB activation. A SNHG16/miR-17-5p/NF-κB signaling
axis promoting an inflammatory response in AS may exist
(An al., 2019).

LINC01140 mediates ox-LDL–induced inflammation and
plays a protective role on inflammation (He et al., 2020). After
ox-LDL stimulation, LINC01140 becomes down-regulated in
macrophage-differentiated THP1 cells, whereas p53 mRNA
and miR-23b are up-regulated. The expression of
inflammation factors, such as MCP-1, TNF-α, and IL-1β, is
repressed potently when p53 is down-regulated. The
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association between p53 and the LINC01140 promoters was
shown using a luciferase reporter assay. After transfecting cells
with a p53-overexpression vector (pcDNA-p53), LINC01140
expression was repressed and miR-23b expression was
enhanced (He et al., 2020).

HIGH GLUCOSE AND PALMITIC
ACID-STIMULATED LONG NONCODING
RNAS
High glucose (HG) and palmitic acid (PA) can activate the
lncRNA dynamin 3 opposite strand (Dnm3os) promotor and
enhance pro-inflammatory actions by targeting nucleolin.

Gene overexpression and knockdown experiments identified
Dnm3os as a pro-inflammatory molecule under diabetic
conditions. For instance, PA significantly induces the
expression of IL-6, TNF, Nos2, and Cd36 in RAW264.7
cells transfected with a Dnm3os expression vector. RNA
pull-down assays identified a close interaction between
Dnm3os and nucleolin. Nucleolin is a nuclear RNA-binding
protein in macrophages (Cong et al., 2011) that can regulate
chromatin structure and exert an atheroprotective function.
HG and PA substantially decrease the nucleolin protein level.
Silencing nucleolin increased the gene expression of
inflammatory factors induced by Dnm3os, including that of
IL-6 and histone H3K9-acetylation at their promoters (Das
et al., 2018).

FIGURE 1 | Functions of NF-κB–dependent lncRNAs in atherosclerotic inflammation.
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In addition to activating lncRNAs through NF-ĸB, lincRNA-
EPS, for example, is a nuclear repressor for inflammation that
controls the expression of immune response genes (IRGs). Under
an endotoxin challenge, lincRNA-EPS–deficient mice displayed
exacerbated inflammatory responses and lethality. Gain-of-
function and rescue approaches showed that lincRNA-EPS
overexpression effectively limited IRG expression. lincRNA-
EPS localizing at regulatory sites of IRGs interacts with
hnRNPL via a CANACA motif to control nucleosome
positioning and repress IRG transcriptions (Atianand et al.,
2016).

On the other hand, lncRNA uc.48+ modulates P2X7R-
mediated diabetic immune and inflammatory responses in
RAW264.7 macrophages. P2X7R is protein of the P2X7
receptor and ERK pathway (Ponnusamy et al., 2011; Zanin
et al., 2015). HG and free fatty acid (FFA) RAW264.7 cell
treatments promoted the expression of uc.48+. Increased
expression of uc.48+ in response to HG and FFAs augmented
the inflammatory cytokine secretion, ROS formation, and ERK
signaling via P2X7R activation (Wu et al., 2018).

Figure 1 summarizes the NF-κB–associated activities of
lncRNAs during AS in macrophages. lncRNAs regulate the
expression of NF-κB in both cytosols and nuclei. They can
promote or inhibit translocation of NF-κB dimers to the
nucleus by controlling the phosphorylation of the IKK
complex and IκBα. NF-κB–dependent gene transcriptions are
functionally affected by lncRNAs in the nucleus, partially
through assembly of functional nuclear proteins complexes.
MALAT1 can be expressed through an NF-κB pathway, and it
affects the transcriptions of NF-κB–dependent
inflammatory genes.

LONG NONCODING RNAS IN
MACROPHAGE CHOLESTEROL
METABOLISM
Lipid uptake and foam cell formation depend on activation of
scavenger receptors, including the type A scavenger receptor
(SRA) and the type B CD36 in the macrophages (Kunjathoor
et al., 2002). Following lipid uptake, lipid droplets bud off the
endoplasmic reticulum (ER) into the cytoplasm. The
accumulation of free cholesterol (FC) requires re-
esterification by the enzyme acyl-cholesterol transferase 1
(ACAT-1) in cells. Excessive FC can be stored in the form
of cholesterol esters (CE) (McLaren et al., 2011; Maguire et al.,
2019). Furthermore, the efflux of cholesterol can potentially
keep cells from foaming. Cholesterol efflux depends mainly on
several membrane transporters, such as the ATP-binding
cassette transporter 1 (ABCA1) and the ATP-binding
cassette subfamily G member-1 (ABCG1); and SR-B1, PPAR,
and liver X receptor α (LXLRα) are key transcriptional factors
for this process (Maguire et al., 2019). Notably, ABCA1,
ABCG1, and SR-B1 control the removal of cholesterol and
phospholipids out of macrophages by directing lipid droplets to
apolipoprotein A1 and high-density lipoprotein (HDL) (Moore
and Tabas, 2011; Maguire et al., 2019). Dysregulation of

cholesterol homeostasis in macrophages results in lipid
uptake disturbances, foam cell formation, and the
progression of AS. LncRNAs in macrophages have been
demonstrated to manage cholesterol loading and foam cell
formation. Figure 2 shows a summary of these findings.

Generally, lncRNAs serve as miRNA sponges. Several studies
have identified the intricate interplay between lncRNAs and
microRNAs in macrophages that significantly affect the cell
cholesterol metabolism and lead to foam cell formation and
AS development. For example, nuclear-enriched abundant
transcript 1 (NEAT1) (Chen et al., 2018; Wang L. et al., 2019)
and growth arrest–specific transcript 5 (GAS5) (Ye et al., 2018)
are involved in oxidative stress, lipid uptake, and inflammation by
targeting miRNAs and may cause exacerbation of atherogenesis.
However, RP5-833A20.1 (Hu et al., 2015), the cholesterol
homeostasis regulator of miRNA expression (CHROME)
(Hennessy et al., 2019), and the H19-imprinted maternally
expressed transcript (H19) (Han et al., 2018) can reverse
cholesterol metabolism disturbances and alleviate the
inflammatory response.

GAS5 is capable of mediating macrophage polarization (Chi
et al., 2019; Sun et al., 2017), apoptosis (Chen et al., 2017), and
inflammation (Ye et al., 2018). GAS5 is found abundantly in
atherosclerotic plaques after ox-LDL treatment. In THP-1 cells,
enrichment of GAS5 suppressed the miR-211 expression,
aggravating the inflammatory response and stimulating the
expression of MMP, whose production in foam cells
exacerbates proteolytic rupture of extracellular matrix
components in plaque lesions. These findings support the role
of GAS5 as a contributor of plaque destabilization in AS (Ye et al.,
2018).

The nuclear lncRNA NEAT1 is a pro-atherosclerotic agent
shown to serve as a sponge for downstream miR-128 (Chen et al.,
2018) and miR-342-3p (Wang et al., 2019) targets. NEAT1
triggered an inflammatory response and oxidative stress by
suppressing miR-128 in RAW264.7 cells after ox-LDL
stimulation. Down-regulating NEAT1 repressed not only cell
proliferation, inflammation, and the oxidative stress process
but also inhibited CD36 expression, foam cell formation, and
apoptosis (Chen et al., 2018). In addition, the NEAT1-miR-342-
3p pathway modulates inflammation and lipid uptake. In THP-1
cells, lipid uptake was inhibited by NEAT1 silencing plus miR-34-
3p mimics treatment. Because of this, NEAT1 blockade could
suppress the ox-LDL–induced apoptosis and inflammation via
miR-342-3p curbing (Wang et al., 2019).

Another nuclear lncRNA RP5-833A20.1 is anti-
atherosclerotic. The expression of RP5-833A20.1 under ox-
LDL or ac-LDL treatment weakens the expression of nuclear
factor IA (NFIA) in THP-1-derived foam cells. In an ApoE−/−

mice model, NFIA overexpression enhanced HDL cholesterol
(HDL-C), decreased the production of LDL cholesterol (LDL-C)
and very LDL cholesterol (VLDL-C), and reduced the secretion of
inflammatory cytokines in plasma. Meanwhile, NFIA promoted
reverse cholesterol transport across cell membranes by
stimulating ABCA1 and ABCG1 expression. ABCA1 and
ABCG1 can deliver cholesterol across cell membranes (Stefulj
et al., 2009) and may enable AS regression. Overexpressing RP5-
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833A20.1 and hsa-miR-382-5p mimics in vitro effectively down-
regulated the expression of ABCA1 and ABCG1 but elevated the
expression of SRA1, CD36, and NF-κB. As a result of this,
lncRNA RP5-833A20.1 can stimulate cholesterol efflux in
human macrophages and relieve the inflammatory response
via the RP5-833A20.1- has-miR-382-5p pathway (Hu et al.,
2015).

Furthermore, CHROME levels in the plasma and
atherosclerotic plaques of patients with coronary artery disease
(CAD) are elevated. Cells expressing wild-type CHROME in vitro
inhibit the expression of miRNAs, such as miR-27b, miR-33a,
miR-33b, and miR-128; these miRNAs suppress cholesterol efflux
and prohibit HDL biogenesis.

CHROME derepresses these collective target genes through its
miRNA interactions, which further affects cholesterol transport.
Cells lacking CHROME express lower levels of ABCA1, cannot
efflux cholesterol, and present reduced formation of nascent HDL
particles in response to activating sterol-activated liver X receptor
(LXR), leading to reduced expression of genes involved in the
response to cholesterol excess in human hepatocytes and
macrophages (Hennessy et al., 2019).

H19 participates in many pathological processes, including
tumorigenesis (Ghafouri-Fard et al., 2020), cerebral ischemia-
reperfusion injury (Wang et al., 2017), and acute myocardial
infarction (Yu and Dong, 2018). H19 is highly expressed, while
miR-130b is down-regulated in blood samples of patients with

FIGURE 2 | Cholesterol metabolism functions of lncRNAs in macrophages.
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TABLE 1 | Summary of atherosclerosis-related lncRNAs expressed in macrophage.

lncRNA Full name Location Stimulus Cells Function Mechanism Reference

Macrophage differentiation
Lnc-MC Long noncoding monocytic RNA Cytoplasm Pam3CSK4 Macrophage HL-60 Monocyte/macrophage

differentiation
Sequestering and soaking up miR-
199a-5p to release the expression
of ACVR1B

Chen et al.
(2015)

Macrophage phenotypic switching
TCONS_00019715 — — IFN-α LPS Macrophage Macrophage polarization Reducing M1 elevating M2 may be

through regulating PAK1
Huang Z. et al.
(2016)

Mirt2 Myocardial infraction-associated
transcript 2

Cytoplasm LPS Macrophage Macrophage polarization and
anti-inflammation

Blocking the MyD88-mediated
MAPK and NF-κB activities to inhibit
M1 polarization

Du et al. (2017)

Macrophage apoptosis
CERNA1 — Cytoplasm and

nucleus
Ox-LDL Vascular smooth muscle

cells and macrophage
Atherosclerotic plaque
stabilization

Increasing API5 to inhibit apoptosis
of VSMCs and anti-inflammatory
macrophages

Lu et al. (2019)

RAPIA LncRNA associated with the
progression and intervention of
atherosclerosis

Cytoplasm — Macrophage Macrophage proliferation and
apoptosis

Binding to miRNA-183-5p to
promote proliferation and promote
apoptosis of macrophages

Sun et al. (2020)

Macrophage pyroptosis
MALAT1 Metastasis-associated lung

adenocarcinoma transcript 1
Nucleus Low-dose

sinapic acid
Macrophage Macrophage pyroptosis Chronic low-dose SA treatment

could block the function of
MALAT1-dependent NLRP3
inflammasome, consequently inhibit
pyroptosis, and systemic
inflammatory response

Yong et al.
(2018)

Atherosclerotic inflammation
Mirt2 Myocardial infraction-associated

transcript 2
Cytoplasm LPS Macrophage Macrophage polarization and

anti-inflammation
Blocking the MyD88-mediated
MAPK and NF-κB activities to inhibit
M1 polarization

Du et al. (2017)

LINC00305 — Cytoplasm LPS Macrophage Pro-inflammation Binding to LIMR then promoted
nuclear localization of AHRR to
activate NF-κB

Zhang et al.
(2017)

LIN28B-AS1 — Nucleus LPS Macrophage and monocyte Pro-inflammation Increasing IGF2BP1-p65-p52
association to activate NF-κB
signaling

Xie Z. et al.
(2019)

MALAT1 Metastasis-associated lung
adenocarcinoma transcript 1

Nucleus LPS Macrophage Decreased transcription of
inflammatory cytokines

Interacting with NF-κB p50/p65
dimmers to sequester NF-κB and
decrease cytokine transcription

Zhao et al.
(2016)

SNHG16 Small nucleolar RNA host gene 16 Cytoplasm Ox-LDL Macrophage Cell proliferation and pro-
inflammation

Binding to and absorbed miR-17-5p
to release the activity of NF-κB
pathway

An et al. (2019)

LINC01140 — — Ox-LDL Macrophage Anti-inflammation Binding to miR-23b in order to
down-regulate p53 and decrease
the expression of inflammation
factors

He et al. (2020)

Dnm3os Dynamin 3 opposite strand Nucleus PA and HG Macrophage Pro-inflammation Decreasing nucleolin protein levels
to increase inflammatory gene
expression

Das et al. (2018)
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TABLE 1 | (Continued) Summary of atherosclerosis-related lncRNAs expressed in macrophage.

lncRNA Full name Location Stimulus Cells Function Mechanism Reference

lincRNA-EPS LincRNA erythroid prosurvival Nucleus Pam3CSK4 Macrophage Anti-inflammation Controlling nucleosome positioning
and repressing transcription
expression of inflammatory
cytokines by targeting hnRNPL

Atianand et al.
(2016)

uc.48+ — — HG and FFAs Macrophage Pro-inflammation and
promote immune response

Evoking P2X7R-mediated cytokine
production, ROS activity, and
reaction of the ERK pathway

Wu et al. (2018)

Macrophage cholesterol metabolism
NEAT1 Nuclear-enriched abundant

transcript 1
Nucleus Ox-LDL Macrophage Inflammation and oxidative

stress
Sponging and inhibiting miR-128 to
trigger inflammation and oxidative
stress and to increase CD36

Chen et al.
(2018)

Ox-LDL Macrophage Inflammation and lipid uptake Inducing ox-LDL-induced apoptosis
and inflammation via targeting miR-
342-3p

Wang L. et al.
(2019)

GAS5 Growth arrest–specific transcript 5 Cytoplasm Ox-LDL Macrophage Atherosclerotic plaque
destabilization

Suppressing the miR-211
expression to aggravate
inflammatory response and the
expression of MMP exacerbating
plaque rupture

Ye et al. (2018)

Nucleus Ox-LDL Macrophage Pro-atherosclerotic Promoting atherosclerosis
development through targeting
EZH2-mediated ABCA1
transcription

Meng et al.
(2020)

RP5-833A20.1 — Nucleus Ox-LDL and Ac-
LDL

Macrophage-derived foam
cells

Anti-atherosclerotic Reducing cholesterol efflux and
alleviating inflammatory responses
via RP5-833A20.1-has-miR-382-
5p pathway

Hu et al. (2015)

ZFAS1 Zinc finger NFX1-type containing 1
antisense RNA 1

Cytoplasm Ox-LDL Macrophage-derived foam
cells

Anti-atherosclerotic Ameliorating inflammation and
reducing cholesterol efflux by
targeting miR-654-3p-ADAM10/
RAB22A axis

Tang et al.
(2020)

CHROME Cholesterol homeostasis regulator of
miRNA expression

Cytoplasm LXR agonist
(GW3965

Hepatocytes and
macrophage

Anti-atherosclerotic Interacting with microRNAs to curb
their repression on cholesterol efflux
and HDL biogenesis

Hennessy et al.
(2019)

H19 H19-imprinted maternally expressed
transcript

Nucleus Ox-LDL Macrophage Anti-atherosclerotic Regulating adipogenesis and
inflammation by inhibiting miR-130b

Han et al. (2018)

PELATON/LINC01272 Plaque-enriched lncRNA in
atherosclerotic and inflammatory
bowel macrophage regulation

Nucleus — Macrophage Regulator of phagocytosis Inducing CD36 expression to
promote phagocytosis, ROS
production, and ox-LDL uptake

Hung et al.
(2019)

TUG1 Taurine up-regulated gene 1 — Ox-LDL Macrophage Pro-atherosclerotic Dysregulating high-density
lipoprotein metabolism and
cholesterol efflux through inhibiting
miR-92a and improving FXR1

Yang and Li
(2020)

E330013P06 — — HG PA Macrophage Pro-atherogenic Increasing inflammatory genes
along with foam cell formation
through up-regulating CD36
expression

Reddy et al.
(2014)

lincRNA-DYNLRB2-2/
LINC01228

— — Ox-LDL Macrophage Anti-atherosclerotic Up-regulating GPR 119 and ABCA1
by the GLP1-R signaling pathway

Hu et al. (2014)
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AS. This suggests that in ox-LDL stimulated RAW264.7 cells,
H19 participates in adipogenesis and the inflammatory response
by inhibiting the activity of miR-130b. miR-130b is a target for
H19; H19-induced miR-130b expression after ox-LDL
treatment stimulates anti-inflammatory cytokine production
and decreases pro-inflammatory cytokine levels. Knocking
down H19 using shRNAs alleviated lipid metabolism
disturbances and decreased the inflammatory response by
mitigating lipid accumulation and promoting the lipid
metabolism (Han et al., 2018). H19 is also a regulator of
hepatic inflammation during cholestasis that secretes exosome
cargos in cholangiocytes (Li et al., 2020).

The plaque-enriched lncRNA in atherosclerotic and
inflammatory bowel macrophage regulation (PELATON)
lncRNA is a potential regulator of macrophage phagocytosis.
After being confirmed by in situ hybridization, PELATON was
enriched in unstable human atherosclerotic plaques with a necrotic
core and plaque shoulders and colocalized with the M1 marker
CD68. Knocking down PELATON in monocyte-derived
macrophages markedly reduced the cell phagocytotic
performance by reducing the CD36 mRNA (Hung et al., 2019).
lncRNA E330013P06 (E33) also caused foam cell formation by up-
regulating CD36 expression. Under type 2 diabetic (T2D)
conditions, HG and PA treatment of macrophages greatly up-
regulates the expression of E33. Exogenous expression of E33
highly induces inflammation by increasing inflammatory
expression of Nos2, Il6, and Ptgs2 genes, along with foam cell
formation through up-regulation of CD36 expression, resulting in
pro-atherogenic macrophages responses (Reddy et al., 2014).

The pro-atherosclerotic taurine up-regulated gene 1 (TUG1)
can worsen AS via the miR-92a/FXR1 axis (Yang and Li, 2020).
TUG1 overexpression increases plaque size and enhances
macrophage recruitment to the plaque area by targeting
apolipoprotein (apo) M in ApoE−/−mice. Generally, ApoM is
a critical lipocalin for delivering lipid sphingosine-1-phosphate
(S1P). ApoM delivers S1P to its S1P receptors on endothelial
cells. The anti-atherosclerotic ApoM can regulate high-density
lipoprotein metabolism, protecting against oxidation and
mediating CE (Christoffersen et al., 2011; Nádró et al., 2018).
TUG1 was found to down-regulate ApoM levels via miR-92a
inhibition and FXR1 stimulation in mouse liver NCTC 1469
cells. In RAW264.7 cells, TUG1 overexpression significantly
decreased ABCA1 and ABCG1 expressions, which consequently
slowed down the CE rate (Yang and Li, 2020).

In recent studies, GAS5 (Meng et al., 2020) and cyclin-
dependent kinase inhibitor 2B antisense noncoding RNA
(CDKN2B-AS1, also known as ANRIL) (Ou et al., 2020)
showed an important role on AS development through its
EZH2-mediated ABCA1 transcription targeting. In Meng’s
work, GAS5 stimulated lipid accumulation and prevented
cholesterol efflux by regulating ABCA1 in macrophage-
derived foam cells (Meng et al., 2020).

By recruiting zeste homolog 2 (EZH2), one of the enzymatic
factors of the polycomb repressive complex (Lu et al., 2018), to the
promotor region of ABCA1, GAS5 transcriptionally represses its
target genes (Shi et al., 2018). Knocking down GAS5 can greatly
reverse cholesterol transportation and decrease lipid accumulationT
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by alleviating the EZH2-dependent transcriptional inhibition of
ABCA1. EZH2 enhances the triple methylation of lysine 27
(H3K27) in the promoter region of ABCA1. GAS5
transcriptionally inhibits ABCA1 by binding to the EZH2
enhancer. EZH2 can promote AS progression by efficiently
blocking ABCA1 transcription in AS (Lv et al., 2016).

Similarly, the lncRNA CDKN2B-AS1 promotes cholesterol
uptake and accumulation and inhibits macrophage reverse
cholesterol transport (mRCT) in macrophage-derived foam cells
(Ou et al., 2020). The detrimental effects of CDKN2B knockdown on
atherosclerotic lesions could be reversed by sh-CDKN2B-AS1 in an
in vivo mouse model. Mechanically, CDKN2B-AS1 can package an
RNA–DNA triplex in the CDKN2B promoter region. This triplex
can recruit EZH2 and CTCF to the promoter region of CDKN2B to
increase histone methylation, which then adversely affects CDKN2B
transcription (Ou et al., 2020).

In contrast, LincRNA-DYNLRB2-2, macrophage-expressed
LXR-induced sequence (MeXis), HOXC cluster antisense RNA
1 (HOXC-AS1), and ANRIL are anti-atherogenic molecules that
modulate cholesterol efflux and cholesterol accumulation. Among
them, LincRNA-DYNLRB2-2 (Hu et al., 2014) and MeXis
(Hennessy et al., 2019) both target ABCA1 to regulate the
cholesterol metabolism. The ox-LDL–induced increased lincRNA-
DYNLRB2-2 expression in THP-1 macrophage–derived foam cells
ameliorates inflammation by up-regulating G protein–coupled
receptor 119 (GPR119), meanwhile improving ABCA1-regulated
cholesterol efflux via a glucagon-like peptide 1 receptor (GLP-1R)
signaling pathway. GPR119 is an anti-inflammatory regulator that
induces ABCA1 expression and can be controlled by GLP-
1R–mediated signaling cascades. By inducing the expression of
ABCA1, GPR119 promotes cellular cholesterol efflux through
apoA-I. Therefore, lincRNA-DYNLRB2-2 prevents atherosclerotic
plaque formation by repressing expression of inflammation and
adhesion molecules and increasing cholesterol efflux (Hu et al.,
2014). MeXis is an amplifier of the critical cholesterol efflux gene
Abca1, whose transcription is mediated by LXR. In response to LXR
signaling, MeXis expression induction inmacrophages promotes the
expression of Abca1 and consequently improves cholesterol efflux.
MeXis knockout in the bone marrow of mice represses Abca1 and
inflammatory gene expression, causing an impaired cell response to
cholesterol overload and plaque development. The LXR-MeXis-
Abca1 axis may reverse cholesterol delivery and play a protective
role on AS development (Sallam et al., 2018; Xie Y. et al., 2019).
Additionally, ANRIL could serve as a biomarker candidate of AS that
is up-regulated in atherosclerotic plaques and in patients’ plasma
(Hao et al., 2016). ANRIL also reduces inflammation and promotes
cholesterol efflux by blocking ADAM10 expression. ADAM10 can
shed or cleave several molecules on cell surface–like adhesion
molecules and cytokines (van der Vorst et al., 2018). As a result
of this, ANRIL suppresses the cytokine production and
inflammation induced by AS, and it promotes cholesterol efflux
(Li et al., 2019).

Moreover, the oncogenic LncRNA zinc finger NFX1-type
containing one antisense RNA 1 (ZFAS1) is a viable target to
ameliorate the development of AS because it reduces the cholesterol
efflux rate and facilitates inflammation (Tang et al., 2020). In THP-1
macrophage-induced macrophages, overexpressing ZFAS1

promotes inflammatory responses and blocks cholesterol efflux.
ZFAS1 is an upstream factor for miR-654-3p, which can target and
suppress the expression of ADAM10 and RAB22A. In short, ZFAS1
can positively mediate the expression of ADAM10 and RAB22A by
sponging miR-654-3p (Tang et al., 2020).

Lipid uptake, cholesterol esterification, and efflux are the main
processes for the macrophage lipid metabolism. Disturbance of
these processes leads to lipid accumulation and finally causes
foam cell formation. lncRNAs participate in macrophage lipid
metabolism and atherosclerotic plaque formation by targeting
microRNAs or controlling the gene expression of important lipid
metabolic enzymes or proteins.

HOXC cluster antisense RNA 1 (HOXC-AS1) exerts an
inhibitory effect on ox-LDL–mediated cholesterol accumulation
by improving homeobox C6 (HOXC6) expression in human THP-
1 cells. HOX genes have significant regulatory effects on the
cardiovascular system through vasculature function regulation
(Miano et al., 1996). HOXC-AS1 and HOXC6 are both down-
regulated in human atherosclerotic plaques. Lentivirus-mediated
overexpression ofHOXC-AS1 promoted the expression ofHOXC6
and blocked ox-LDL–induced foam cell formation and disruption
of cholesterol homeostasis in THP-1 cells. Ox-LDL could repress
HOXC6 expression by reducing HOXC-AS1, partly suppressing
Ox-LDL–mediated cholesterol accumulation to prevent AS
(Huang C. et al., 2016).

Dysregulated lipid metabolism in macrophages is a potential
cause of the foam cell formation, which speeds up the progress of
AS. Several lncRNAs mentioned above play important roles
during this process.

LONG NONCODING RNAS AS POTENTIAL
BIOMARKERS AND THERAPEUTIC
PERSPECTIVES
Among the noncoding RNAs, many miRNAs have been
identified as disease biomarkers for a variety of cardiovascular
diseases (CVDs) (Indolfi et al., 2019). Advances in the field of
lncRNAs have provided evidence that these molecules display
specific characteristics that make them attractive as prospective
therapeutic targets to be exploited for clinical use (Indolfi et al.,
2019). The expression profiles of lncRNAs have revealed
individual lncRNAs or clusters of lncRNAs within plaque
lesions. These molecules are potential biomarker candidates
and can be seen as prospective therapeutic targets during AS
progression (Fasolo et al., 2019; Indolfi et al., 2019).

On the one hand, as potential biomarkers, some “sponge”
lncRNAs are more robust than miRNAs. LncRNAs can be
upstream targets of miRNAs. For example, the macrophage
anti-atherosclerotic lncRNA ZFAS1 serves as sponge that
binds to miR-654-3p and improves the expression of
ADAM10 and RAB22A (Tang et al., 2020). Moreover, some
lncRNAs “sponges” are capable of interacting with more than one
miRNA. CHROME can exert regulatory roles on cholesterol
efflux and reverses cholesterol transport by reducing the
expression of four miRNAs, namely, miR-27b, miR-33a, miR-
33b, and miR-128 (Hennessy et al., 2019). Several miRNAs are
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regulated by a single lncRNA; therefore, targeting such lncRNAs
can be convenient (Indolfi et al., 2019).

On the other hand, lncRNAs can be biomarkers to predict
different AS stages. RAPIA, for instance, is highly expressed in
advanced atherosclerotic sites in mice models. The high level of
RAPIA expression in atherosclerotic plaques may predict the
occurrence of advanced AS (Sun et al., 2020). Suppression of
RAPIA showed similar effects to those of atorvastatin on advanced
atherosclerotic plaques by attenuating lipid accumulation and
decreasing plaque size in advanced atherosclerotic plaques of
mice models. RAPIA has been seen as a promising therapeutic
target for treating advanced atherosclerotic lesions, especially in
patients resistant or intolerant to statins.

LncRNAs offer the promise of a noninvasive diagnostic tool
to manage AS. These molecules can be detected in the patients’
sera and are considered attractive disease biomarker
candidates (Zeng et al., 2018). ANRIL is a potential AS
biomarker as it was found to increase in human
atherosclerotic plaques and plasma (Hao et al., 2016). In a
clinical study, GAS5 was specifically down-regulated in the
sera of patients with CAD (Yin et al., 2017): GAS5 expression
was greatly down-regulated in patients with CAD compared to
its levels in normal controls and in patients with diabetes
mellitus (the expression levels of GAS5 were decreased only in
patients with CAD) (Indolfi et al., 2019). The expression of
CHROME was also found to be high in the sera of patients with
CAD and atherosclerotic plaques (Hennessy et al., 2019).
Thus, significant high levels of these candidate lncRNAs in
the blood may be predictors of CAD.

FUTURE PERSPECTIVES AND
CONCLUSION

As Koelwyn stated, identifying the changing patterns of
metabolism in monocytes and macrophages during early
atherogenesis and figuring out at which point these
processes become maladaptive and progress to the next
stage are important. The progression of advanced AS can
trigger acute cardiovascular diseases, like heart attack and

stroke. Understanding the changing metabolism of
macrophages across all stages of AS development is urgent,
as is identifying the timing of early foam cell lesion formations,
the progression to advanced plaques, and the rupture of
vulnerable plaques (Koelwyn et al., 2018). Several lines of
evidence have suggested that lncRNAs could be involved in
regulating macrophage inflammation, macrophage cholesterol
loading, macrophage differentiation, polarization, and
apoptosis during the development of AS. Additionally,
lncRNAs are promising candidates for AS biomarkers and
potential therapeutic targets, like ANRIL, which was found to
be greatly increased in patients’ plasma (Hao et al., 2016), or
the fact that blocking RAPPIA can partially mimic the effect of
atorvastatin (Sun et al., 2020). We believe macrophage-related
lncRNAs provide a novel and unique perspective to investigate
the crossroads between chronic inflammation and AS. Future
studies need to provide insights into the lncRNAs’ functions in
macrophages and explain how they function in the
development of AS.
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