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Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of
bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric
isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and
synthesized endogenously in non-ruminants and humans, has been shown to possess
different nutritional properties associated with health benefits. Its ability to bind to
peroxisome proliferator-activated receptor (PPAR) α, a nuclear receptor key regulator of
fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects.
CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of
endogenous PPARα ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA),
likely through a positive feedback mechanism where PPARα activation sustains its own
cellular effects through ligand biosynthesis. In addition to PPARα, PEA and OEA may as well
bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory
actions. Future studies are needed to investigate whether dietary CLA may exert anti-
inflammatory activity, particularly in the setting of neurodegenerative diseases and
neuropsychiatric disorders with a neuroinflammatory basis.
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INTRODUCTION

Fatty acids (FAs) are ubiquitous biological molecules that are used as metabolic fuels, essential
components of cellular membranes and regulators of signaling molecules. Any tissue has its own
peculiar preferential use for FAs: some are more prone for β-oxidation (e.g., muscles), others for the
formation and the processing of bioactive metabolites (e.g., brain), or FA accumulation in the form of
triglycerides (e.g., adipose tissue), or for the regulation and formation of desaturated/elongated
metabolites (e.g., liver) and their release into the bloodstream for their transport to different tissues.
In order to properly carry out all of these metabolic pathways, some sort of intracellular “sensor” is
required, which can selectively drive FA metabolism according to cell tissue requirements and upon
FA tissue availability. To this aim, the “elaboration” or the processing of dietary FAs are important to
fulfill tissue FA requirements. Additionally, even though within a definite range, dietary FAs affect
tissue composition, thereby directly or indirectly (i.e., through their metabolites) regulating FA-
derived signaling molecules.
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Conjugated linoleic acid (CLA), is a group of positional and
geometric isomers of linoleic acid (LA, 18:2 n-6) present in meat
and dairy products of ruminants (Martins et al., 2007), and
endogenously synthesized in non-ruminants and in humans
(Shingfield and Wallace, 2014). The most studied isomers are
c9,t11, the natural isomer mostly present in foods, and t10,c12
mainly present in nutraceutical supplements.

As a consequence, plasma basal level of c,9t11 CLA has been
detected (around 15 nmoles/ml), as well as its metabolites.
Interestingly, following supplementation, the plasma concentrations
of c9,t11CLA and its metabolites were incorporated in a linear fashion
(Mele et al., 2013).

Biological properties exerted by these isomers can be different
or shared, depending on the effect and the tissue (Churruca et al.,
2009) and have been shown to possess different nutritional
properties (Belury, 2002; den Hartigh, 2019). However, some
adverse effects have been described for the isomer c9,t11-CLA,
such as increased levels of C-reactive protein (Smedman et al.,
2005), a small decrease of insulin sensitivity of about 14.4 ±
16.7%, and increased levels of isoprostane, a marker of lipid
peroxidation of 50 ± 40% in obese man (Riserus et al., 2004).
t10,c12 CLA has also been shown to induce a small increase of
isoprostane, compared with the isomer c9,t11 CLA (Tholstrup
et al., 2008). However, the same group demonstrated that the
isoprostane increase was not associated with risk markers of
cardiovascular disease, inflammation, or fasting concentrations of
insulin and glucose (Raff et al., 2008). Notably, isoprostane
increase is suggested to not be ascribed to an ongoing lipid
peroxidation, but rather to its reduced catabolism in
peroxisomes due to a competition with CLA (Iannone et al.,
2009). In order to evaluate potential adverse effects of CLA in
humans, Wanders et al. designed a study on 61 healthy
volunteers, which were administered with 20 g/days of a c9,t11
and t10,c12 CLA isomers 80/20 mixture (Wanders et al., 2010a),
and showed no changes in either lipoprotein profile or in liver and
kidney function (Wanders et al., 2010b).

The numerous and contrasting biological effects reported for
CLA (Benjamin et al., 2015) are probably due to its pleiotropic
properties, and may not be explained by a single biochemical
mechanism (Kennedy et al., 2008), although they are generally
ascribed to its activities on lipid and energy metabolism. CLA
metabolism, extensively studied especially in rodents (Banni et al.,
1995; Belury and KempaSteczko, 1997; Sebedio et al., 1997),
probably influences the metabolism of n-6 polyunsaturated
FAs (PUFA) by competing for their formation (Banni et al.,
1999; Banni, 2002) and enhances the formation of
docosahexaenoic acid (DHA, 22:6 n-3) in experimental
animals (Piras et al., 2015; Carta et al., 2019) and humans
(Murru et al., 2018), by inducing peroxisomal β-oxidation
(Ferdinandusse et al., 2003).

In a study performed on neonatal piglets fed with or without
supplementation of CLA for 16°days, aimed at investigating the
incorporation and metabolism of CLA isomers in brain tissue
(Lin et al., 2011), the authors showed that CLA significantly
affected the biosynthesis of long-chain PUFA in liver and brain
tissues by inhibiting LA elongation/desaturation pathways. The
inhibitory effects were dependent on the reduced activity of delta

6 desaturase/elongase-5 (Δ6D/Elovl-5) and especially the
alternate Elovl-A elongation/desaturation pathway and were
associated with the fat content and the corresponding PUFA
levels in the dietary fat (Lin et al., 2011).

In addition, it has been recently shown that dietary intake of
CLA induced the biosynthesis of oleoylethanolamide (OEA) and
palmitoylethanolamide (PEA) in the liver of obese Zucker rats, an
effect associated to a reduced hepatic lipid deposition (Piras et al.,
2015). OEA and PEA are natural ethanolamides of oleic acid (OA,
18:1 n-9) and palmitic acid (PA, 16:0), respectively. OEA reduces
food intake and body weight gain in obese rats (Fu et al., 2005),
stimulates lipolysis and FAoxidation (Guzman et al., 2004), reduces
the content of triacylglycerol (TAG) in both the liver and adipose
tissue (Guzman et al., 2004). All of these properties may be
attributed to CLA ability to activate specific receptors such as
peroxisome proliferator-activated receptors (PPAR) α, β/δ and
AMP-activated protein kinase (AMPK) (Trinchese et al., 2020).
Despite the high brain expression of PPARβ and its possible role in
regulating the metabolism of FAs and/or cholesterol, in
inflammation processes and antioxidant mechanisms brain (Hall
et al., 2008), very little is known nowadays about howCLA regulates
this nuclear receptor in the healthy and diseased brain.

PPARα is a ubiquitous ligand-activated transcriptional factor
that belongs to the family of nuclear receptors. PPARα regulates
the expression of genes involved in FAmetabolism, β-oxidation in
both mitochondria and peroxisomes, acting as an intracellular FA
sensor and regulating FA trafficking according to cell tissue
requirements upon tissue FA availability. The discovery that
FA are endogenous ligands of PPARα occurred when
Gottlicher et al. (Gottlicher et al., 1992) tested the capability of
FA to activate PPARα upon the observation that the class of
synthetic PPARα agonists fibrates and FA displayed similar
biological activity. Indeed, fibrates and FA induce a
conformational change of the PPARs, triggering the
transcription of genes encoding for metabolic and cellular
processes such as FA β-oxidation and adipogenesis
representing key mediators of lipid homeostasis (Echeverria
et al., 2016). Along with other studies, a bewildering array of
compounds activating PPARα has been discovered (Schoonjans
et al., 1996). However, all the efforts made to demonstrate that
these compounds directly bind to PPARα have failed. This has led
to the hypothesis that these compounds alter FA metabolism,
which indirectly leads to the accumulation of endogenous PPARα
ligands (Gottlicher et al., 1993). A ligand-binding assay has been
developed that facilitates the identification of ligands for PPARα
and PPARβ/δ. It has been found that fibrates and specific FA/
eicosanoids can bind to these receptors. This indicates that FA
simultaneously serve as intermediary metabolites and as primary
regulators of transcriptional networks (Forman et al., 1997).

Even though the comparison of the ligand activity among
different fatty acids is extremely difficult to assess because their
cellular concentration may vary greatly in different tissues, Krey
et al. (1997) using co-activator-dependent receptor ligand assay
(CARLA), screened several FA and found LA and linolenic acids
the most affine to PPARα. Interestingly, Moya-Camarena et al.
found that CLA was by far more potent inducer than LA (Moya-
Camarena et al., 1999).
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PPARα is also a key regulator of inflammatory responses
(Delerive et al., 2001; Korbecki et al., 2019): its anti-
inflammatory effects are primarily mediated through their
abilities (shared with the other PPARs) to trans-repress
(Ricote and Glass, 2007) the functions of many activated
transcription factors, such as the transcription factor nuclear
factor-κB (NF-κB), signal transducers and activators of
transcription (STATs), activator protein 1 (AP1) and nuclear
factor of activated T cells (NFAT) (Daynes and Jones, 2002;
Wahli and Michalik, 2012). Data suggested that these metabolic
and anti-inflammatory effects are not restricted to the periphery
but also occur in the CNS. Therefore, if CLA is an avid ligand of
PPARα, it may as well possess anti-neuroinflammatory
properties. If so, it must be first incorporated into cell tissue
lipids in order to bind to PPARα.

Conjugated Linoleic Acid Incorporation and
Metabolism in Brain Tissue in Rats and
Humans
In peripheral tissues, CLA incorporation is prompt and its
deposition occurs particularly in neutral lipids (NL). CLA and
its desaturated and elongated metabolites are likely
biosynthesized and then transported to extrahepatic tissues, as
evidenced by their high concentration also in plasma and adipose
tissue after dietary CLA administration. Given that modification
of FA profile in the brain by dietary FAs is quite difficult
(Zamberletti et al., 2017; Carta et al., 2019; Carta et al., 2020),
this is also true for dietary CLA.

In rats fed a diet supplemented with 150 mg/day of 9c,11t or
9t,11t or 10t,12c or 10t,12t isomers for six days, only minor
changes in CLA brain concentrations were found (Alasnier et al.,
2002). This might be due to either 1) a preferential incorporation
of CLA in tissue TAG (Banni et al., 2001; Paterson et al., 2002)
and the relative virtual lack of this lipid fraction in brain tissue; or
2) a very selective and steady incorporation of FAs in the brain
(Salem and Niebylski, 1995); or else 3) a rapid CLAmetabolism to
other conjugated FAs in the brain.

Fa and co-workers (Fa et al., 2005) administered a single dose
of CLA (2 g by gavage) to female Sprague–Dawley rats to monitor
its incorporation and metabolization up to 24 h. Confirming
previous research, CLA incorporation was much lower in the
brain than in the other tissues examined. At 24 h CLA isomer
concentrations were both increased by four folds in plasma and
liver and two folds in brain, whereas in adipose tissue 9c,11t
isomer increased six folds and t10,c12 by four folds. However, a
relative high accumulation of CLA metabolites was found,
particularly products of peroxisomal β-oxidation related to the
content of the precursor. The discrete levels of the two CLA
isomers measured in plasma could be ascribed to the different
rates of hydrolyzation of the isomers in chylomicron TAG by
lipoprotein lipase. In the brain, the level of the t10,c12 isomer was
lower than that of the c9,t11 isomer, probably because of the
enhanced metabolism of t10,c12 with respect to c9,t11, as shown
by higher concentrations of t10,c12 metabolites. t10,c12 seemed
to be β-oxidized very efficiently in all tissues, particularly in the
brain. Products of peroxisomal β-oxidation of CLA were detected

in experiments in vivo and in vitro, confirming that CLA could act
as a ligand to brain PPARα (Cullingford et al., 1998; Moreno et al.,
2004).

Interestingly, astrocytes may play a crucial role on CLA
metabolization as confirmed by in vitro studies (Fa et al.,
2005). Cerebellar astrocytes were isolated from 7 days-old
Sprague–Dawley rats and treated with 100 µM of CLA
mixture, were shown to produce relevant concentration of
CLA metabolites. These results suggest that activation of
PPAR-mediated differentiation pathways could be a
mechanism by which CLA could exert beneficial effects on
the brain, especially in disorders characterized by an
impairment of peroxisomal β-oxidation inducing
demyelination of nerve fibers. This is the case of X−linked
adrenoleukodystrophy (ALD), characterized by an abnormal
accumulation of very long-chain FAs (VLCFA), owing to defects
of the ALDP, an integral peroxisomal membrane protein
(Douar et al., 1994), specifically 26:0 which is almost
exclusively β-oxidized in peroxisomes. The increase of
VLCFA intercalated in the membrane may account for
demyelination and increased immunoreactivity (Baes and
Aubourg, 2009). A mixture of glycerol trioleate and glycerol
trierucate, 4:1, Lorenzo’s oil (LO), reduced plasma levels of
VLCFA competitively inhibiting the elongase that forms
VLCFA. However, LO decreased plasma VLCFAs, while it
did not prevent ALD (Di Biase and Markus, 1998), probably
because erucic acid (22:1) may not accumulate sufficiently into
brain lipids due to very low desorption (Poulos et al., 1994;
Hamilton et al., 2007). Cappa and co-workers (Cappa et al.,
2012) treated five ALD women, who were not treated with LO
therapy at the study entry, with a mixture of LO (40 g/day) plus
a mixture of CLA (5 g/day) for 2 months, a dose sufficiently high
to be incorporated in the central nervous system (CNS).
Treatment with the mixture LO + CLA significantly
increased CLA levels to 50 nmol and 1,2 nmol/ml (around
five and two folds vs. the baseline levels) in plasma and CSF
respectively. This approach was based on the hypothesis that
CLA may act synergistically with LO, as CLA is a high-affinity
ligand of PPARα (Moya-Camarena et al., 1999), and might
thereby induce the key enzymes for peroxisomal β-oxidation
(Reddy and Hashimoto, 2001).

CLA may also contribute to the shortening of 24:0 and
ameliorate eicosanoid and oxidative stress product catabolism
by increasing peroxisomal β-oxidation, acting as an anti-
inflammatory and antioxidative factor. In all patients, the LO +
CLA mixture treatment decreased plasma levels of VLCFA, while
increased CLA levels in plasma and cerebrospinal fluid (CSF)
and the docosahexaenoic acid/eicosapentaenoic acid (22:6/
20:5) ratio, an indirect marker of peroxisomal β-oxidation
induced by PPARα (Ferdinandusse et al., 2002). Cappa et al.
study demonstrated for the first time that CLA promptly crosses
the human blood-brain barrier (Cappa et al., 2012). Furthermore,
because there was a correlation between changes of CLA
concentrations in CSF and plasma, this may suggest that the
linear dose-response found in plasma of experimental animals
(Banni et al., 1999) and more recently in humans (Murru et al.,
2018) may also occur in CSF.
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In Vivo Brain CLA Effects in Experimental
Animals and Humans
Although CLA isomers are incorporated and metabolized in the
brain of several species, pieces of evidence about its impact on
brain function are still limited, not being adequately addressed in
both experimental animals and humans.

Different studies evaluated the potential benefits of CLA on
neurodegenerative diseases as Alzheimer’s disease (AD) or other
disorders that may contribute to dementia in elderly people by
modulating the neuroinflammation in the brain. The brain seems
to be exceptionally susceptible to peroxidation, and neurodegenerative
diseases are accompanied by the activation of defensive mechanisms
such as astrogliosis (Rojo et al., 2014), macroautophagy (Filomeni
et al., 2015) and the activation of nuclear factor-E2-related factor 2
(Nrf2), by controlling cell redox homeostasis through the production/
recycling of the intracellular antioxidant glutathione (Calabrese et al.,
2010; Johnson and Johnson, 2015).

Previous studies indicated that CLA improved systemic
antioxidant and detoxifying defences via the activation of the
Nrf2 pathway (Mollica et al., 2014; Bergamo et al., 2016). It is
possible to hypothesize that its dietary supplementation might
alleviate age-dependent neurodegenerative signs as showed in
neuropsychiatric lupus old/diseased MRL/MpJ-Faslpr mice,
considered an animal model of depression because of the
spontaneous development of depressive-like behavior and
autoimmune/oxidative stress signs (Monaco et al., 2018;
Cigliano et al., 2019). In this study, mice (20- to 22-weeks-old)
fed for five weeks with a daily supplementation of synthetic CLA
mixture displayed a reduction of all pathological features in the
brain when compared to young mice or healthy controls. This
finding indicates a preventive effect of CLA against age-associated
neuronal injury and hyper-activation of oxidative stress-activated
compensatory mechanisms (Monaco et al., 2018).

An altered phospholipid (PL) metabolism may be associated
with the loss of synapses and neurons, the formation of senile
plaques and neurofibrillary tangles in AD (Pettegrew, 1989;
Farooqui and Horrocks, 1994) and the decreased membrane
fluidity. All these factors may be associated with functional
and degenerative changes in the brain (Erin et al., 1986). One
of the CLA functions is to alter, mostly decreasing, prostaglandin
formation in a tissue-specific manner (Whigham et al., 2001;
Belury, 2002;Whigham et al., 2002). Arachidonic acid (ARA, 20:4
n-6), the principal FA esterified in sn-2 position of PL, can be
specifically cleaved by phospholipases A2 (PLA2) (Dennis, 1987;
Glaser et al., 1990; Wightman and Dallob, 1990; Farooqui et al.,
2000) and converted into its inflammatory metabolite,
prostaglandins G2 (PGE2), by cyclooxygenases (COX) enzyme
(Miyamoto et al., 1976; Van der Ouderaa et al., 1977; Pagels et al.,
1983; Tanaka et al., 1987; Ujihara et al., 1988). However, in the
brain, ARA is mainly reincorporated into PLs (Rapoport, 1999;
Leslie, 2004), through which can modulate neuronal function by
various mechanisms (Katsuki and Okuda, 1995; Farooqui et al.,
1997). Thus, regulation of PLA2 activity is important to maintain
basal levels of ARA, lysophospholipids and to perform normal
brain function (Farooqui et al., 2000; Phillis and O’Regan, 2004).
The reduction of PLA2 activity in the brain may be involved in

neuronal degeneration (Gattaz et al., 1995; Ross et al., 1998;
Schaeffer et al., 2010). In cholinergic neurons, for instance, PLA2
controls the breakdown of phosphatidylcholine to produce
choline for acetylcholine synthesis, and may contribute to the
cholinergic deficit observed in AD (Blusztajn and Wurtman,
1983; Blusztajn et al., 1987). To date, a few studies concerning
the effects of CLA on the activity and expression of PLA2 in in
vivo tissues, especially in the brain, are available (Akdis et al.,
2000; Eder et al., 2003; Ringseis et al., 2006; Stachowska et al.,
2007). In the hippocampus of Wistar rats fed with a diet high in
CLA, the mRNA levels of pla2 were increased together with the
augmented enzymatic activity of PLA2 enzyme, and a potential
correlation with memory improvement was observed (Gama
et al., 2015).

These discrepant results in the literature suggest the
importance of more studies aimed at a precise explanation of
the relationship between PL metabolism and cognition. Animal
models and clinical studies suggested that the activity and gene
expression of PLA2 may involve the activation of PPARs
(Kummer and Heneka, 2008). In fact, while especially PPARγ

has been implicated in neural cell differentiation and death, as
well as in inflammation and neurodegeneration in astrocytes
(Combs et al., 2000; Heneka et al., 2000; Daynes and Jones,
2002; Xu and Drew, 2007; Bernardo andMinghetti, 2008), PPARα
is involved in acetylcholine metabolism (Farioli-Vecchioli et al.,
2001) and is related to excitatory amino acid neurotransmission
and oxidative stress defence (Moreno et al., 2004). Interestingly,
Sergeeva et al. showed that the expression of PLA2 was inhibited
by PPARα and PPARγ agonists in naive astrocytes, but was
increased by PPARγ activation in lipopolysaccharide (LPS)-
stimulated astrocytes (Sergeeva et al., 2010). Thus, CLA-
induced enhancement of PLA2 gene expression may be
mediated by the activation of PPARγ in the brain and might
depend on the inflammatory status of the tissue (Gama et al.,
2015).

There are few studies examining the mechanisms of CLA
modulation of eicosanoids in the brain (Nakanishi et al., 2003). A
reduction of ARA-derived eicosanoids by CLA is explained by the
inhibition of the level of mRNA, protein, or activity of the COX-1
constitutive enzyme and/or the COX-2 inducible form
(Bulgarella et al., 2001). COX-2 mRNA is elevated in the brain
(Kaufmann et al., 1996; Yasojima et al., 1999) and is associated
with inflammatory responses induced by stimuli including
cytokines, tumor promoters, and growth factors (Seibert et al.,
1995; Cao et al., 1996). Notably, CLA supplementation in
maternal diet during pregnancy significantly reduced PGE2
levels in the cerebrum of mice at weaning, an effect that seems
to persist until adulthood. CLA probably mitigates the toxic
impact of β-amyloid in neurons by decreasing amyloid
precursor protein gene expression and its holoprotein
synthesis (Mattson et al., 1992; Lee et al., 1999; Melchor et al.,
2000).

In female X-linked adrenoleukodystrophy patients, CLA
exerted anti-neuroinflammatory activity (Cappa et al., 2012).
In fact, changes in FA profile, especially in CLA incorporation,
resulted in improved somatosensory evoked potentials and
reduced IL-6 levels in CSF (Cappa et al., 2012). In addition,
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CLA crosses the human placenta to the fetus (Martin et al., 2000;
Elias and Innis, 2001), is present in small amounts in human milk
(McGuire et al., 1997), and is incorporated into infant plasma
lipids (Innis and King, 1999). In the progeny of rat dams fed with
goat milk containing CLA, the anxiety-like behavior was reduced,
physical growth ameliorated and cortical electrical activity
improved, demonstrating the importance of CLA on neonatal
development and health (Soares et al., 2013). Thus, CLA may
favor the neurodevelopment occurring during the embryonic
phase and the initial phases of life (Muller et al., 2015).
Queiroz et al. reported that maternal supplementation with
different CLA concentrations (1% and 3%) during gestation
and lactation in rats positively affected neurodevelopment by
anticipating reflex maturation and improving working memory
in the offspring. These effects might be indirect or through some
metabolites since CLA was found in the brain only in trace
amounts (Queiroz et al., 2019).

CLA can also exert beneficial effects on fat deposition and
body weight and might facilitate decreased food intake and
increased energy expenditure (Wang and Jones, 2004; Salas-
Salvado et al., 2006). To better elucidate the mechanism of the
actions of exogenous CLA administration on the expression of
hypothalamic neuropeptides known to regulate food intake, a
group of researchers demonstrated that direct
intracerebroventricular administration of CLA in rats inhibited
appetite regulation, which was related with the decreased
expression of the orexigenic neuropeptides Y (NPY) and
agouti-related protein (AgRP) (Cao et al., 2007). Remarkably,
PPARα activation has been shown to produce satiety and reduces
body weight gain in wild-type mice, but not in mice deficient in
PPARα (Fu et al., 2003).

Effects of Conjugated Linoleic Acid on Brain
Cells in vitro
Molecular mechanisms underlying the effects of CLA in the CNS
were studied in different neural cell culture models. Astrocytes
represent the most abundant type of glial cells and are responsible
for a large variety of functions in the healthy CNS, including
synaptogenesis, neuronal transmission and synaptic plasticity.
Astrocytes also participate in immune and inflammatory
responses and produce a wide range of factors, such as
cytokines or chemokines that contribute to the inflammatory
state of the CNS after injury or during neurodegenerative diseases
(Colombo and Farina, 2016).

CLA induces a decrease in inflammatory factors in primary
human astrocyte culture, suggesting a potential nutritional role
in modulating astrocyte inflammatory response. Both c9,t11
and t10,c12 isomers determine a downregulation of
proinflammatory cytokine expression, such as tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), and RANTES (regulated
upon activation, normal T cell expressed and secreted), but only
t10,c12 decreases ARA production. Interestingly, CLA exerts
anti-inflammatory activity in astrocytes modifying FA
metabolism as suggested by the increase of the 22:6/20:5 ratio
(Saba et al., 2019), indicating an increased peroxisomal
β-oxidation induced by PPARα.

In AD, amyloid precursor protein (APP) cleavage by
β-secretase (BACE1) generates β-amyloid peptide (Aβ) that
accumulates and form neurotoxic plaques outside the cells.
Alternative processing of APP by α-secretase generates soluble
APPα that has neurotrophic and neuroprotective properties.
Calpain is a Ca2+-dependent protease which activity is
dysregulated in AD, causing an increase of BACE1 expression,
tau phosphorylation, oxidative stress and other excitotoxicity
assaults (Mahaman et al., 2019).

CLA has been proposed as an adjuvant for the treatment and
the prevention of AD since it may control the abnormal
processing of APP. In the human neuroblastoma cell line SH-
SY5Y, CLA induces a decrease of BACE1 expression and an
increase of the extracellular secretion of soluble APPα but does
not affect the levels of APP. These effects of CLA are mediated by
PPARγ activation (Li et al., 2011). Moreover, CLA acts as a potent
and selective µ-calpain inhibitor as reported by Lee and
collaborators (Lee et al., 2013) that showed a neuroprotective
effect of CLA against Aβ and ROS-induced toxicity in SH-SY5Y
cells. Moreover, CLA decreased the levels of proapoptotic
proteins and tau phosphorylation and was able to prevent Aβ
oligomerization and fibrillation.

CLA exerts a neuroprotective effect even in glutamate
excitotoxicity in primary culture of rodent cortical neurons.
Joo and Park showed inhibition of glutamate- and NMDA-
induced cell death by a high concentration of CLA (500 µM)
in cultured rat cortical neurons (Joo and Park, 2003). On the
other hand, Hunt et al. more recently observed similar effects, but
at CLA concentration likely achieved by dietary supplementation.
In fact, 30 µM c9,t11 protects mouse cortical neurons from
glutamate-induced excitotoxic death and increases levels of the
anti-apoptotic BCL-2 protein, while t10,c12 isomer has no
significant effect (Hunt et al., 2010).

Neural stem cells (NSC) and neural precursor cells (NPC) are
self-renewing, multipotent cells that give rise to neurons and glial
cells during development of the CNS, but continuously generate
functional neurons in specific brain regions throughout life.
c9,t11 promotes proliferation in neurospheres derived from rat
NPC and increases cyclin D1 expression, while the isomer t10,c12
had the opposite effect (Wang et al., 2011). Moreover, treatment
with c9,t11 promotes neuronal differentiation of rat NSC,
increasing Tuj-1-positive cells. This effect is due in part to the
increase of the bHLH transcription factor HES6 expression (Okui
et al., 2011).

Several data suggest that also in the brain some of the effects
exerted by CLA can be ascribed to its activation of PPARα. In fact,
we have previously shown that PPARα activation by synthetic
agonists increased PEA and OEA biosynthesis, as we also showed
in liver and muscle in vivo (Melis et al., 2013a; Trinchese et al.,
2018; Trinchese et al., 2020).

In unpublished experiments, we evaluated the impact of CLA
isomers or the mixture of both isomers, compared to synthetic
(WY14643) and endogenous (FA) ligands or antagonist (MK886)
of PPARα, on FA metabolism and biosynthesis of endogenous
PPARα ligands OEA and PEA in midbrain slices. Our
unpublished data showed that CLA is able to increase OEA
and PEA levels in rat midbrain slices incubated for 60 min
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with 100 µM of CLA mixture or pure c9,t11 and t10c12 isomers
(Figure 1). In addition, gavage-treated mice, with a single dose
(90 µg/10 g of body weight) of CLA or olive oil (Ctrl), fed a
standard diet, similarly showed an increase of OEA levels in the
hypothalamus (Figure 2).

Thus, our data strongly suggest that CLA exerts its activity, at
least in part, via PPARα in brain tissues similarly to peripheral
tissues. What are the potential implications of CLA activation of
PPARα in the brain? Does it play a synergistic role with those
exerted in peripheral tissues or may have further potential
benefits? This point is quite relevant, given the pleiotropic
effects of PPARα activation in the brain.

Effect of Peroxisome Proliferator Activated
Receptor Alpha in Brain
PPARα displays a specific pattern of expression in the CNS, with
higher levels in thalamic, mesencephalic and cranial motor nuclei,
the reticular formation and the large motoneurons of the spinal
cord and lower levels in the amygdala, prefrontal cortex, nucleus
accumbens, ventral tegmental area and substantia nigra pars
compacta (Moreno et al., 2004; Fidaleo et al., 2014; Warden
et al., 2016). PPARα is also expressed by ependymal and astroglial
cells, but not by oligodendrocytes (Moreno et al., 2004). Interest
in the role of PPARα in the CNS has been fueled by the evidence
that these nuclear receptors regulate a wide range of physiological
functions in neuronal and glial cells, and might play a role in

higher brain functions including memory consolidation and
modulation of pain perception (Fidaleo et al., 2014). In this
regard, it is noteworthy that the neuronal effects of PPARα
agonists cannot only be explained through transcriptional

FIGURE 1 | Concentrations of palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) analyzed by LC-MS as described in (Piras et al., 2015), in rat horizontal
slices containing the midbrain incubated for 1 h with 100 µM of synthetic and endogenous ligands of PPARα or their vehicle: agonist WY14643 (WY), oleic acid (18:1),
palmitic acid (16:0), linoleic acid (18:2), c9-t11, t10-c12, and amixture of both CLA isomers (CLA), or PPARα antagonist (MK886). Error bars represent SD; n � 6. * denote
significant differences (p < 0.05), vs. control (one-way ANOVA).

FIGURE 2 | Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)
levels analyzed by LC-MS as described in (Piras et al., 2015), in the
hypothalamus of gavage-treated mice, fed a standard diet, with a single dose
(90 µg/10 g of body weight) of CLA (CLA) or olive oil (Ctrl). N � 6. Error
bars represent SEM; * denote significant differences (p < 0.05) vs. control
(one-way ANOVA).
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effects canonically ascribed to PPARα activation but also via rapid
non-genomic mechanisms (Melis and Pistis, 2014; Pistis and
Muntoni, 2017). Unlike genomic effects, which occur with a time
lag of minutes to hours and days, these events take place over a
very rapid time frame (i.e., seconds to a few minutes). This
timescale is considered too rapid to be attributed to the
biosynthesis of mRNA or proteins and is often unaffected by
inhibitors of transcription or translation. Solid evidence that
PPARα exerts rapid non-genomic effects also derives from the
platelets, anucleate cells, where the PPARα ligands fibrates display
antiaggregant effects by binding to and repressing PKCα,
increasing intracellular levels of cAMP levels (Ali et al., 2009)
and inhibiting ADP-stimulated platelet activation (Unsworth
et al., 2018).

In the brain, non-genomic actions have been described in
the cross-talk between PPARα and nicotinic acetylcholine
receptors (nAChRs) (Melis and Pistis, 2014). In midbrain
dopamine neurons, α7nAChRs-induced Ca2+ influx triggers
the synthesis of endogenous PPARα ligands which, in turn,
activate PPARα to induce phosphorylation of β2 subunits of
α4β2* nAChRs (Melis et al., 2010; Melis et al., 2013b). This
interaction is hypothesized to serve as negative feedback to
fine-tune the activity of nicotinic cholinergic transmission in
the dopamine system, as activation of low-affinity α7nAChRs
by an excessive cholinergic tone negatively regulates either
number and/or function of high affinity β2*nAChRs.
Consistently, a PPARα antagonist prevents the inhibitory
effects of an α7nAChR agonist on nicotine reward in a
mouse conditioned place preference paradigm, suggesting
that α7nAChR activation attenuates nicotine place
preference via a PPARα-dependent mechanism (Jackson
et al., 2017). Accordingly, an α7nAChR agonist prevents
nicotine stimulating effects on spontaneous locomotor
activity in mice, a condition in which the activation of
β2*nAChRs expressed on dopamine cells is necessary
(Picciotto et al., 1998) and of PPARα sufficient (Melis and
Pistis, unpublished data). Dysregulation of dopamine-
acetylcholine interplay occurring in pathological conditions
such as stress, drug addiction, schizophrenia and depression,
might benefit from PPARα activation (Melis and Pistis, 2014).
Such PPARα-acetylcholine interaction also takes place in other
brain areas receiving strong impact of cholinergic inputs such
as the sensorimotor cortex (Puligheddu et al., 2013;
Puligheddu et al., 2017). These findings provided the
rationale for using PPARα ligands, i.e., the clinically
approved fibrates, as add-on therapy in neurological
disorders caused by a gain of function of nAChRs, such as
in sleep-related hypermotor epilepsy (SHE, previously named
nocturnal frontal lobe epilepsy, NFLE). Thus, the powerful
actions exerted by PPARα via dual genomic and non-genomic
mechanisms might contribute to strengthening the rationale
for these nuclear receptors as a promising therapeutic target in
the CNS, especially when considering that neuroinflammation
appears to be involved in the pathophysiology of diverse
psychiatric and neurological illnesses (Pistis and Muntoni,
2017; Tufano and Pinna, 2020). In particular, mounting
evidence points to a relationship between neuroimmune

function and neurodevelopment disorders such as autism
and schizophrenia (Martínez-Gras et al., 2011; Chase et al.,
2015; Gottfried and Bambini-Junior, 2018; Müller, 2018) as
well as mood disorders (Scheggi et al., 2016; Pfau et al., 2018;
Tufano and Pinna, 2020). In addition, it has been shown that
fenofibrate reduces neuroinflammation, and blocks
neurodegeneration in vivo (Esmaeili et al., 2016).

CONCLUSION

Intriguingly, while possible beneficial effects of CLA in
peripheral tissues, probably mediated by PPARα activation,
have been the object of several studies in experimental
animals (Trinchese et al., 2020), and humans (Murru et al.,
2018), a few studies on possible positive actions in brain
function and neuroinflammation through PPARα activation
are available. Our findings that CLA increases PEA and OEA
levels in peripheral tissues (Piras et al., 2015) and in mouse brain
(Figure 2), and that this increase occurs in situ in the brain,
similarly to PPARα agonists [Figure 1 and (Melis et al., 2013a)],
supports the hypothesis that PPARα activation induces PEA and
OEA biosynthesis thereby sustaining PPARα activation with a
positive feedback mechanism.

Notably, CLA may indirectly, via sustaining OEA and PEA
biosynthesis, activate receptors other than PPARα, like
GPR119 and TRPV1, which are also implicated in
metabolism regulation and anti-inflammatory activity,
respectively (Godlewski et al., 2009; Ambrosino et al.,
2013). Accordingly, increased dairy product intake is
associated with improved cognitive function in humans
(Crichton et al., 2012; Park and Fulgoni, 2013), whether
these effects may be ascribed to CLA and/or other
components in dairy products has not been elucidated yet.
Thus, future studies should be devoted to investigating
whether dietary CLA may positively modify brain
metabolism, though PPARα activation, and thereby exert
anti-inflammatory activity, particularly in the setting of
neuropsychiatric disorders with neuroinflammatory bases.
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