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Immune response, proliferation, migration and angiogenesis are juts a few of cellular events
that are regulated by transforming growth factor-β (TGF-β) in cells. A number of studies
have documented that TGF-β undergoes abnormal expression in different diseases, e.g.,
diabetes, cancer, fibrosis, asthma, arthritis, among others. This has led to great fascination
into this signaling pathway and developing agents with modulatory impact on TGF-β.
Curcumin, a natural-based compound, is obtained from rhizome and roots of turmeric
plant. It has a number of pharmacological activities including antioxidant, anti-
inflammatory, anti-tumor, anti-diabetes and so on. Noteworthy, it has been
demonstrated that curcumin affects different molecular signaling pathways such as
Wnt/β-catenin, Nrf2, AMPK, mitogen-activated protein kinase and so on. In the present
review, we evaluate the potential of curcumin in regulation of TGF-β signaling pathway to
corelate it with therapeutic impacts of curcumin. By modulation of TGF-β (both
upregulation and down-regulation), curcumin ameliorates fibrosis, neurological
disorders, liver disease, diabetes and asthma. Besides, curcumin targets TGF-β
signaling pathway which is capable of suppressing proliferation of tumor cells and
invading cancer cells.
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INTRODUCTION

Thanks to the previously conducted research over past decades to
assist scientists in comprehensive understanding of molecular
signaling pathways and mechanisms, and how to deal with them
in different diseases and disorders (Farooqi et al., 2020).
Interdisciplinary research and the emergence of cutting-edge
technologies have made it possible to look for major signaling
pathways and their regulation (Farooqi et al., 2019a). There has
been an explosion in the field of molecular biology and recently
published articles have also confirmed this fact (Farooqi et al.,
2019b; Fayyaz et al., 2019). Along with identification of molecular
pathways, scientists have tried to develop synthetic drugs in their
regulation. It is worth mentioning that plus to synthetic drugs,
there has been a great trend toward plant derived-natural
compounds in the regulation of molecular pathways and
mechanisms (Najafi et al., 2019b; Mortezaee et al., 2020).
Nowadays, researchers are more interested in naturally
occurring compounds compared to synthetic therapeutics. This
emanates from the fact that synthetic drugs are designed for just a
purpose (for instance, treatment of a particular disease) and
targeting a certain pathway and mechanism, while a large
number of studies have revealed that naturally-occuring
compounds are capable of affecting a wide variety of molecular
signaling pathways (Guo et al., 2019; Mortezaee et al., 2019a;
Mortezaee et al., 2019b; Mortezaee et al., 2019c). This multi-
targeting nature of herbal compounds have attracted much
fascination. In addition to multi-targeting property, it has been
demonstrated that herbal compounds haveminimal toxicity or even
lack toxicity against normal cells (Farhood et al., 2019a; Farhood
et al., 2019b), whereas synthetic drugs negatively affect organs of
body. For instance, such story is obviously observed in
chemotherapy. It seems that synthetic drugs applied in
chemotherapy have a number of adverse effects against normal

cells and may induce renotoxicity, hepatotoxicity and so on, while
plant derived-natural compounds can be used as potential
chemotherapeutic agents with negligible side effects (Najafi et al.,
2019a). All of these statements advocate from the fact that herbal
compounds are efficient agents in treatment of diseases and they
can be applied to target various molecular pathways. In the current
mechanistic review, we specifically discuss the potential of curcumin
in targeting transforming growth factor-β (TGF-β) in disease
therapy to direct further studies for research in this field.

CURCUMIN: AN OVERVIEW OF THE
PHARMACOLOGICAL IMPACTS AND
LIMITATION
Curcumin, a phenolic compound, is also known as
diferuloylmethane with chemical name of (1E, 6E)-1,7-bis(4-
hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) (Figure 1)
(Baldi et al., 2020; Chainoglou and Hadjipavlou-Litina, 2020;
Salehi et al., 2020a; Stohs et al., 2020). This biologically active
compound occurs in high amounts in rhizome and roots of
turmeric plant (Curcuma longa) (Hesari et al., 2019). Apart
from curcumin, there are also two other curcuminoids in
this plant including demethoxycurcumin (DMC) and bis-
demethoxycurcumin (BDMC). It has been demonstrated that
curcuminoids comprise 2–4% of dry turmeric root powder (Ak
and Gülçin, 2008; Prasad et al., 2014; Amalraj et al., 2017;
Kocaadam and Şanlier, 2017; Kunnumakkara et al., 2017;
Rahmani et al., 2018; Yeung et al., 2019). Curcumin has a
yellow color and can be used in several applications, e.g., as a
food flavoring and coloring agent, and herbal nutrition
supplement (Aggarwal et al., 2006; Aggarwal et al., 2007).
Curcumin was isolated for the first time at the impure form
in 1815, but Lampe and colleagues characterized curcumin in

FIGURE 1 | The Structure of curcumin in which its enolic exsits organic solvents whereas its keto form presence in aquouesmwedia (Zheng et al., 2018). Reprinted
with permission from the publishers.
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1910 in term of structure and chemically synthesized it (Lampe
and Milobedzka, 1913; Gupta et al., 2012; Mehanny et al., 2016).
As a bis-α,β-unsaturated β-diketone, curcumin exhibits keto-enol
tautomerism. The enol form of curcumin is widely found in
alkaline solutions, while its keto form is prevalent in acidic and
natural pH (Sharma et al., 2005). It is worth mentioning that
curcumin is used in food, pharmaceutical and textile industries
(Aggarwal and Harikumar, 2009). It seems that curcumin has
been common for treatment of diseases in Asia, particularly
traditional Indian medicine and this returns back to 2,500 years
ago (Unlu et al., 2016). The curcumin has been considered as an
efficient agent in treatment of different ailments such as
infection therapy in eye and skin diseases, rheumatism,
dyspepsia, and irritable bowel disease, amonng others (Singh,
2007; Hatcher et al., 2008; Qin et al., 2009; Lucariello et al., 2015;
Zhou et al., 2017a; Perna et al., 2018; Esposito et al., 2019; Hay
et al., 2019).

The first experiment related to therapeutic impact of curcumin
was published in 1937 (Zhou et al., 2011), and since then, much
attention has been directed toward revealing the extraordinary
pharmacological activities of curcumin. It has been reported that
curcumin has valuable therapeutic and biological activities such
as antioxidant (Kharat et al., 2020), anti-inflammatory
(Sneharani, 2019), anti-diabetic (Xia et al., 2020),
hepatoprotective (Dogaru et al., 2020), cardioprotective (Hadi
et al., 2019; Hallajzadeh et al., 2019; Kuszewski et al., 2019),
neuroprotective (Sturzu et al., 2019), anti-microbial (Rai et al.,
2020), anti-tumor (Bahrami et al., 2019; Shabaninejad et al., 2020;
Weng and Goel, 2020) and improving dyslipidemia (Roxo et al.,
2019) and ischemic-reperfusion (Ahmed et al., 2019). Curcumin
possesses great solubility in oil-based solutions. Besides, being
insoluble in water at acidic and neutral pH, curcumin is soluble at
alkaline pH. Asmentioned earlier, in spite of excellent therapeutic
activities, a variety of issues have remarkably restricted the
effectiveness of curcumin. The most important hurdle is its
poor solubility in aqoues media (11 ng/ml) as well as its rapid
metabolism into an inactive metabolite (Valencia et al., 2019;
Moeini et al., 2020). . In light of this, a number of research have
been devoted on the solubility enhancements or encapsulation of
curcumin targeted drug delivery platforms for biomedical
applications (Deljoo et al., 2019; Zare et al., 2019a; Zare et al.,
2019b). For instance, a number of nanoscale carriers (e.g.,
micelles, liposomes, polymeric nanocarriers, lipid
nanoparticles, and carbon nanotubes) have been developed to
encapsulate hydrophobic active compounds such as curcumin
(Bian and Guo, 2020; Li et al., 2020b; Hu et al., 2020; Varshosaz
et al., 2020; Zhao et al., 2020). Such platforms enhanced the
therapeutic efficacy of curcumin along with prolonged delivery.
In the following section, the influence of curcumin on molecular
pathways in exerting its pharmacological activities is highlighted.

CURCUMIN ANDMOLECULAR PATHWAYS
AND MECHANISMS

Notably, curcumin is suggested to affect various molecular
signaling pathways and mechanisms (Ghasemi et al., 2019;

Bagherian et al., 2020; Mardani et al., 2020; Salehi et al.,
2020b). Until now, no naturally occurring compound has been
investigated similar to curcumin. Herein, the potential
therapeutic impacts of curcumin mediated by its effect on
molecular pathways and mechanisms are discussed. The
nuclear factor erythroid 2-related factor 2 (Nrf2) is well-
known due to its capability in improving antioxidant defense
system via targeting down-stream mediators including heme
oxygenease-1 (HO-1), superoxide dismutase (SOD) and
NADPH quinone reductase 1 (NQO1) (Song et al., 2020). It is
said that antioxidant activity of curcumin is mainly mediated by
stimulation of Nrf2 signaling pathway (Zhang et al., 2020a).
Multiple studies have investigated the potential of curcumin in
diabetes mellitus (DM) treatment, as a chronic metabolic disorder
(Funamoto et al., 2019). Mechanistically, curcumin improves
insulin resistance and dyslipidemia, and remarkably
diminishes levels of glucose via upregulation of GLUT1 and
GLUT4 (Al-Saud, 2020). The calcified aortic valve disease
(CAVD) is a primary valve disease that negatively affects a
high number of people worldwide (Kirchhof et al., 2016). A
variety of factors are involved in CAVD development, but it
appears that inflammatory factors play a pivotal role (Lee and
Choi, 2018). The nuclear factor-kappaB (NF-κB) is suggested to
induce inflammation (Sinjari et al., 2019). The administration of
curcumin effectively suppresses the progression and development
of CAVD via down-regulation of NF-κB and inhibiting its nuclear
translocation (Zhou et al., 2020). Two factors are vital in
amelioration of damages on cells and improving a disease that
include reducing stress and inhibition of apoptotic cell death. In
attenuation of diabetic nephropathy, curcumin diminishes
apoptosis via down-regulation of pro-apoptotic factors Bax
and caspase-3, while it induces autophagy through
upregulation of Beclin-1 and ATG5, resulting in reduced cell
stress (Zhang et al., 2020c). It is worth mentioning that
curcumin induces apoptotic- and autophagic-cell death in
cancer therapy. However, it is held that autophagy can
determine the number of cancer cells undergoing apoptosis,
so that cancer cells with high autophagy influx demonstrate a
relative resistance into apoptosis (Lee et al., 2020a). Apoptosis
can be triggered by endoplasmic reticulum (ER) stress in which
glucose-regulated protein 78 (GRP78), CCAAT-enhancer-
binding protein homologous protein (CHOP) and activating
transcription factor 4 (ATF4) are induced by unfold protein
response (UPR) to ameliorate ER stress by stimulation of
apoptosis (Di Conza and Ho, 2020). Curcumin stimulates
neuroprotective effects by down-regulation of GRP78 and
ATF4 to attenuate ER stress-mediated apoptosis in neuronal
cells (Keshk et al., 2020). Noteworthy, curcumin-mediated
Notch upregulation protects neuronal cells against cytotoxic
agents such as bisphenol A (BPA) (Tandon et al., 2020). Taking
everything into account, based on the recently published
articles, it can be said that curcumin is a potential naturally
occurring compound in treatment of various disorders and
diseases. This is due to capability of curcumin in affecting a
variety of molecular signaling pathways and mechanisms that
are discussed in this section (Liczbiński et al., 2020; Mohajeri
et al., 2020; Sharifi et al., 2020).
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TRANSFORMING GROWTH FACTOR-BETA
SIGNALING PATHWAY: FROM BASICS TO
ROLE IN PATHOLOGICAL EVENTS
The TGF-β is a dynamic and sophisticated molecular signaling
pathway with pleiotropic impacts that modulate various
biological mechanisms such as cell proliferation, cell
differentiation, angiogenesis, motility, invasion, and immune
response (Bai et al., 2019; Boguslawska et al., 2019; Finnson
et al., 2019; Soleimani et al., 2019; Lai et al., 2020; Li and Wu,
2020; Lin and Wu, 2020; Tzavlaki and Moustakas, 2020). The
TGF-β family possesses 33 genes that are capable of encoding
homodimeric or heterodimeric secreted cytokines (Heldin and
Moustakas, 2016; Derynck and Budi, 2019). Then, these proteins
are cleaved via secretory pathway to produce mature dimeric
ligands (Ten Dijke and Arthur, 2007; Heldin and Moustakas,
2016). The ribosomes present on the rough ER participate in
synthesis of TGF-β and then, other processes including
eliminating N-terminal signal peptide, protein folding and
glycosylation occur in their route of ER into Golgi apparatus
(Manning et al., 2002; Ten Dijke and Arthur, 2007). The TGF-β
protein folding relies on formation of intermolecular disulfide
bonds inN- and C-terminal region (Ten Dijke and Arthur, 2007).
The glycosidation of N-terminal segment of TGF-β leads to the
inactivation of TGF-β (Miyazono and Heldin, 1989), showing that
further process is needed to activate TGF-β. Next, proteolytic
cleavage of disulfide bonds by furin family proteins result in
generation of two characteristic proteins including N-terminal
long dimeric and disulfide-linked propeptide, known as latency-
associated peptide (LAP) and C-terminal short dimeric disulfide-
linked polypeptide, known as mature TGF-β (Ten Dijke and
Arthur, 2007; Derynck and Budi, 2019). The signaling pathway of
TGF-β is of interest and includes canonical and non-canonical
pathways.

Canonical Pathway
The transmembrane serine/threonine kinases such as TGF-β type
II (TβRII) and type I (ALK5) are involved in canonical pathway of
TGF-β signaling (Wrighton et al., 2009; Liu and Feng, 2010). The
TGF-β induces phosphorylation of ALK5 by binding into TβRII
(Massagué, 1998; Wrighton et al., 2009; Ahmadi et al., 2019).
Then, Smad cascade is activated, so that ALK5 stimulates
phosphorylation of Smad2 and Smad3 proteins to form a
complex with Smad4. This complex translocates and
accumulates in nucleus to regulate gene expression by
cooperation with co-activators such as CBP/p300 and co-
repressors such as tumor growth-interacting factor (TGIF), Ski
and SnoN (Schmierer and Hill, 2007; Hill, 2009). Notably, there
are a number of Smads, known as inhibitor Smads (I-Smads) that
include Smad6 and Smad7. They are able to inhibit TGF-β
signaling pathway by acting as an antagonist. The Smad6 is
suggested to suppress Smad1 by competing with Smad4 for
binding into phosphorylated Smad1 (Hata et al., 1998). The
Smad7 forms a negative feedback loop with TGF-β signaling
(Yan et al., 2009). The Smad7 suppresses TGF-β signaling by
competing with Smad2/3 for binding into ALK5 (Yan et al.,
2009).

Non-Canonical Pathway
The most important axis in non-canonical pathway of TGF-β is
ALK1-Smad1/5. In fact, ALK1 as a TGF-β type I receptor, plays a
key role in non-canonical pathway of TGF-β and is expressed in
chondrocytes, endothelial cells and so on. Upon TGF-β
attachment, ALK1 is induced to form a complex with ALK5,
resulting in Smad1/5 activation (Finnson et al., 2008; Finnson
et al., 2010; Pardali et al., 2010; van der Kraan et al., 2010; Farhood
et al., 2020), and suppressing ALK5-Smad2/3 signaling (Finnson
et al., 2008). The mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinase (PI3K) and Rho-like GTPase
contribute to non-canonical pathway of TGF-β (Figure 2)
(Derynck and Zhang, 2003; Moustakas and Heldin, 2005;
Zhang, 2009).

The Role of Transforming Growth
Factor-Beta in Pathological Events
Multiple studies have evaluated the role of TGF-β signaling
pathway in different malignancies and disorders. It is not
possible to comprehensively discuss the role of TGF-β
signaling in diseases in this article (limitation of space) and we
cite some of the great reviews for further information (Fionda
et al., 2020; Munoz et al., 2020; Regis et al., 2020). However, we
briefly describe the role of TGF-β signaling pathway in
pathological events to pave the road for discussing the
relationship between curcumin and TGF-β in different diseases.

Based on the recently published articles, it seems that
enhanced activity of TGF-β predisposes muscle into damage.
The TGF-β elevates the levels of fibroadipogenic progenitors
(FAPs) to induce fibro-calcification of muscle, resulting in
muscle degeneration and inhibition of regenerative myogenesis
(Mazala et al., 2020). In respect to the role of TGF-β in
degeneration, studies have focused on regulation of TGF-β
signaling in disease therapy. It appears that administration of
ginsenoside Rg1 remarkably diminishes airway collagen volume
fraction, decreases the levels of inflammatory cytokines, and
ameliorates pulmonary fraction. The examination of molecular
pathways demonstrates that down-regulation of TGF-β1/Smad3
axis mediates antifibrotic impact of this compound (Guan et al.,
2020). In fact, these studies confirm the pro-inflammatory role of
TGF-β, and its association with organ damage. Compounds
similar to ginsenoside Rg1 with inhibitory effects on TGF-β
can be beneficial in preventing TGF-β-mediated organ damage.
As pulmonary fibrosis is going to be an increasing concern,
researchers have focused on finding both pharmacological and
genetic interventions for this disorder. It is suggested that
tripartite motif-containing 33 (TRIM33) alleviates pulmonary
fibrosis via inhibition of TGF-β signaling pathway (Boutanquoi
et al., 2020). This study demonstrates that upstream molecular
pathways of TGF-β can be targeted in disease therapy.

As it was mentioned earlier, DM is a chronic metabolic
disorder with high incidence rate, demanding novel strategies
in its treatment and management. The β-cell dysfunction is a risk
factor of DM. So, protection of β-cells is of considerable
importance in DM therapy. It has been reported that TGF-
β/Smad3 contributes to apoptotic cell death in β-cells, leading
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to their dysfunction and glucose tolerance (Lee et al., 2020b).
Although upstream mediators are able to affect TGF-β in
pathological events, increasing evidence exhibits that TGF-β
signaling pathway can induce fibrosis and tracheal stenosis by
stimulation of down-stream fibrotic mediators PI3K/Akt (Xiao
et al., 2020). By inhibition of TGF-β, a decrease occurs in levels of
inflammatory factors such as ILs and TNF-α to attenuate
inflammatory diseases (Liu et al., 2020b). The TGF-β induces
impairments in airway via enhancing cell migration and
extracellular matrix (ECM) production, and by inhibition of
TGF-β, the aforementioned mechanisms undergo down-
regulation (Kim et al., 2020). It is worth mentioning that
microRNAs (miRs) can function as upstream regulators of
TGF-β. In stimulation of cardiac fibrosis, miR-21 activates
TGF-β/Smad3 axis, while it decreases expression of Smad7, as
an I-Smad (Yang et al., 2020).

The epithelial-to-mesenchymal transition (EMT) is a vital
mechanism for inflammation, metastasis of cancer cells and
fibrosis (Gui et al., 2020; Lee et al., 2020d). The TGF-β is able
to stimulate EMT via upregulation of Smad2/3 (Fang et al., 2020).
So, suppressing TGF-β can ameliorate inflammation and fibrosis
in lung epithelial cells. It has been reported that TGF-β alleviates
development of ovarian hyperstimulation syndrome via VEGF

overexpression (Wan et al., 2020). These studies obviously
demonstrate the role of TGF-β in diseases. Noteworthy, TGF-β
plays a significant role in cancer progression. In enhancing
migration and metastasis of cancer cells, TGF-β induces EMT
through Smad4 upregulation (Xiong et al., 2020). Upstream
oncogenic factors such as HOXD9 stimulate expression of
TGF-β, leading to enhanced proliferation and growth of tumor
cells (Wardhani et al., 2020). Notably, TGF-β overexpression
induces resistance of cancer cells into chemotherapy (Qin
et al., 2020). Consequently, studies have focused on inhibition
of TGF-β signaling pathway in cancer therapy. It is held that
down-regulation of TGF-β sensitizes cancer cells into anti-tumor
immunity and remarkably diminishes their growth and
proliferation (Horn et al., 2020).

These studies highlight the ponteitla contribution of TGF-β
signaling in disease development. Notworthy, a variety of down-
stream and upstream mediators of TGF-β exist that mediate its
role in pathological events. Even molecular mechanisms are
down-stream targets of TGF-β. For instance, DM treatment
and preventing apoptosis in β-cells are performed via down-
regulation of TGF-β. In fact, TGF-β induces Smad3 to trigger
apoptosis in β-cells, providing condition for DM emergence (Lee
et al., 2020c). Autophagy is another type of programmed cell

FIGURE 2 | The canonical and non-canonical pathways of TGF-β signaling. Smads are key executers in TGF-b signaling that regulate expression of target genes by
translocating into nucleus. In non-canonical pathway, in addition to Smads, other moleculra pathways such as PI3K, MAPK and Ras are involved.
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death that can be affected by TGF-β. This molecular pathway is
able to dually down-regulate/upregulate autophagy in normal
and cancerous cells (Mao et al., 2019; Jin et al., 2020). So, revealing
interaction between TGF-β and autophagy can be of importance
for developing therapeutics. The interesting point is that TGF-β
can affect various molecular pathways in disease development
including mTOR (Chen et al., 2020c), PI3K/Akt (Wang et al.,
2020a), Wnt (Liu et al., 2019), and STAT3 (Dees et al., 2020).
There are also molecular pathways that can function as upstream
mediators of TGF-β in pathological events. MiRs (Ge et al., 2019),
lncRNAs (Tang et al., 2019), circRNAs (Bai et al., 2020), TRPM2
(Wang et al., 2019b) and so on can regulate TGF-β signaling in
different disorders. Pharmacological or genetic interventions of
aforementioned signaling networks can pave the road into
effective treatment of diseases.

Most of the experiments are in line with pro-inflammatory
role of TGF-β in diseases. This pro-inflammatory role is in favor
of disease development and progression. So, down-regulation of
TGF-β is advantageous in suppressing inflammation-mediated
disease development. For instance, TGF-β induces inflammation
to enhance progression and aggressive behavior of hepatocellular
carcinoma cells. Expression of TGF-β is positively affected by
Dickkopf-1 (DKK1) (Fezza et al., 2019). Hence, inhibiting DKK1/
TGF-β axis can lead to preventing inflammation-mediated cancer
growth. ILs with anti-inflammatory roles down-regulate
expression of TGF-β in suppressing inflammation. IL-22 is
able to inhibit TGF-β signaling via Notch1 inhibition, leading
to a decrease in inflammation and renal fibrosis (Tang et al.,
2020). Although these studies demonstrate pro-inflammatory
role of TGF-β, it appears that TGF-β also possesses anti-
inflammatory roles. Theacrine, as an anti-inflammatory
compound, prevents synovial hyperplasia and inflammatory
cell infiltration in joint tissues. This anti-inflammatory effect is
mediated via TGF-β induction and subsequent upregulation of
Smad expression (Gao et al., 2020b). In the next sections, we
investigate relationship between curcumin and TGF-β in different
diseases.

CURCUMIN AND TRANSFORMING
GROWTH FACTOR-BETA IN DIFFERENT
DISEASES
Liver Diseases
The incidence of liver diseases has undergone an increase due
to lifestyle. They are commonly occur in patients who suffer
from obesity and alcohol abuse (Buonomo et al., 2019). The
liver fibrosis is a chronic liver disease in which extracellular
proteins such as collagen accumulate. In diseased liver cells, a
number of cells including hepatic stellate cells, portal
fibroblasts and myofibroblasts produce collagen. It is said
that TGF-β1 is involved in stimulation of aforementioned
cells (Komolkriengkrai et al., 2019). In rats exposed to
carbon tetrachloride (CCl4), the chronic liver fibrosis occurs
due to enhanced expression of TGF-β1. TGF-β is one of the
signaling pathways that is down-regulated by curcumin in
alleviation of liver fibrosis (Abo-Zaid et al., 2020). Liver

dysfunction is a common phenomenon during DM. It is worth
mentioning that TGF-β/Smad signaling pathway can lead to liver
injury and inflammation in DM, and its inhibition attenuates liver
damage (Zhang et al., 2019a). Incorporation of curcumin into
polymeric nanoparticles significantly enhances its bioavailability
and therapeutic impacts, leading to amelioration of DM-mediated
liver injury by inhibition of TGF-β1 (El-Naggar et al., 2019). The
paraquat is a common herbicide commonly applied in different
countries. The reports display that 5–15 ml of 20% concentration
of paraquat can result in moderate or severe poisoning (Wesseling
et al., 2001; Baltazar et al., 2013). Several studies have shown that
exposing to paraquat can induce liver injury by decreasing
antioxidant capacity and stimulation of inflammation (Gao
et al., 2020a; Liu et al., 2020c). Although studies have put
much emphasis on the involvement of oxidative stress and
inflammation in paraquat-mediated toxicity, the role of TGF-β
signaling pathway is uncertain in liver toxicity. A recently
published article has shown that in stimulation of liver toxicity,
paraquat enhances expression of TGF-β1. The curcumin
supplementation attenuates paraquat-mediated liver injury via
down-regulation of TGF-β1 signaling pathway (Chen and Fu,
2018).

Cancer
It has been reported that in addition to epithelial cells, tumor
microenvironment (TME) and tumor cell interaction plays a
pivotal role in cancer progression (Jung and Le, 2018). The cancer
associated fibroblasts (CAFs) are able to induce chemoresistance
and ensure cancer progression (Houthuijzen and Jonkers, 2018;
Liao et al., 2018). The different factors such as TGF-β, matrix
metalloproteinases (MMPs) and so on contribute to cancer
initiation via activation of CAFs (Shiga et al., 2015). The
in vitro and in vivo experiments exhibit that curcumin
administration is associated with inhibition of CAF-mediated
cancer progression via TGF-β1 down-regulation (Jamalzaei et al.,
2020). Cancer cells have higher proliferation and migration
compared to normal cells. One of the factors involved in
motility and metastasis of cancer cells is EMT. A number of
structural and molecular alterations occurs during EMT to
produce mesenchymal cells from polarized endothelial cells. In
contrast to polarized and static epithelial cells, mesenchymal cells
have spindle shape and are not polarized, leading to their
migration capability (Lu et al., 2020; Xu et al., 2020). The
TGF-β is able to enhance invasion and migration of cancer
cells via stimulation of EMT (Li et al., 2019). Exposing lung
cancer cells into paraquat (PQ) significantly increases their
migration and invasion through TGF-β-induced EMT. The
administration of curcumin inhibits TGF-β signaling to
suppress EMT, leading to preserving E-cadherin and reducing
cancer malignancy (Tyagi et al., 2019). Oxaliplatin (OX) is a
chemotherapeutic agent for eliminating cancer cells and
enhancing overall survival of patients with cancer (Li et al.,
2020a). However, resistance of cancer cells has limited its
efficacy. EMT is a potential factor in stimulation of
chemoresistance via elevating proliferation and invasion of
cancer cells (Cao et al., 2020). The TGF-β can induce EMT
and its inhibition by miR-145 suppresses malignant behavior
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of cancer cells (Chen et al., 2020a). Besides, silencing Linc00511
inhibits EMT and metastasis of cancer cells via TGF-β signaling
down-regulation (Zhong et al., 2020). The studies demonstrate
that EMT regulation by TGF-β can participate in
chemoresistance. Curcumin is able to inhibit nuclear
translocation of Smad2/3 via suppressing TGF-β signaling
pathway. This leads to a decrease in migration and
proliferation of cancer cells and sensitizes them into OX
chemotherapy (Yin et al., 2019). It is worth mentioning that
curcumin affects TGF-β signaling pathway in cancer therapy via
different pathways. In order to suppress invasion and
proliferation of cervical, breast and pancreatic cancer cells,
curcumin suppresses TGF-β signaling pathway through
interfering with Wnt/β-catenin signaling pathway (Nna et al.,
2013; Thacker and Karunagaran, 2015; Wang and Yan, 2016).
However, there are controversial data showing that curcumin
may stimulate TGF-β signaling pathway in inhibition of colon
cancer progression (Ramamoorthi and Sivalingam, 2014). A
recently published article has revealed a novel pathway of
anti-tumor activity of curcumin. It is said that curcumin exerts
anti-metastatic activity in pancreatic cancer cells by inhibiting
canonical pathway of TGF-β signaling through androgen-
dependent and independent manners (Katta et al., 2019). So,
in suppressing malignant behavior of cancer cells, curcumin
affects TGF-β signaling pathway via targeting another
molecular signaling such as Wnt/β-catenin.

The effect of curcumin on TGF-β1 in cancer therapy is dose-
and time-dependent manner (Celik et al., 2018). In suppressing
malignant behavior of breast cancer cells, curcumin down-
regulates expression of TGF-β1 to inactivate Smad2 and MMP-9
(Mo et al., 2012). Exposing breast cancer cells into TGF-β induces
secretion of bone-resorptive peptide parathyroid hormone-related
protein (PTHrP). This ensures proliferation and invasion of cancer
cells. Administration of curcuminoids (25 and 50mg/kg)
suppresses breast cancer malignancy via inhibiting
phosphorylation of Smad2 and Smad3 (Wright et al., 2013). It
is worth mentioning that in cancer therapy, curcumin can affect
upstream mediators of TGF-β1 signaling pathway. As a negative
modulator of TGF-β1 signaling pathway, bone morphogenic
protein -7 (BMP-7) undergoes upregulation by curcumin to
inhibit TGF-β, leading to anti-metastatic activity of curcumin
(Dorai et al., 2014). Curcumin can also suppress metastasis of
cancer cells via inhibition of TGF-β1-mediated EMT (Xu et al.,
2015). In inhibition of TGF-β1-mediated EMT, curcumin inhibits
phosphorylation of Smad2 and Smad3 (Zhang et al., 2016).
Another pathway in inhibition of TGF-β-mediated EMT by
curcumin is that this plant derived-natural compound
suppresses Smad2 phosphorylation, its nuclear translocation and
interaction with promoter of Snail (Cao et al., 2017). In addition to
TGF-β signaling pathway, curcumin is able to suppress receptors in
this pathway. Curcumin and its derivatives inhibit ALK5 to down-
regulate migration and invasion of cancer cells (Kandagalla et al.,
2017).

Fibrosis
The endothelial-to-mesenchymal transition (EndMT) is a process
in which endothelial cells lose their adhesion and polarity, and

obtain mesenchymal phenotype, leading to enhanced cell
migration and collagen secretion (Maddaluno et al., 2013).
Increasing evidence demonstrates that EndMT is vital for
production of myofibroblasts in fibrotic tissues or organs
(Zeisberg et al., 2007; Potenta et al., 2008; Zeisberg et al., 2008;
Li et al., 2009). It has been reported that TGF-β can act as an
upstream modulator in stimulation of EndMT (Hou et al., 2019;
Yang et al., 2019b). The enhanced expression of TGF-β1 induces
an increase in inflammatory factors and asymmetric
dimethylarginine (ADMA), whereas a decrease occurs in Nrf2,
dimethyl arginine dimethylaminohydrolase-1 (DDAH1), VE-
cadherin, secretion of nitric oxide (NO) and activity of nitric
oxide synthase (NOS). These factors provide conditions for
endothelial cell fibrosis via EndMT induction. It is said that
curcumin supplementation down-regulates expression of TGF-β1
to enhance VE-cadherin, DDAH1 and Nrf2 levels, and diminish
MMP-9 and ERK1/2 levels. Consequently, TGF-b-mediated
EndMT is inhibited to suppress endothelial cell fibrosis (Chen
et al., 2020b). Although chemotherapy is a commonway in cancer
therapy, studies have demonstrated the high adverse effects of
chemotherapeutic agents. Cisplatin (CP) is a potential
chemotherapeutic agent with excellent anti-tumor activity.
However, accumulating data has shown that CP negatively
affects kidney by stimulation of inflammation and oxidative
stress (Mahran, 2020; Wang et al., 2020c). It is worth
mentioning that TGF-β1 mediates nephrotoxicity of CP (Salem
et al., 2018). A newly published article has examined the potential
of curcumin in improving CP-mediated nephrotoxicity. It seems
that a combination of curcumin and arsenic trioxide (ATO)
diminishes side effects of CP on kidney and emergence of
fibrosis via down-regulation of TGF-β1 (Maghmomeh et al.,
2020). The peritoneal dialysis (PD) is a potential strategy of
renal replacement therapy for patients who suffer from end-stage
renal disease (ESRD). However, PD fluid is not completely
biocompatible and has a variety of issues such as low pH, high
glucose and lactate, and can lead to abnormalities of peritoneum
(Cho et al., 2014). An increase in glucose levels is associated with
inflammation and PD. This is mediated via TGF-β1 upregulation
and results in peritoneal EMT (Yang et al., 2017). So, targeting
TGF-β1 can ameliorate PD-mediated fibrosis. The administration
of curcumin remarkably reduces the expression of TGF-β1 in PD
animal models to improve ultrafiltration volume, diminish mass
transfer of glucose and fibroproliferative response (Zhao et al.,
2019a). It seems that during PD, TGF-β signaling pathway
enhances migration and motility of cells via stimulation of
EMT. Curcumin supplementation is associated with a decrease
in migratory ability of these cells via down-regulation of TGF-β
and subsequent inhibition of EMT (Zhao et al., 2019b). As a
common phenomenon after joint surgery or longtime
immobilization, joint contracture has significant pathological
alterations including myofibroblast proliferation and enhanced
deposition of ECM (Abdel et al., 2012). The prostaglandin E2
(PGE2) is formed by cyclooxygenase metabolism of arachidonic
acid and inhibits the migration and proliferation of
myofibroblasts, and ECM accumulation (Elias et al., 1985;
Bitterman et al., 1986; Fine et al., 1989; Kolodsick et al., 2003;
White et al., 2005; Huang et al., 2009). The hyaluronic acid-
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curcumin conjugate is beneficial in treatment of joint
contracture-mediated fibrosis. It is said that hyaluronic acid-
curcumin conjugate induces demethylation of prostaglandin E
receptor 2 (PTGER2) to enhance its expression. Consequently,
activated PTGER2 inhibits TGF-β signaling pathway to negatively
affect migration and proliferation of myofibroblasts, resulting in a
diminution in fibrosis (Zhang et al., 2019b).

The idiopathic pulmonary fibrosis (IPF) is a multifactorial
disorder with involvement of cigarette smoking, air pollution,
genetic predisposition, aging and viral infections (Gao et al., 2011;
Mora et al., 2017). This chronic and progressive disorder is a form
of idiopathic interstitial pneumonia (Gross and Hunninghake,
2001). The IPF interferes with pulmonary function via
stimulation of inflammation (Spagnolo et al., 2015). Agents
with inhibitory impact on inflammatory cytokines can
attenuate IPF. It is suggested that curcumin administration
can down-regulate TGF-β1 expression to partially alleviate IPF
(Hu et al., 2018). We mentioned earlier that TGF-β involves in
fibrosis via stimulation of EMT mechanism. In fact, TGF-
β-mediated EMT occurs in a Smad-dependent manner. It is
worth mentioning that TGF-β can activate EMT via Smad-
independent manner. The TGF-β is able to induce EMT by
stimulation of Akt/mTOR signaling pathway (Lu et al., 2019).
It has been demonstrated that agents with inhibitory impact on
EMT mechanism such as Dendrobium officinale can inhibit
TGF-β/Akt/mTOR pathway (Xing et al., 2018; Luo et al.,
2019). This shows a novel signaling pathway of TGF-β in
EMT induction. The administration of curcumin ameliorates
kidney fibrosis by inhibition of EMT via suppressing TGF-
β/Akt/mTOR signaling pathway (Zhu et al., 2016). These
studies demonstrate that in inhibition of EMT, curcumin
affects various molecular pathways (Zhou et al., 2017b). The
increasing evidence exhibits that TGF-β signaling pathway can
contribute to pulmonary fibrosis by inducing proliferation of lung
fibroblasts and their differentiation into myofibroblasts
(Massagué, 1998; Hinz et al., 2007; Horbelt et al., 2012). In
treatment of pulmonary fibrosis, curcumin inhibits TGF-β1
signaling pathway to suppress proliferation and differentiation
of fibroblasts, leading to amelioration of pulmonary fibrosis (Saidi
et al., 2019). The proliferative vitreoretinopathy (PVR) is a wound
healing response that may be completed by formation of fibrotic
tissues. The migration and differentiation of retinal pigment
epithelial (RPE) cells play a significant role in formation of
fibrotic tissues during PVR (Dartt et al., 2011; Sadaka and
Giuliari, 2012). The in vitro and in vivo experiments have
revealed that TGF-β-mediated EMT contributes to trans-
differentiation of PRE cells into fibroblasts (Lee et al., 2007;
Ali, 2011). A combination of curcumin and epigallocatechin
gallate (EGCG) suppresses TGF-β1/Smad3 to inhibit EMT,
leading to alleviation of PVR (Shanmuganathan et al., 2017).
A same story occurs in CCl4 toxicity. The CCl4 is able to induce
liver fibrosis via inflammation, oxidative stress and stimulates
apoptosis (Liu et al., 2020a; Munakarmi et al., 2020; Zhang et al.,
2020b). In inhibition of CCl4-mediated liver injury, curcumin
down-regulates TGF-β1/Smad3 signaling pathway (Peng et al.,
2018). These studies highlight the fact that hepatotoxic agents
mainly exert their adverse effects via stimulation of TGF-β

signaling pathway, and drugs such as curcumin that have
modulatory impact on this pathway, are of importance. The
important point is that in enhancing the anti-fibrotic activity
of curcumin, nanoparticles are of interest, since they can
remarkably enhance the bioavailability and therapeutic effect
of curcumin (Charoensuk et al., 2016).

Neurological Disorders
The multiple sclerosis (MS) is an inflammatory neurological
disorder negatively affecting central nervous system (CNS)
(Bonetti and Raine, 1997). Due to immune attack, some
degrees of axon and myelin degeneration occur in MS patients
(Goldenberg, 2012). Inflammatory factors play a significant role
in MS progression via stimulation of axon degeneration and
neuronal dysfunction (Wujek et al., 2002). Enhancing expression
of anti-inflammatory factors such as IL-4, IL-5 and TGF-β is a
promising strategy in MS therapy (Soleimani et al., 2014). The
administration of curcumin remarkably enhances TGF-β
expression to suppress inflammation and progression in
experimental encephalomyelitis (EAE) model of MS
(Esmaeilzadeh et al., 2019). The spinal cord injury (SCI) is a
common phenomenon that can occur after accident. It seems that
during SCI, TGF-β-SOX9 signaling pathway activates
inflammation factor NF-κB to induce glial scar formation. In
respect to anti-inflammatory activity of curcumin, it is able to
suppress glial scar formation and attenuate SCI via down-
regulation of TGF-β-SOX9 axis and subsequent inhibition of
NF-κB (Yuan et al., 2019). Lumbar intervertebral disc
degeneration (LIDD) is a chronic and progressive disorder
characterized by low back pain (Vieira et al., 2014). In respect
to its high incidence rate, finding treatments for LIDD is of
importance. Increasing evidence demonstrates that TGF-β has
dual role in different disorders, so that it may reduce the number
of cells undergoing apoptosis in a certain circumstance, while it
may enhance apoptotic cell death (Hu et al., 2017). Curcumin
administration alleviates LIDD by inhibition of TGF-β1 and TGF-
β2 signaling pathways. In fact, studies are in agreement with
neuroprotective impact of curcumin mediated by TGF-β down-
regulation. It has been reported that in improving neural
functionality, curcumin reduces expression of TGF-β1 and
TGF-β2 (Yuan et al., 2015).

Wound Healing
During wound healing, a variety of cells such as inflammatory
cells, fibroblasts, keratinocytes, endothelial cells, and growth
factors as well as enzymes are involved (Velnar et al., 2009;
Abdel-Ghani et al., 2019; Makvandi et al., 2019). The presence of
other diseases such as DM impairs wound healing, demanding
novel intervention to improve wound process by enhancing
growth factor production, induction of angiogenesis, elevating
collagen accumulation and macrophage function (Falanga, 2005;
Campos et al., 2008). Multiple studies have evaluated the role of
TGF-β during wound healing. It seems that upregulation of TGF-
β induces angiogenesis to improve wound healing (Zong et al.,
2020). Impairment of TGF-β signaling pathway inhibits adaptive
response for tissue repair (Jiang et al., 2020). So, restoring
expression of TGF-β is a promising strategy in wound healing.
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TABLE 1 | The modulatory effect of curcumin on TGF-β in different diseases.

Disease/
protective effect

Cell line In vitro/in vivo Dose Duration of
experiment

Administration
route

Outcomes Refs

Anti-inflammatory Peripheral blood mononuclear cells In vitro 10 μM 1 h – Reducing the expression of TGF-β to
suppress lipopolysaccharide-mediated
inflammation

Vasanthkumar et al.
(2019)

Anti-inflammatory – In vivo 0, 196.11, 393.67,
591.46 and
788.52 mg/kg

60 days Diet Curcumin exerts anti-inflammatory activity
by down-regulation of TGF-β1

Ming et al. (2020)

Anti-inflammatory Mouse macrophage cells Raw246.7 In vitro 5, 10, 50, 100, 200
and 500 μg/ml

24 h – A combination of curcumin and curcumol
exerts anti-inflammatory activity by
decreasing the release of fibrotic factors by
inhibiting Smad2/3 phosphorylation
through TGF-β down-regulation

Godwin et al. (2019)

Anti-inflammatory – In vivo (animal model of
airway inflammation)

10 and 20 mg/kg 1–72 h Intraperitoneal Improving airway inflammation via down-
regulation of TGF-β1

Kumari et al. (2017)

Anti-inflammatory – In vivo (experimental model
of colitis)

100 mg/kg/daily 24 h after colitis
induction

Intragastrically Improving colitis by enhancing the level of
anti-inflammatory cytokine TGF-β1

Zhao et al. (2017)

Anti-inflammatory – In vivo (animal model of
colitis)

100 mg/kg 7 days Oral gavage Amelioration of colonic weight,
histopathological scores, and remitting
pathological injury via down-regulation of
TGF-β1

Zhao et al. (2016)

Anti-inflammatory Sertoli cell line 93RS2 In vitro 50 and 100 μM 6 h – Inhibiting the stimulatory impact of gallic
acid on TGF-β1 to abate inflammation and
improve reproductive system

Abarikwu et al. (2014)

Multiple sclerosis – In vivo (animal model of
autoimmune
encephalomyelitis)

20 mg/kg 21 days Intraperitoneal Upregulation of TGF-β1 acts as an anti-
inflammation factor

Esmaeilzadeh et al.
(2019)

Anti-fibrotic – In vivo (paraquat-
challenged rats)

200 mg/kg 14 days Intraperitoneal Improving pulmonary function and inhibition
of fibrosis via down-regulation of TGF-β1

Chen et al. (2017)

Anti-fibrotic IEC-6 cells In vitro 2.5, 5 and 10 μM 24 h – Alleviation of intestinal fibrosis by inhibition
of EMT via down-regulation of TGF-β1 and
inhibition of smad phosphorylation

Xu et al. (2017)

Anti-fibrotic Mouse lung fibroblast cell line In vitro 50 μM 0, 24, 48 and
72 h

– Attenuation of pulmonary fibrosis by down-
regulation of TGF-β2 and subsequent
inhibition of fibroblast differentiation into
myofibroblasts

Liu et al. (2016a)

Anti-fibrotic Rat mesangial cells In vitro in vivo (animal model
of diabetes)

−10 mg/kg/day 48 h 56 days Intraperitoneal Improving renal fibrosis in diabetic rats by
down-regulation of TGF-β1 and reducing
ECM accumulation

Ho et al. (2016)

Anti-fibrotic – In vivo (animal model of
cardiac fibrosis)

150 and 300 mg/kg/
day

28 days Oral gavage Suppressing myofibroblast differentiation
and alleviation of cardiac fibrosis via down-
regulation of TGF-β1

Ma et al. (2017)

Anti-fibrotic Rat normal renal interstitial fibroblast
cells (NRK- F49F) and rat normal
renal tubular epithelial cells (NRK-
52 E)

In vivo (animal model of
renal fibrosis)

10, 20 and 30 μM 50
and 100 mg/kg

24 h 14 days Gastro gavage Inhibition of local fibroblast proliferation and
reducing ECM deposition via down-
regulation of TGF-β1/Smad2/3

Zhou et al. (2014)

Anti-fibrotic Cardiac fibroblasts In vitro 0, 5, 10 and 20 μmol/
L

24 h – Inhibiting fibroblasts differentiation and
alleviation of cardiac fibrosis via down-
regulation of TGF-β1 and its down-stream
targets Smad2 and MAPK

Liu et al. (2016b)
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TABLE 1 | (Continued) The modulatory effect of curcumin on TGF-β in different diseases.

Disease/
protective effect

Cell line In vitro/in vivo Dose Duration of
experiment

Administration
route

Outcomes Refs

Anti-fibrotic Human circulating fibrocytes In vitro 20 μM 72 h – Decreasing TGF-β1 expression is related to
reduced migration and differentiation of
fibroblasts and subsequent amelioration of
fibrosis

Fu et al. (2015)

Anti-fibrotic Cardiac fibroblasts In vitro 25 μΜ 24 h – Inhibition of ECM deposition and
suppressing migration and proliferation of
cardiac fibroblasts via down-regulation of
Smad2/3, leading to attenuation of fibrosis

Chung et al. (2014)

Cancer BCPAP cell line, derived from a
human papillary thyroid carcinoma

In vitro 12.5, 25 and 50 μM 24 h – Exerting anti-metastatic activity by
suppressing TGF-β signaling pathway,
inhibiting Smad2/3 interaction with Smad4,
and their nuclear translocation, leading to a
diminution in EMT

Zhang et al. (2016)

Cancer MCF-7 cell line In vitro 15 μM 24 and 48 h – Suppressing angiogenesis and metastasis
of cancer cells by down-regulation of TGF-
β, as an upstream modulator of NF-κB
signaling pathway

Mohankumar et al.
(2015)

Cancer – In vivo (animal model of
hepatocellular
carcinogenesis)

100 mg/kg 15 days Orally Suppressing cancer carcinogenesis by
down-regulation of TGF-β, leading to
inhibition of angiogenesis and induction of
apoptosis

Abouzied et al. (2015)

Cancer MDA-MB-468, MDA-MB231, BT-
549, and BT-20 cells

In vitro 20 μM 48 h – Suppressing doxorubicin-mediated EMT
and metastasis of triple negative breast
cancer cells via inhibition of TGF-β1

Chen et al. (2013)

Cancer Colon carcinoma cells HCT116 and
MRC-5 fibroblasts

In vitro 5 μM 4 h – The interaction between cancer cells and
fibroblasts enhances the expression of
TGF-β3/Smad2 to induce EMT.
Administration of curcumin reverses this
axis

Buhrmann et al.
(2014)

Liver diseases – In vivo (animal model of liver
cirrhosis)

400 mg/kg 7 weeks Oral route Improving liver cirrhosis and protection
against thioacetamide-mediated liver injury
via inhibition of TGF-β1 expression

Eatemadi et al. (2014)

Hepatoprotective – In vivo (animal model of bile
duct ligation)

100 mg/kg 4 weeks Oral gavage Improving hepatic fibrosis partially by
reducing the expression of TGF-β1

Eshaghian et al.
(2018)

Liver injury Human LO2 hepatocytes In vitro 5, 10, 20, 30, 50, 70
and 100 μM

72 h – Inhibition of cobalt chloride-mediated liver
injury by suppressing EMT via suppressing
TGF-β/Smad2/3 axis

Kong et al. (2015)

Hepatotoxicity
nephrotoxicity

– In vivo (animal model of lead
toxicity)

200 mg/kg 4 weeks Oral route Alleviation of liver and kidney injuries by
down-regulation of TGF-β1

Soliman et al. (2015)

Renoprotective – In vivo (animal model of
diabetes)

0.2 mg/kg 8 weeks Oral gavage Protecting kidney of DM rats against
inflammation and fibrosis via down-
regulation of TGF-β1

Liu et al. (2017)

Osteoprotective – In vivo (animal model of
periodontitis)

400 mg/kg 15 days Oral gavage Improving collagen and bone repairs via
upregulation of TGF-β

Guimaraes-Stabili
et al. (2019)

Anti-asthmatic – In vivo (animal model of
bacterial-mediated asthma)

2.5 ml at 10 mg/kg 2 h before
antigen
challenge

Intranasal Inhibition of lipopolysaccharide-mediated
asthma partially by reducing expression of
TGF-β

Kumari et al. (2019)
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Loading a combination of curcumin and lithospermi vadix
extract on nanofibrous scaffolds improve wound healing in
DM rats partially by stimulation of TGF-β signaling pathway
(Yang et al., 2019a). Increasing evidence demonstrates that
expression of TGF-β3 undergoes upregulation in scar-less
wound healing (Chen et al., 2005). It is held that TGF-β3
induces Smad2/3 phosphorylation at epidermal cells
compared to dermal cells (Bandyopadhyay et al., 2006). The
TβRII (involved in canonical pathway of TGF-β signaling)
demonstrates differential expression during wound healing.
The Smad anchor for receptor activation (SARA) attaches
into MAD homolog 2 (MH2) of Smad2/3 to regulate nuclear
translocation of Smad in TGF-β signaling pathway (Tsukazaki
et al., 1998). In amelioration of acute burn injury and
accelerating wound healing, Zno-curcumin nanocomposite
loaded in hybrid collagen scaffolds stimulates TGF-β3
signaling pathway by upregulation of TβRII and SARA
(Kalirajan and Palanisamy, 2019). Tissue engineering has
helped us in accelerating wound healing. Using chitosan- and
collagen-scaffold is considered as a promising strategy in wound
healing (Ramasamy et al., 2014). It seems that chitosan can
facilitate wound healing through ameliorating functions of
fibroblasts, macrophages and inflammatory cells (Dai et al.,
2009). In order to promote functionality of scaffold, collagen
can be synergistically used with chitosan, and then, other agents
with capability of improving wound healing can be loaded on
this scaffold (Dai et al., 2004; Gopinath et al., 2004; Sionkowska
et al., 2004). It was shown that curcumin-nanoparticles (CNs)
incorporated in collagen-chitosan scaffold are able to
remarkably improve wound healing via inhibition of TGF-β1/
Smad7 axis to reduce inflammation and pave the road for
wound healing (Rezaii et al., 2019). These examples show the
significance of curcumin for soft tissue regeneration.

Asthma
Asthma is a multifactorial disorder with involvement of
inflammation, pulmonary edema, airflow obstruction and
environmental factors (Jolliffe et al., 2020). This disorder
affects a high number of people worldwide (Engelkes et al.,
2020; Shinan-Altman and Katzav, 2020), resulting in much
attraction into identification its cause and finding novel
treatments. It has been demonstrated that pro-inflammatory
and pro-fibrotic factors such as TGF-β and TNF-α play a
considerable role in asthma pathogenesis (Janulaityte et al.,
2020; Liu and Shang, 2020). Agents with inhibitory impact
on the expression and level of TGF-β are of considerable
importance in asthma therapy. In respect to excellent anti-
inflammatory activity of curcumin, it diminishes expression of
TGF-β as a pro-fibrotic cytokine to abate airway inflammation
and pulmonary edema (Shahid et al., 2019).

Arthritis
The rheumatoid arthritis (RA) is a joint swelling abnormality
that is characterized with synovial inflammation (Mao et al.,
2020). Due to the involvement of inflammatory cytokines in RA,
anti-inflammatory agents have been of interest in treatment of
this disorder. For instance, Brb is able to inhibit RAT
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development via inhibition of IL-21-mediated proliferation of
fibroblast like synoviocytes (Dinesh and Rasool, 2019). A newly
published article also demonstrates that curcumin can ameliorate
RA by targeting inflammation. As a pro-inflammatory cytokine,
the expression of TGF-b undergoes down-regulation in rat
exposed to curcumin (200 mg/kg), leading to amelioration of
inflammation (Wang et al., 2019a).

Diabetes
The diabetic cardiomyopathy (DCM) is a major complication of
both DM type I (DMI) and DM type II (DMII). It seems that
DCM affects 12% of patients with DM and can lead to death
(Bugger and Abel, 2014; Lorenzo-Almoros et al., 2017).
Interestingly, Janus kinase/signal transducer and activator of
transcription (JAK/STAT) is involved in intracellular signaling
pathways and mechanisms such as proliferation, differentiation
and so on by translocation at the route of cytoplasm to nucleus
and affecting down-stream targets (Losuwannarak et al., 2019;
Wang et al., 2020b). The JAK/STAT signaling pathway can
participate in inflammation via stimulation of TGF-β1
(Boengler et al., 2008). In enhancing the ameliorative impact
of metformin in DCM, curcumin down-regulates the expression
of TGF-β1 via inhibition of JAK/STAT signaling pathway, leading

to reducing inflammation and improving DCM (Abdelsamia
et al., 2019). Cardiac fibrosis is a common phenomenon
during DCM. It has been demonstrated that enhanced
accumulation of ECM commonly occurs in cardiac fibrosis.
The collagen type I and III are main elements of ECM (Abdel
et al., 2012; Russo and Frangogiannis, 2016). So, reducing the
level of these components can pave the road into cardiac fibrosis
treatment during ECM. The in vivo experiment on animal model
of DM (rat) demonstrates that curcumin administration
(300 mg/kg) for 16 weeks improves cardiac fibrosis via
decreasing accumulation of collagen type I and II in ECM.
The investigation of molecular pathways reveals that in
attenuation of cardiac fibrosis, curcumin down-regulates TGF-
β1, TβRII and Smad2/3, while it induces Smad7 expression (Guo
et al., 2018).

Infection
The candida albicans is a commensal yeast of genital and intestinal
tracts. The increasing evidence has shown that candida albicans is a
pathogenic yeast in women and can induce vulvovaginal
candidiasis (VVC) in the presence of other diseases such as DM
and immune disorders (Deorukhkar and Saini, 2013). In respect to
immunomodulatory impact of curcumin, its administration can be

FIGURE 3 | TGF-β as a down-stream target of curcumin in different diseases.
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beneficial in VVC treatment. By reducing the level of IL-1β (pro-
inflammatory factor) compared to TGF-β (anti-inflammatory
factor), an amelioration occurs in VVC and paves the road for
efficient treatment of this infection (Rodero et al., 2018).

CLINICAL STUDIES

Nowadays, we are witnessing that a high number of studies
evaluate the efficiency of drugs in both in vitro and in vivo
experiments. However, clinical translation of these studies is of
importance in directing into commercial application. Notably,
the effect of curcumin on TGF-β level has been evaluated in
clinical trials (Panahi et al., 2016). In this study, 117 patients were
enrolled and they were randomly divided into two groups
including placebo (n � 58) and treatment (n � 59). The
treatment group received curcumin daily at the dose of 1 g for
8 weeks. The results of this study revealed that curcumin is
advantageous in treatment of metabolic syndrome. This plant

derived-natural compound is able to diminish serum levels of
pro-inflammatory cytokines, and among them, TGF-β level
demonstrates a remarkable decrease after curcumin
supplementation, showing the potential of curcumin in
treatment of metabolic syndrome. The oral squamous cell
carcinoma (OSCC) is one of the malignancies affecting high
number of people worldwide (Saranath et al., 1999). A variety of
factors contribute to OSCC development, and among them, oral
submucous fibrosis (OSMF) is of importance (Lippman and Hong,
2001; Reibel, 2003). The stimulation of inflammation by
myofibroblasts enhances levels of TGF-β that subsequently,
promotes deposition and generation of ECM (Khan et al., 2012).
A pilot study has been performed on 28 patients (23 males and five
females) to evaluate the efficiency of curcumin in decreasing TGF-β
levels. The treatment group received a mixture of curcumin and
piperine (300mg) twice daily in a period of 9 months. The findings
revealed that curcumin is able to considerably diminish TGF-β
expression by 32.1% (Gupta et al., 2017), showing that curcumin
can be applied as a potent chemopreventive agent.

FIGURE 4 | The protective effects of curcumin in different diseases mediated by its effect on TGF-β signaling pathway.
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We previously discussed curcumin and its effect on TGF-β in
MS treatment. Regulatory T cells (Treg cells) are key players in
MS. Normally, Treg cells contribute to self-tolerance preservation
and regulation of immune responses against infections and
cancer cells (Fujio et al., 2010). Treg cells are capable of
secretion of TGF-β. Noteworthy, TGF-β is vital for
differentiation of Treg cells (Sakaguchi and Sakaguchi, 2005).
In preventing inflammation and immune responses, Treg cells
secrete TGF-β (Wan and Flavell, 2008). So, there is a dual
relationship between Treg cells and TGF-β, so that Treg cells
exert their anti-inflammatory action through TGF-β secrion, and
also, TGF-β is necessary for Treg cell differentiation. Any
impairment in this interaction can predispose to development
of inflammatory diseases such as MS. Recently, nanocurcumin
has been developed for treatment of MS patients. As curcumin
suffers from poor bioavailability, loading it on nanoparticles
promotes its therapeutic effects. Nanocurcumin administration
significantly enhances TGF-β expression and also, its secretion
levels. Based on interaction between TGF-β and Treg cells,
enhanced expression and secretion of TGF-β by nanocurcumin
result in an improvement in function of Treg cells, and alleviation
of MS (Dolati et al., 2019). Table 1 summarizes the therapeutic
effects of curcumin mediated by its effect of TGF-β. Figures 3 and
4 summarize the therapeutic impacts of curcumin mediated by its
effect on TGF-β signaling pathway.

CONCLUSION AND REMARKS

Curcumin is a naturally occurring nutraceutical compound with
excellent therapeutic and biological activities. A look at PubMed
demonstrates that annually, a high number of studies investigate
the protective effects of curcumin against various diseases with a
focus on underlying molecular pathways. In the present review,
we comprehensively discussed the role of TGF-β in protective
effects of curcumin. Noteworthy, curcumin both upregulates/
down-regulates TGF-β signaling pathway in diseases therapy. The
most studied therapeutic effect of curcumin mediated by TGF-β
regulation is anti-fibrotic. Different studies have shown that
curcumin inhibits migration and proliferation of fibroblasts

and their differentiation by down-regulation of TGF-β.
Curcumin inhibits EMT by suppressing TGF-β to ameliorate
collagen synthesis and cell migration during fibrosis. It is worth
mentioning that curcumin inhibits chemotherapy-mediated
fibrosis via down-regulation of TGF-β. In alleviation of
fibrosis, curcumin reduces ECM deposition and accumulation
by targeting TGF-β. The interesting point is that curcumin
inhibits EMT-mediated fibrosis. In this way, curcumin is able
to target down-stream mediators of TGF-β such as PI3K/Akt/
mTOR pathway. Another potential therapeutic effect of
curcumin mediated by its effect of TGF-β is anti-tumor
activity. In spite of great advances in medicine, cancer is still a
big challenge for scientists. Curcumin exerts anti-metastatic
activity via inhibition of TGF-β-mediated EMT. It also inhibits
progression of cancer cells by suppressing CAFs via TGF-β down-
regulation. By inhibition of TGF-β, curcumin protects liver cells
against toxic agents. In neurological disorders and arthritis as well
as asthma, curcumin exerts anti-inflammatory activity via
targeting TGF-β signaling pathway. In accelerating wound
healing, curcumin inhibits TGF-β1/Smad7 axis, while it
induces TGF-β3. It is held that using nanoparticles enhances
bioavailability and capability of curcumin in affecting TGF-β
signaling pathway. In diabetes, fibrosis is a common
phenomenon due to increased accumulation of collagen type I
and III that is inhibited by curcumin via down-regulation of TGF-
β. The important point is that clinical trials have shown that
efficacy of curcumin in regulation of TGF-β in treatment of
metabolic syndrome. All of the studies are in line with
modulatory impact of curcumin on TGF-β in different
diseases. However, more studies are required to clarify
mentioned discussions.
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GLOSSARY
TGF-β, transforming growth factor-β;

DMC, demethoxycurcumin;

BDMC, bis-demethoxycurcumin;

Nrf2, nuclear factor erythroid 2-related factor 2;

HO-1, heme oxygenase-1;

SOD, superoxide dismutase;

NQO1, NADPH quinone reductase 1;

DM, diabetes mellitus;

CAVD, calcified aortic valve disease;

NF-κB, nuclear factor-kappaB;

ER, endoplasmic reticulum;

GRP78, glucose-regulated protein 78;

CHOP, CCAAT-enhancer-binding protein homologous protein;

ATF4, activating transcription factor 4;

UPR, unfolded protein response;

BPA, bisphenol A;

LAP, latency-associated peptide;

TβRII, TGF-β type II;

ALK5, TGF-β type I;

TGIF, tumor growth-interacting factor;

I-Smads, inhibitor Smads;

MAPK, mitogen-activated protein kinase;

PI3K, phosphatidylinositol 3-kinase;

FAPs, fibroadipogenic progenitors;

TRIM33, tripartite motif-containing 33;

ECM, extracellular matrix;

miR, microRNA;

EMT, epithelial-to-mesenchymal transition;

Brb, berberine; Res, resveratrol;

CCl4, carbon tetrachloride;

TIME, carbon tetrachloride;

TME, tumor microenvironment;

CAFs, cancer-associated fibroblasts;

MMPs, matrix metalloproteinases;

PQ, paraquat;

OX, oxaliplatin;

PTHrP, peptide parathyroid hormone-related protein;

BMP-7, bone morphogenic protein-7;

EndMT, endothelial-to-mesenchymal transition;

ADMA, asymmetric dimethylarginine;

DDAH1, dimethylaminohydrolase-1;

NO, nitric oxide;

NOS, nitric oxide synthase;

CP, cisplatin;

ATO, arsenic trioxide;

PD, peritoneal dialysis;

ESRD, end-stage renal disease;

PGE2, prostaglandin E2;

PTGER2, prostaglandin E receptor 2;

IPF, idiopathic pulmonary fibrosis;

PVR, proliferative vitroretinopathy;

RPE, retinal pigment epithelial;

EGCG, epigallocatechin gallate;

MS, multiple sclerosis;

CNS, central nervous system;

SCI, spinal cord injury;

LIDD, lumbar intervertebral disc degeneration;

MH2, MAD homolog 2;

SARA, Smad anchor for receptor activation,

CNs, curcumin-nanoparticles;

RA, rheumatoid arthritis;

DCM, diabetic cardiomyopathy;

DMI, DM type I,

DMII, DM type II;

JAK/STAT, Janus kinase/signal transducer and activator of transcription;

VVC, vulvovaginal candidiasis;

OSCC, oral squamous cell carcinoma;

OSMF, oral submucous fibrosis.
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