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Acetaminophen is one of the most commonly used analgesic agents for treating acute and
chronic pain. However, its metabolism is complex, and its analgesic mechanisms have not
been completely understood. Previously, it was believed that acetaminophen induces
analgesia by inhibiting cyclooxygenase enzymes; however, it has been considered recently
that the main analgesic mechanism of acetaminophen is its metabolization to
N-acylphenolamine (AM404), which then acts on the transient receptor potential
vanilloid 1 (TRPV1) and cannabinoid 1 receptors in the brain. We also recently revealed
that the acetaminophen metabolite AM404 directly induces analgesia via TRPV1 receptors
on terminals of C-fibers in the spinal dorsal horn. It is known that, similar to the brain, the
spinal dorsal horn is critical to pain pathways and modulates nociceptive transmission.
Therefore, acetaminophen induces analgesia by acting not only on the brain but also the
spinal cord. In addition, acetaminophen is not considered to possess any anti-
inflammatory activity because of its weak inhibition of cyclooxygenase (COX). However,
we also revealed that AM404 induces analgesia via TRPV1 receptors on the spinal dorsal
horn in an inflammatory pain rat model, and these analgesic effects were stronger in the
model than in naïve rats. The purpose of this review was to summarize the previous and
new issues related to the analgesic mechanisms of acetaminophen. We believe that it will
allow clinicians to consider new pain management techniques involving acetaminophen.
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INTRODUCTION

Acetaminophen is one of the most commonly used analgesic agents for alleviating acute and chronic
pain. Due to its safety, acetaminophen is prescribed for patients in whom non-steroidal anti-
inflammatory drugs (NSAIDs) are contraindicated, such as those with gastric ulcers and bronchial
asthma, pregnant women, nursing mothers, and children (Leung, 2012; Roberts et al., 2016). It has
also been placed on all three steps of pain treatment intensity of the WHO analgesic ladder for the
treatment of cancer pain. However, its metabolism is complex, and its analgesic mechanisms have
not been completely understood. Previously, it was thought that acetaminophen induces analgesia by
inhibiting the enzyme cyclooxygenase (COX), but now it is believed that acetaminophen is
metabolized to p-aminophenol, which crosses the blood-brain barrier and gets metabolized by
fatty acid amide hydrolase to yield N-acylphenolamine (AM404). AM404 acts on the transient
receptor potential vanilloid 1 (TRPV1) and cannabinoid 1 (CB1) receptors in the midbrain and
medulla (Roberts et al., 2002; Jennings et al., 2003; Mallet et al., 2010), which are co-localized
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mediators of pain modulation (De Petrocellis et al., 2000; Palazzo
et al., 2002; Maione et al., 2006). Therefore, acetaminophen
induces analgesia via direct action on the brain (Bannwarth
et al., 1992; Gelgor et al., 1992; de Lange et al., 1994;
Hogestatt et al., 2005), and these receptor sites on the brain
are the main mediators of acetaminophen-induced analgesia.
However, our group recently revealed a new analgesic
mechanism of acetaminophen, using behavioral measures, in
vivo and in vitro whole-cell patch-clamp recordings with rats,
wherein the acetaminophen metabolite AM404 directly induces
analgesia via TRPV1 receptors on the spinal dorsal horn (Ohashi
et al., 2017). Similar to the brain, the spinal cord, especially
substantia gelatinosa (SG, lamina II of Rexed), is also critical to
pain pathways, and modulates nociceptive transmission via
primary afferent Aδ- and C-fibers (Kohno et al., 1999; Ohashi
et al., 2017). Furthermore, TRPV1 receptors are abundant in the
spinal cord dorsal horn (Yang et al., 1998; Yang et al., 1999; Yang
et al., 2000). Therefore, our results describing the new analgesic
mechanism underlying the action of acetaminophen on the spinal
dorsal horn, are reasonable compared to previous reports (Ohashi
et al., 2017).

Acetaminophen does not possess any anti-inflammatory
activity, because it is a very weak inhibitor of COX and does
not inhibit neutrophil activation (Hanel and Lands, 1982).
Therefore, even though it has always been discussed together
with NSAIDs in terms of pharmacological mechanism,
acetaminophen is not regarded as an NSAID and is not
appropriate for treating inflammatory pain conditions.
However, we also revealed that acetaminophen metabolite
AM404 induces analgesia via TRPV1 receptors on the spinal
dorsal horn in a rat model of inflammatory pain, and these
analgesic effects were stronger in the inflammatory pain model
than in naïve rats (Ohashi et al., 2017).

The purpose of this review was to summarize the previous and
new issues related to the analgesic mechanisms of acetaminophen
and discuss our understanding that acetaminophen metabolite
AM404 also acts on the spinal dorsal horn and induces analgesia
in inflammatory pain conditions. This review will allow clinicians
to consider new pain management techniques using
acetaminophen.

ANALGESIC MECHANISMS OF
ACETAMINOPHEN

Inhibition of Cyclooxygenase Activity
It has been thought that acetaminophen induces analgesia by
blocking prostaglandin synthesis from arachidonic acid by
inhibiting the enzymes, COX-1 and -2. However, unlike
NSAIDs, acetaminophen interferes with the peroxidase activity
of COX isoenzymes, predominantly COX-2, with little clinical
effect and depends to a great extent on the state of environmental
oxidation (Graham et al., 2013; Aminoshariae and Khan, 2015). It
has also been reported that the third COX isoenzyme, COX-3,
which is an exon splice variant of COX-1, is especially sensitive to
acetaminophen (Chandrasekharan et al., 2002). However, it soon
appeared that COX-3 is not found in humans, and further studies

suggest that acetaminophen has no clinically significant effects on
the COX-1 exon splice variants found in humans so far (Graham
and Scott, 2005). It is now considered that the inhibition of COX
activity is not the main analgesic mechanism of acetaminophen
(Table 1; Figure 1).

Activating the Transient Receptor Potential
Vanilloid 1 and Cannabinoid 1 Receptors
Acetaminophen is first metabolized to p-aminophenol, which
easily crosses the blood-brain barrier and is converted to AM404
by fatty acid amide hydrolase (Hogestatt et al., 2005).
Acetaminophen is also metabolized to other compounds
through another pathway, such as N-acetyl-
p-benzoquinoneimine (NAPQI), which also appears to
produce analgesia by activating transient receptor potential
ankyrin 1 receptors (Andersson et al., 2011; Gentry et al.,
2015). However, AM404 is widely known to be the most
important mediator of acetaminophen metabolite-induced
analgesia. Although AM404 was thought to be just an
anandamide analog which acts on CB1 receptors (Beltramo
et al., 1997), it was recently shown that AM404 also acts on
TRPV1 receptors (Zygmunt et al., 2000; Hogestatt et al., 2005;
Barrière et al., 2013). In particular, it is known that TRPV1
receptors in the brain are important for pain modulation. Two
examples involving TRPV1 receptors are cannabidiol, the
primary nonaddictive component of cannabis, which induces
analgesia through TRPV1 receptor activation in the dorsal raphe
nucleus (De Gregorio et al., 2019), and dipyrone, an antipyretic
and non-opioid analgesic drug which causes analgesia by acting
on TRPV1 and CB1 receptors in rostral ventromedial medulla
(Maione et al., 2015). Therefore, it is now considered that AM404
acts on TRPV1 receptor in the brain and induces analgesia. For
example, by activating TRPV1 receptor, AM404 produced
outward currents that were measured using whole-cell patch-
clamp recordings and acted as a partial agonist in trigeminal
neurons (Roberts et al., 2002; Jennings et al., 2003). Moreover,
intracerebroventricular injection of AM404 produced analgesia
in the formalin test (Mallet et al., 2010). Therefore, these
receptors in the brain are widely considered to be the main
mediators of acetaminophen-induced analgesia. They are also the
reason why acetaminophen exhibits a “central” effect for long
periods.

Similar to the brain, it is also known that the spinal cord,
especially SG neurons, is critical to pain pathways, and modulates
nociceptive transmission via primary afferent Aδ- and C-fibers
(Kohno et al., 1999; Ohashi et al., 2015). Furthermore, it is also
known that TRPV1 and CB1 receptors are abundant in the spinal
cord dorsal horn (Yang et al., 1998; Yang et al., 1999; Yang et al.,
2000). Therefore, there is a possibility that, in addition to its
actions in the brain, acetaminophen and/or its metabolite AM404
also induce analgesia via direct activation of TRPV1 and/or CB1
receptors in the spinal cord dorsal horn. In fact, a few previous
studies have shown that AM404 decreases neuronal c-fos-positive
immunoreactivity induced by non-noxious stimulation of the
spinal cord in a rat model of neuropathic or inflammatory pain,
and these responses are inhibited by TRPV1 or CB1 receptor
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antagonists (Rodella et al., 2005; Borsani et al., 2007).
Nevertheless, the precise analgesic mechanisms of
acetaminophen in the spinal cord via its AM404 metabolite
are still unknown, because previous studies have not examined
the synaptic transmission at the cellular level. Therefore, it was
believed that acetaminophen does not act on the spinal cord.
However, our group recently revealed a new analgesic mechanism
of acetaminophen, using behavioral measures, and in vivo and
in vitro whole-cell patch-clamp recordings with naïve rats

(Ohashi et al., 2017). We first demonstrated with behavioral
experiments that intraperitoneal injections of acetaminophen and
intrathecal injections of AM404 induce analgesia to thermal
stimulation. We next conducted in vivo and in vitro whole-cell
patch-clamp recordings of SG neurons in the spinal cord dorsal
horn and recorded the excitatory post-synaptic currents (EPSCs).
With in vivo patch-clamp recording, the areas under the curve,
which is surrounded by the baseline and border of the EPSCs,
were significantly reduced after intravenous injection of

TABLE 1 | Analgesic mechanism of acetaminophen.

Medicine Target site Effect/mechanism References

Acetaminophen COX-1, COX-2 Inhibitory Aminoshariae and Khan (2015)
Acetaminophen COX-2 Inhibitory Graham et al. (2013)
Acetaminophen COX-3 Inhibitory Chandrasekharan et al. (2002)
Acetaminophen COX-3 No clinically relevant effects Graham and Scott (2005)
NAPQI TRPA1 Activating Andersson et al. (2011)
Acetaminophen TRPA1 Activating Gentry et al. (2015)
AM404 Anandamide transport inhibitor, CB1 receptor Re-uptake inhibitor, Activating Beltramo et al. (1997)
AM404 TRPV1 receptor Activating Zygmunt et al. (2000), Hogestatt et al. (2005), Roberts et al.

(2002), Jennings et al. (2003), Mallet et al. (2010), Barrière et al.
(2013),

AM404 CB1 receptor, TRPV1 receptor Activating Rodella et al. (2005), Borsani et al. (2007)
AM404 CB1 receptor, TRPV1 receptor Not activating, Activating Ohashi et al. (2017)
AM404 CB1 receptor < TRPV1 receptor Activating Szallasi and Di Marzo (2000)
Acetaminophen Opioids Activating Raffa et al. (2000), Raffa et al. (2004)
Acetaminophen Serotonin Increases content Pini et al. (1996)
Acetaminophen 5-HT3 receptor Activating Alloui et al. (2002), Pickering et al. (2006), Pickering et al. (2008)

NAPQI, N-acetyl-p-benzoquinoneimine; AM404, N-acylphenolamine; COX, cyclooxygenase; TRPA1, transient receptor potential ankyrin 1; CB1, cannabinoid 1; TRPV1, transient
receptor potential vanilloid 1.

FIGURE 1 | Analgesic mechanism of acetaminophen. Acetaminophen is metabolized to p-aminophenol, which easily crosses the blood-brain barrier and is
converted to AM404 by FAAH. AM404 mainly acts on both the brain and spinal cord via COX, anandamide, CB1, TRPV1, opioid, and 5-HT3 receptors. AM404,
N-acylphenolamine; FAAH, fatty acid amide hydrolase; COX, cyclooxygenase; CB1, cannabinoid 1; TRPV1, transient receptor potential vanilloid 1.
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acetaminophen following peripheral pinch stimuli. However,
with in vitro patch clamp recording, direct application of
acetaminophen to the spinal cord did not change miniature
EPSCs (mEPSCs), but AM404 did. These results suggest that
systemic administration of acetaminophen metabolizes to
AM404, which directly acts on spinal cord dorsal horn and
induces analgesia. We also examined the effects of AM404 on
EPSCs evoked from primary afferent neurons by stimulating the
dorsal root and demonstrated that AM404 reduces the
amplitudes of monosynaptic EPSCs evoked by stimulating
C-fibers, but not Aδ-fibers. These responses were inhibited by
the TRPV1 receptor antagonist, but not CB1 receptor antagonist.
Therefore, we found that acetaminophen was metabolized to
AM404, which induces analgesia by directly inhibiting the
excitatory synaptic transmission via TRPV1 receptors
expressed on terminals of C-fibers in the spinal dorsal horn.
Contrary to previous studies on the brain, we failed to find the
analgesic effect of acetaminophen/AM404 on the CB1 receptor
on spinal dorsal horn neurons. We believe that the main reason
for the differences between our results and that of previous
reports was the concentration of AM404 (30 µM) in our study,
which is equivalent to the clinically recommended dosage of
acetaminophen (20 mg/kg). Szallasi et al. compared the affinities
of AM404 for brain TRPV1 and CB1 receptors and reported that
the concentration of AM404 required to activate TRPV1
receptors is much lower than that required for CB1 receptors
(Szallasi and DiMarzo, 2000). Therefore, there is a possibility that
the concentration of AM404 in our study was insufficient to
activate CB1 receptors in dorsal horn neurons and higher doses of
AM404 may also act on the CB1 receptor in the spinal dorsal
cord. We believe that our new analgesic mechanism of
acetaminophen will contribute to the development of new
techniques for clinical pain management using acetaminophen.

Other Mechanisms
Another possible reason for the analgesic action of
acetaminophen could be the action of endogenous
neurotransmitter systems including opioid and serotonergic
systems. Previous studies have reported that the analgesic
effect of acetaminophen involves the recruitment of
endogenous opioid pathways that lead to analgesic spinal-
supraspinal self-synergy (Raffa et al., 2000), and the analgesic
effects induced by intrathecal injection or intracerebroventricular
injection of acetaminophen were attenuated by mu-, delta-, and
kappa-opioid receptor antagonists (Raffa et al., 2004). This
analgesic self-synergy is significantly attenuated by the
administration of naloxone, an opioid receptor antagonist, at
the spinal level (Raffa et al., 2000). Similarly, another study
reported that depletion of brain serotonin prevented the
analgesic effect of acetaminophen in the hot-plate test and in
the first phase of the formalin response. Furthermore,
acetaminophen significantly increased the serotonin content in
the pontine and cortical areas (Pini et al., 1996). It is also reported
that the serotonin receptor has several subtypes, and
acetaminophen-induced analgesia was inhibited by intrathecal
or intravenous injection of tropisetron, a 5 hydroxytryptamine3
(5-HT3) receptor antagonist (Alloui et al., 2002; Pickering et al.,

2006; Pickering et al., 2008). These findings implied that
acetaminophen may be involved in endogenous opioid or
descending serotonergic pathways as contributors to the
analgesic action of acetaminophen.

Analgesic Effect of Acetaminophen for
Inflammatory Pain
For many decades, acetaminophen was not considered to possess
any anti-inflammatory activity and was, therefore, not
appropriate for treating allodynia or hyperalgesia in
inflammatory pain conditions. A study has reported that
acetaminophen is a very weak inhibitor of COX, which does
not inhibit neutrophil activation (Hanel and Lands, 1982). For
example, at the therapeutic concentration, acetaminophen
inhibits COX activity when the levels of arachidonic acid and
peroxide are low but has little effect when the levels of arachidonic
acid or peroxide are high as seen in severe inflammatory
conditions such as rheumatoid arthritis (Hanel and Lands,
1982). However, our group also revealed that acetaminophen
metabolite AM404 induces analgesia in rats of the inflammatory
pain model (Ohashi et al., 2017). Similar to the results in naïve
rats, our behavioral studies in an inflammatory pain rat model
suggest that acetaminophen and AM404 induce analgesia to
thermal stimulation. Moreover, both in vivo and in vitro
whole-cell patch-clamp recordings have shown that
acetaminophen metabolite AM404 directly inhibits excitatory
synaptic transmission via TRPV1 receptors expressed on
terminals of C-fibers in the spinal dorsal horn. Moreover,
analgesic effects induced by acetaminophen and AM404 in the
rats used for the inflammatory pain model were stronger than
those in naïve rats (Ohashi et al., 2017). It is known that there is
an increased proportion of TRPV1-protein-positive neurons
during inflammation in dorsal root ganglion and
unmyelinated axons of the digital nerves (Carlton and
Coggeshall, 2001). Therefore, increased TRPV1 activity in the
rats used for the inflammatory pain model suggests strong
analgesic effects following acetaminophen and AM404
administration. Therefore, our findings are consistent with
previous research, and we believe that our results will allow
clinicians to consider new pain management techniques
involving acetaminophen.

PHARMACOKINETICS AND SIDE EFFECTS

When the appropriate dosage of acetaminophen is used, serious
side effects seldom occur; however, some case studies have
reported liver toxicity caused by acetaminophen. Usually,
acetaminophen is administered orally or intravenously. The
maximum single-dose of acetaminophen for the treatment of
pain or fever is 1,000 mg every 4 h as needed, up to a
recommended maximum daily dose of 4 g. These therapeutic
concentrations range from 5 to 20 mg/ml. Acetaminophen has a
very high oral bioavailability of 60–88% (Bertolini et al., 2006),
and after oral administration of 1,000 mg acetaminophen, the
plasma maximum concentration (Cmax) is 12.3 μg/ml, area under
the curve over 6 h (AUC0–6) is 29.4 μg/h/ml, and AUC
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extrapolated to infinity (AUC0–∞) is 44.4 μg/h/ml. The time to
maximal concentration (Tmax) is 1.0 h, and the elimination half-
life (t1/2) is 2.53 h. In contrast, after intravenous administration of
1,000 mg acetaminophen, the plasma Cmax is 21.6 μg/ml, AUC0–6

is 42.5 μg/h/ml, and AUC0–∞ is 50.0 μg/h/ml. The Tmax is 0.25 h,
and the t1/2 is 2.17 h (Singla et al., 2012). These findings suggest
that intravenous administration of acetaminophen shows earlier
and higher peak plasma levels than oral administration; however,
there is no difference in AUC and t1/2 between the intravenous
and oral administration.

Once acetaminophen metabolizes in the liver by conjugation
with glucuronic acid (40–67%), sulfuric acid (20–46%), and
p-aminophenol, it easily crosses the blood-brain barrier and is
converted to AM404 (Gazzard et al., 1973; Duggin and Mudge,
1975). Furthermore, about 5% of acetaminophen is subjected to
N-hydroxylation in the liver with the involvement of cytochrome
P450 enzymes (especially CYP2E1) to form the toxic metabolite,
NAPQI (Bertolini et al., 2006). Normally, NAPQI is detoxified
into harmless metabolites via conjugation of the sulfhydryl
groups of glutathione by glutathione S-transferase into
mercapturic acid, which is eliminated in the urine (Mitchell
et al., 1974; Potter et al., 1974; Benson et al., 2005; Bertolini
et al., 2006). However, glutathione can become depleted after
overuse of acetaminophen or in cases of weakened hepatic
function (caused by slimming, malnutrition, hepatitis C virus,
or alcohol overuse), which causes accumulation of NAPQI.When
this happens, NAPQI interacts covalently with liver cell
components resulting in hepatic damage. To detoxify the liver
toxicity caused by NAPQI, N-acetylcysteine must be ingested as
soon as possible.

Usually, acetaminophen is administered by oral, transanal,
and intravenous routes, and NAPQI is produced by
acetaminophen during the metabolic pathways. However, we

think that if we administer AM404 instead of acetaminophen
using intrathecal or intracerebroventricular injection, we could
observe a stronger analgesic effect with reduced side effects at a
smaller dosage. Therefore, further clinical studies on the
effectiveness and safety of acetaminophen will be needed.

CONCLUSION

Acetaminophen acts not only on the brain but also the spinal cord
and induces analgesia. Moreover, the most possible analgesic
mechanism is that the acetaminophen metabolite AM404 acts by
activating TRPV1 and/or CB1 receptors. Our data also support a
mechanism by which acetaminophen also induces analgesia in
inflammatory pain conditions. These findings are applicable to
clinical pain management with acetaminophen, but the analgesic
mechanism of acetaminophen has not been elucidated
completely. Therefore, further discussions and studies will be
needed to understand the action of acetaminophen.
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