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For patients suffering with chronic neuropathic pain the need for suitable novel therapies is
imperative. Over recent years a contributing factor for the lack of development of new
analgesics for neuropathic pain has been the mismatch of primary neuropathic pain
assessment endpoints in preclinical vs. clinical trials. Despite continuous forward
translation failures across diverse mechanisms, reflexive quantitative sensory testing
remains the primary assessment endpoint for neuropathic pain and analgesia in
animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive
outcomes is over simplified and can be argued not clinically relevant due to the continued
lack of forward translation and failures in the clinic. The key to developing new analgesic
treatments for neuropathic pain therefore lies in the development of clinically relevant
endpoints that can translate preclinical animal results to human clinical trials. In this review
we discuss this mismatch of primary neuropathic pain assessment endpoints, together
with clinical and preclinical evidence that supports how bidirectional research is helping to
validate new clinically relevant neuropathic pain assessment endpoints. Ethological
behavioral endpoints such as burrowing and facial grimacing and objective measures
such as electroencephalography provide improved translatability potential together with
currently used quantitative sensory testing endpoints. By tailoring objective and subjective
measures of neuropathic pain the translatability of newmedicines for patients suffering with
neuropathic pain will hopefully be improved.
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INTRODUCTION

Neuropathic pain arises from lesions or diseases affecting the somatosensory component of the
nervous system at any level of the peripheral or central nervous system (Jensen et al., 2011).
Neuropathic pain is a distinct clinical description based on common neurologic signs and symptoms
despite a large variety of etiologies (Baron et al., 2010). Sleep disturbances, anxiety and depression are
frequent and severe in patients with neuropathic pain, whilst quality of life (QoL) is more impaired in
patients with chronic neuropathic pain than in those with chronic non-neuropathic pain that does
not come from damaged or irritated nerves (Colloca et al., 2017). Reducing QoL poses a huge
economic burden to the health system and society (Feldman et al., 2017).
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TABLE 1 | Summary of clinical and preclinical primary efficacy assessment endpoints for translation of current licenced medicines for painful diabetic peripheral
polyneuropathy.

Licenced/recommended
medicine year of approval
in Europe daily dose (mg)

RCT Primary and
secondary endpoints

Preclinical
neuropathic pain

model

Preclinical
efficacy MED

Primary stimulus evoked
sensory endpoints

Translation

aPregabalin
Lyrica®, (2004)
300–600 mg/day

↓ Pain intensity/quality
(weekly SF-MPQ VAS score)
↓ sleep interference score
Freynhagen et al. (2005),
Rosenstock et al. (2005),
Richter et al. (2005)

STZ (50 mg kg ip rat) 3 mg kg po
10 mg kg po

↓VFH (static allodynia)
↓VFH (Dynamic allodynia)
Field et al. (1999)

aForward

Gabapentin
Neurontin®, (2002)
900–3,600 mg/day

↓ Pain intensity (weekly 11-
point Likert score)
↓QoL, ↓sleep interference score
Backonja (1998), Morello et al.
(1999), Simpson et al. (2001)

STZ (50 mg kg
ip rat)

CCI (rat)
SNL L5/6 (rat)

10 mg kg po,
10 μg i.t.
30 mg kg po, 1 μg
i.t.
30 mg kg po,
100 mg kg ip
100 mg kg ip

↓VFH (static allodynia)
↓VFH (Dynamic allodynia)

↓VFH (static allodynia)
↓PWL (cold water allodynia)
↓VFH (static allodynia)
Hunter et al. (1997), Field et al.
(1999), Field et al., (2002)

Back/Forward
(Bidirectional)

Amitripyline
25–100 mg/day
(recommended)

↓Pain intensity (weekly 11-point
Likert score, VAS)
↓sleep interference score/daily
activities
Max et al. (1992), Biesbrock et
al. (1995), Morello et al. (1999)

STZ (50 mg kg
ip rat)
CCI (rat)
SNL L5/6 (rat)

0.5 mg kg po

1.5 mg kg sc
10 mg kg
ip, 60 μg i.t.,
100 nmol ipl

↓VFH (static allodynia)
No effect (Dynamic allodynia)
↓tonic pain score
↓PWL (Thermal hyperalgesia)
No effect (static allodynia)
Ardid and Guilbaud (1992), Field et al.
(1999), Esser and Sawynok (1999)

Back/Forward
(Bidirectional)

Duloxetine
Cymbalta® (2005)
60–120 mg/day

↓Pain intensity (weekly 11-point
Likert score)
↓QoL No change in dynamic
allodynia
Wernicke et al. (2006),
Goldstein et al. (2005), Raskin
et al. (2006)

STZ (50 mg kg
ip rat)
STZ (200 mg kg
ip mouse)
SNL L5/6 (rat)

20 mg kg po
20 μg i.t.
20 mg kg po

20 mg kg po

↓VFH (static allodynia), ND (Dynam-
ic.allodynia)
↓PWL (Thermal hyperalgesia)

↓VFH (static allodynia)
Iyengar et al. (2004), Mixcoatl-Zecuatl
and Jolivalt (2011), Kuhad (2009)

Back/Forward
(Bidirectional)

aRecommended first-line treatment, RCT (randomised clinical trial), MED (minimum effective dose), STZ (streptozocin), CCI (chronic constriction injury), SNL (spinal nerve ligation), VFH
(Von Frey hair), PWL (pawwithdrawal latency), ND (not determined), i.t. (intrathecal), po (oral), ip (intraperitoneal), visual analogue scale (VAS), ipl (intraplantar) of the Short-FormMcGill Pain
Questionnaire (SF-MPQ), QoL (measures of quality of life (Short Form–36 Quality of Life Questionnaire and Profile of Mood States)), Equivalent therapeutic human doses are not
determined in preclinical studies as drug plasma concentrations are not reported.

FIGURE 1 | Integrated bidirectional research approach for neuropathic pain: Linking animal and human biology data. RCT (randomised clinical trial), FTIH (First time
in human), TV (target validation), STZ (Streptozocin), PDN (painful diabetic neuropathy), PK (Pharmacokinetic), VAS (Visual analogue scale), TCA (tricyclic
antidepressant), SNRI (serotoninnorepinephrine reuptake inhibitor). Bidirectional research illustrates the targets/mechanisms that have successfully translated forward
(from preclinical research), back (from clinical research), under development (e.g. α2δ1, blue) and failed (e.g., Neurokinin 1 (NK-1), red) novel targets/mechanisms
identified from preclinical research.

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 11 | Article 6149902

Fisher et al. Translatable and Bidirectional Research

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Neuropathic pain is mechanistically heterogenous encompassing
degrees of neurogenic sensitization, deafferentation and/or
neurogenic inflammation. Signs and the symptoms of
neuropathic pain include allodynia, hyperalgesia and paresthesia.
One mechanism can underlie many different symptoms, the same
symptom in two patients may be caused by different mechanisms,
more than one mechanism can operate in a single patient, and these
mechanisms may change with time (Woolf and Mannion, 1999).
Many mechanisms are also still to be elucidated. Notably, without
biomarkers that predict neuropathic pain or identification of the
underlying mechanism(s), the optimum treatment strategy for the
patient’s neuropathic pain cannot easily be selected or identified
preclinically for successful translation.

Severity of neuropathic pain is a primary predictor of the
negative health impact on patients (Doth et al., 2010). Hence the
goals of therapy include improvement in pain control, coping skills
and restoration of functional status. Clinically meaningful chronic
neuropathic pain relief is measured in randomised clinical trials
(RCTs) as a significant reduction in reported pain intensity
numerical rating score (NRS) encompassing spontaneous and
stimulus evoked pain (Table 1) (Finnerup et al., 2015).
Pharmacological treatment represents the main option for
managing chronic neuropathic pain with moderate efficacy
based upon number needed to treat (Colloca et al., 2017). The
anticonvulsant drug, pregabalin (Lyrica®) is the most extensively
studied drug by far, with clinical studies evaluating almost 12,000
participants across eight different neuropathic pain conditions
(Derry et al., 2019). Pregabalin at daily oral doses of
300–600 mg can provide at least 50% pain intensity reduction
in around 3 to 4 out of 10 people compared with 1–2 out of 10 for
placebo in postherpetic neuralgia and painful diabetic neuropathy
patients. Given that half of those treated with pregabalin will not
achieve worthwhile pain relief indicates there is significant scope
for improvement (Derry et al., 2019).

Current systemic and topical pharmacological treatments of
neuropathic pain have substantial limitations in terms of the level
of efficacy provided and/or the side effect profile. This means the
management of neuropathic pain is unsatisfactory in both
preventing its development and in halting or modifying its
progression (Finnerup et al., 2015). A key to developing much
needed new treatments to better manage neuropathic pain is to
understand the pharmacology of novel molecules to aid their
translation from preclinical species to efficacy and safety in
patients. Given that there has been no translation of a new
medicine for neuropathic pain since Qutenza (capsaicin 8%
patch) in 2009 (Baranidharan et al., 2013) one consideration is
to look more closely at the way in which neuropathic pain is
modeled and measured preclinically compared to human studies
(Percie du Sert and Rice, 2014; Mogil, 2019a).

The primary focus of this review is to examine the industry standard
measures of neuropathic pain and analgesia in animal models and
patients in combination with how bidirectional research is
implementing ways to measure spontaneous ongoing chronic pain
and associated QoL in animals to further improve forward translation.
As will be discussed, currently industry standard markers of
neuropathic pain in humans and animals are distinct and
subjective. In humans this is not a problem as pain is an individual

experience and subjective markers such as questionnaires accurately
measure a human’s pain level, although can lead to significant
variability. However industry standard stimulus evoked pain
markers in animals, such as static allodynia (von Frey) are often a
poor representation of the animal’s spontaneous neuropathic pain and
rely onhuman interpretation. Translatability between these distinct and
subjective industry standard markers is poor as shown by the lack of
current translational success. An improvement would be to
compliment simple stimulus evoked markers with an objective
marker in animals such as burrowing which removes human
subjectivity, but cannot be directly translated to a marker in
humans. An ideal marker for neuropathic pain (and chronic pain
per se) is likely one that is objective in both humans and animals and
can be directly translated between the two, such as data from
Electroencephalography (EEG) recordings, which can be conducted
in both species with no human subjectivity involved.

BI-DIRECTIONAL TRANSLATION OF
CURRENT TREATMENTS FOR
NEUROPATHIC PAIN
Most neuropathic pain conditions are clinically managed with a
choice of four licenced or recommended medicines,
amitriptyline, duloxetine, gabapentin, or pregabalin whilst
carbamazepine is specifically licenced for trigeminal neuralgia
(National Institute for Health and Care Excellence, 2013). These
medicines (except pregabalin) were originally licenced for other
therapeutic indications (gabapentin for epilepsy, duloxetine and
amitriptyline for depression) and successfully back translated
(this term is used interchangeably with reverse translated) from
anecdotal clinical use in RCTs in neuropathic pain patients
followed by preclinical efficacy in animal models.

Painful peripheral diabetic neuropathy is a widely studied
condition in RCTs to assess neuropathic pain therapies as it is a
leading cause of chronic peripheral neuropathic pain affecting
between 25 and 50% of patients (Abbott et al., 2011; van Hecke
et al., 2014). To date, there are 39 phase 2/3 RCTs in the
United States/United Kingdom in patients with painful peripheral
diabetic neuropathy filed on clinicaltrials.org which represents 24%
of the total number of RCTs for investigating peripheral neuropathic
pain. Pre-diabetes and diabetes now affect 316 million and 387
million people worldwide, respectively, and it is estimated that at
least 60–70%will develop associated neuropathy complications, with
prevalence increasing with duration of diabetes (Feldman et al.,
2017). Furthermore, there is a positive correlation between diabetic
neuropathy severity, poor glycaemic control with risk and intensity
of neuropathic pain (Themistocleous et al., 2016).

We have summarized in Table 1 pivotal clinical (RCTs) and
preclinical studies supporting the approval of these four licenced
medicines for painful diabetic peripheral neuropathy,
highlighting successful bidirectional translation of duloxetine,
amitriptyline and gabapentin and forward translation of
pregabalin. Duloxetine is a selective norepinephrine and
serotonin reuptake inhibitor that in 2004 was the first
medicine approved for painful diabetic neuropathy in the
United States. This was based upon reducing spontaneous
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pain intensity at 60 mg once or twice per day and reversal of
nociception and static mechanical allodynia in rodent face
validity models of peripheral neuropathic pain. A few RCTs
reported significant improvement in spontaneous neuropathic
pain with amitriptyline treatment supported by the reversal of
thermal hyperalgesia in a rodent spinal nerve ligation and
subsequent back translation reversing static mechanical
allodynia in a rodent STZ type-1 diabetes model.
Amitriptyline has since been the most prescribed of the
tricyclic agents for diabetic neuropathic pain for the past two
decades. The gabapentinoid medicines, gabapentin and
pregabalin are calcium channel α2δ-1 and α2δ-2 subunit
ligands that were first approved in Europe in 2002 and 2004,
respectively. Preclinical efficacy of gabapentin in rodent models
of mono-neuropathic pain supported the subsequent clinical
observations (Table 1). Following this, preclinical studies
demonstrated a superior preclinical profile reversing static and
dynamic (light moving stimuli) mechanical allodynia in a rodent
STZ type-1 diabetes model, compared with amitriptyline
(Table 1). Furthermore, intrathecal administration of
gabapentin was 10-fold more potent against dynamic vs. static
mechanical allodynia. Given that dynamic allodynia is the most
troublesome evoked sign in subgroups of neuropathic pain
patients it was considered to be an important and differentiating
stimulus evoked sensory endpoint in preclinical poly-neuropathic
pain models. However, the fact that gabapentin and amitriptyline
have equivalent clinical efficacy in reducing diabetic neuropathic
pain (Morello et al., 1999) indicates this superior gabapentin
preclinical efficacy does not translate in the clinic. Another aspect
where back translation is not straightforward is the delayed-onset
analgesia observed clinically, for example a titration phase of
1–2 weeks is required with gabapentin, while acute gabapentin
analgesia is typically observed in rodents (Backonja, 1998; Field
et al., 1999). Whiteside’s group compared drug exposure in humans
with exposure in a rat spinal nerve ligationmodel demonstrating this
mono-neuropathicmodel, despite lacking face validity (patients with
mono-neuropathies represent only 9% of trials (Finnerup et al.,
2005)), back translates and predicts efficacious exposure in humans
for gabapentin and duloxetine (Whiteside et al., 2008). The proven
forward and back translation of these clinically effective drugs
demonstrated confidence in the validity of induced animal
models of neuropathic pain, similarity between rat and human
pain biology and relevance of stimulus evoked sensory measures
providing clinically relevant data for diverse mechanisms.

The gold standard treatment pregabalin, is sometimes
portrayed as an exemplar forward translational success story
for the use of animal models in the neuropathic pain field. As
seen in Table 1, rodent STZ type-1 diabetic models were
employed in the preclinical development of pregabalin,
providing key decision-making allodynia efficacy data for
subsequent clinical trials. Pregabalin requires lower doses
preclinically and clinically, in contrast to gabapentin (Table 1),
as it has a linear, dose proportional absorption in the therapeutic
dose range (Freeman et al., 2008). Of note, both drugs require no
titration (single dose) preclinically. However, an area of potential
bias is that the findings from these preclinical studies only started
to appear (Field et al., 1999) at approximately the same time as the

pivotal clinical trials of gabapentin (Backonja, 1998; Morello et al.,
1999). Irrespective of whether pregabalin is viewed as an
exemplar of forward and/or back translation, it is undoubtedly
a success story that reinforced the clinical precedence of a novel
target α2δ, much needed by the neuropathic pain field. What
makes this story evenmore intriguing is the discovery of the novel
mechanism (α2δ-1 and α2δ-2) only one year earlier (Gee et al.,
1996) and the subsequent discovery that the analgesic efficacy of
pregabalin and gabapentin is mediated by the α2δ-1 sub-unit of
voltage gated calcium channels (Field et al., 2006). Mirogabalin, is
a potent and selective α2δ-1 ligand with a wider safety margin and
superior long lasting efficacy reversing static mechanical
allodynia in a rat STZ type-1 diabetes model, compared with
pregabalin (Domon et al., 2018). Mirogabalin has also shown
promising results on reducing daily pain scores and sleep
interference in RCTs for the treatment of diabetic
peripheral neuropathic pain (Vinik et al., 2014; Merante
et al., 2017; Baba et al., 2019) indicating that a more
selective approach may well offer patients a safer and more
efficacious option in the future.

The chemical ingredient in chilli pepper, capsaicin, has been
available since the 1980s in various formulations as lotions,
creams or patches in low concentrations of 0.025–0.075% over
the counter to treat neuropathic pain, such as diabetic
neuropathy. Clinical efficacy therefore was recognized long
before identification of its molecular target in 1997 (Caterina
et al., 1997). Capsaicin selectively and potently activates the
transient receptor potential cation channel subfamily V
member 1 (TRPV1) ligand gated channels on nociceptive
fibers leading to TRPV1 desensitization (Caterina et al., 1997).
Derry and Moore (2012) concluded that low-concentration
topical capsaicin had no clinical efficacy beyond that of
placebo but a single application of a prescription strength high
concentration capsaicin patch (Qutenza, 8%) is clinically effective
in postherpetic neuralgia and diabetic painful neuropathies
(Burness and McCormack, 2016; Vinik et al., 2016) with
additional QoL improvements (Derry et al., 2017). However,
compliance can be low due to the erythema and burning
sensation experienced on topical application.

Forward Translation (Bench to Bedside) of
Neuropathic Pain (Figure 1)
For the past two decades rational drug discovery efforts have
been mechanistically driven addressing targets arising from a
better understanding of the mechanism of existing analgesic
drugs e.g. TRPV1 (capsaicin patch), α2δ-1 (gabapentinoids) or
novel mechanisms arising from biological, human
pathophysiological, or genomic studies e.g. Nav1.7,
Neurokinin 1 (NK-1) (Figure 1). Despite common
neuropathic pain symptoms patients are generally recruited
for trials on disease stratification (Finnerup et al., 2015).
Similarly, disease or mechanism based animal models that
more closely recapitulate the human neuropathic pain clinical
condition (face, construct and predictive) are preferred for
bidirectional translation. For example, in the last two decades
diabetes research has focused on glucose and the STZ type-1
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diabetic rat as the preclinical model to understand diabetes
disease pathogenesis including painful peripheral poly-
neuropathy (Lenzen et al., 2008; Table 1; Figure 1), despite
evidence that different mechanisms underly type-1 and type-2
forms (Callaghan et al., 2012).

Figure 1 illustrates the integrated bidirectional research
approach of animal and human biology for rational target/
mechanism identification, drug discovery and development for
neuropathic pain conditions. Knowledge related to the anatomy,
physiology, pharmacology, molecular biology, and genetics of
pain conditions in experimental animals (typically rodents) or
humans (e.g. erythromelalgia) informs pain model selection for
target validation, engagement and evaluation of efficacy using
clinically relevant endpoints. Bidirectional research in Figure 1
illustrates the target mechanisms that have successfully translated
both forward (from preclinical research) and back (from clinical
research).

There have been few forward translation successes (see
Figure 1). Ziconotide (Prialt, licenced in 2005) is the
synthetic form of an ω-conotoxin peptide derived from
Conus magus, a cone snail SNX-111 that blocks the N-type
(CaV2.2) neuronal voltage gated calcium channel. Ziconotide
produced striking analgesia in reflexive pain animal models and
RCTs for cancer and AIDS related neuropathic pain when
administered intrathecally (Malmberg and Yaksh, 1995;
Staats et al., 2004). Despite clinical precedence for this target

there has unfortunately been limited progress in the
development of selective small molecule orally bioavailable
N-type calcium channel blockers (Jurkovicova-Tarabova and
Lacinova, 2019).

There is potential for translation of novel neuropathic pain
mechanisms from human biology target validation (Figure 2,
e.g., Nav1.7) although the number of mechanisms validated in
this way is likely to be extremely limited. The sodium channel
(Nav1.7) is a neuropathic pain molecular mechanism with
conceivable success because of the rare mutations in the
Nav1.7 channel identified in patients with inherited
erythromelalgia (Nassar et al., 2004; Cox et al., 2006; Minett
et al., 2012; Geha et al., 2016), a subset of idiopathic small fiber
neuropathy patients and is supported by target validation in
genetic animal models of neuropathic pain (Grubinska et al.,
2019). A state dependent non-selective Nav inhibitor,
Raxatrigine (a.k.a. CNV1014802, BIB074, Deuis et al., 2016)
has forward translated in a phase II clinical trial of patients with
painful lumbosacral radiculopathy demonstrating that it is well
tolerated and produces a remarkable reduction in pain
compared to placebo (Versavel, 2015). Furthermore Nav1.7
gain of function mutations give rise to a diabetes induced
increased sensitivity of dorsal root ganglion neurons
(Hoeijmakers et al., 2014), more severe burning pain and
greater sensitivity to pressure stimuli during QST (Blesneac
et al., 2018). Hence, targeting this channel may offer hope for

FIGURE 2 | Mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. *Primary endpoint, RCT (randomised clinical trial), EEG
(electroencephalography), QoL (quality of life), VFH (von Frey hair), Static (static mechanical allodynia).
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reducing pain severity in these different patient groups.
However, since Biogen, Xenon and Pfizer have all
discontinued research on this target after failure in phase II
clinical trials it would be wise to cautiously view Nav1.7 as a
panacea to pain (McDonnell et al., 2018).

Despite rational drug discovery efforts identifying numerous
novel mechanisms that are efficacious and tolerable in industry
standard preclinical models of neuropathic pain, these have all
subsequently failed in the clinic (Figure 1, NK-1 antagonists,
NMDA antagonists, Glycine antagonists, Glial-modulators,
COX-2 inhibitor, 5HT3 antagonist, TRPV1 antagonist,
NMDA antagonist, cannabinoid agonist, for recent review see
(Yezierski and Hansson, 2018)). Many of these target
mechanisms failed in the clinic due to dose limiting toxicity
(e.g., cannabinoid agonist, NMDA antagonist, TRPV1
antagonist) and hence should not necessarily be permanently
abandoned, for example TRPV1. The clinical development of
the highly selective TRPV1 antagonist, AMG-517 was halted by
hyperthermic responses in healthy volunteers, believed to be
modulated by a peripheral on target mechanism of action
(Gavva, 2009). However, recent reports (DelloStritto et al.,
2016) indicate that TRPV1 function is rapidly downregulated
peripherally in diabetes and our findings have shown the
hyperthermic side effects of the TRPV1 antagonist, ABT-102
are absent at an analgesic dose in a rat STZ type-1 diabetes
neuropathic pain model (Pritchard et al., 2016). The next step
will be to demonstrate this concept in a type-2 animal model of
diabetes, opening the potential for the safe use of a TRPV1
antagonist to treat neuropathic pain in the wider diabetic
population. Given the lack of forward translation of
numerous targets (Pop-Busui et al., 2017) and the established
clinical effectiveness of capsaicin patch for painful diabetic
neuropathy (back translation, Figure 1), this cannot come
soon enough.

In contrast other novel mechanisms, such as substance P (NK-
1) antagonists have failed in the clinic despite convincing evidence
of analgesic efficacy in animal models. NK-1 receptor antagonists,
such as the antiemetic aprepitant at clinically safe and tolerable
doses, occupying and engaging >90% of its central target are
inefficacious in relieving ongoing pain in postherpetic neuralgia
patients despite convincing analgesic efficacy in animals (Rice and
Hill, 2006). The lack of forward translation from animal to patients
may be explained by species differences in 1) the pathophysiology
of substance P and 2) pain measurements of clinical spontaneous
pain reduction vs. stimulus evoked sensory endpoints studied
preclinically. Differences in the distribution and expression of
NK-1 receptors between species is observed at supraspinal sites
(pain perception and conscious sensation) and not the dorsal horn
of the spinal cord (nociception) (Hill, 2000). An upregulation of
supraspinal NK-1 receptors in certain disease states e.g.
neuropathic pain, may imply that an even higher receptor
occupancy (>90%) is needed for clinical efficacy compared with
emesis. Further, clinical spontaneous pain is a conscious sensation
that relies on supraspinal cortical processing (Borsook and Becerra,
2006) whilst preclinical stimulus evoked sensory withdrawal
reflects a spinal cord reflex activation (Lascelles and Flecknell,
2010). This may imply that the site of pain perception from

preclinical to clinical has been inadequately assessed for this
mechanism. It is essential to consider whether this mismatch
between preclinical and clinical primary pain assessment
endpoints is a key contributor to the high number of false
positives and lack of forward translation across mechanisms
(Figure 2) (see next section). This points to a need to improve
bidirectional research i.e. “bedside to bench” to further the clinical
relevance of pain assessment in animals and improve “bench to
bedside” forward translation.

INDUSTRY STANDARD MEASUREMENTS
OF NEUROPATHIC PAIN FOR THE
DEVELOPMENT OF ANALGESIC
TREATMENTS (FIGURE 2)

Randomised Clinical Trials (RCTs)
Patients experiencing chronic neuropathic pain are frequently
troubled by more than just their pain; comorbid conditions
commonly accompany or are caused by the pain. Most
notable are sleep disruption and depression/anxiety therefore,
diagnosis relies on the patient’s subjective rating of the unpleasant
emotional and physical sensations (Figure 2). The predominant
clinical feature of most neuropathic pain conditions is
spontaneous pain (either continuous and/or paroxysmal) as
opposed to evoked pain, hence RCTs focus on endpoints
relating to verbal self-reporting (visual analogue scales (VAS))
of spontaneous pain intensity reduction (Figure 2; Table 1).
Visual analogue or numerical pain scales used in human subjects
are a self-reporting system (Edwards and Fillingim, 2007) that is
individual, typically influenced by comorbidities and cannot be
objectively verified (Farrar, 2010). Sensory gain (mechanical/
thermal hyperalgesia and allodynia) is much less frequently
reported in neuropathic pain conditions; ranging from 24–33%
and is rarer than loss of function symptoms like numbness (42%)
(Baron et al., 2017). Hence, reflexive endpoints are infrequently
measured in RCTs (Baron et al., 2017), although several recent
studies have profiled patients based on individual sensory
characteristics (Rice et al., 2018). Self-reporting by its nature
poses an inherent subjectivity. Therefore, within the clinical
setting there is also a clear need to improve trial outcome
measures. Patient stratification, based on sensory profiling and
subgrouping, has been one such proposal (Baron et al., 2017)
which seems reasonable based on the appearance of sensory gain
vs. loss of function symptoms in neuropathic pain conditions.
Since individual profiling of patients is labor intensive the ideal
scenario would be an objective biomarker of neuropathic pain
rather than a subjective reflexive endpoint.

Industry Standard Stimulus Evoked Sensory
Endpoints Primary Pain Endpoints in
Preclinical Research
The industry standard primary measure of pain preclinically is
standardized evoking (heat, cold, or mechanical) stimuli
delivered by an experimenter to assess loss and gain of
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function of different afferent fiber classes (Aβ, Aδ, and C fibers)
(Backonja et al., 2013) (Figure 2). Primarily analgesic efficacy is
based upon the significant reduction of hyper-sensory
phenomena (e.g., allodynia, hyperalgesia) whilst sensory loss
(e.g., deafferentation, anesthesia dolorosa) rarely so (Rice et al.,
2008). This is opposite to the clinical scenario where hypo-
sensory usually dominate over hyper-sensory symptoms (e.g.,
painful diabetic neuropathy/radiculopathy) (Baron et al., 2017).
Moreover, the hyper-sensory “pain” responder rate is greater
than 70% in preclinical models e.g. STZ type-1 diabetes model
(static mechanical allodynia) (Field et al., 1999; Fisher et al.,
2015) in contrast to only 20–30% in patients (Baron et al., 2017).
Of note, Field et al. (1999) demonstrated the prevalence of
dynamic mechanical allodynia (60%) was more in line with the
debilitating clinical complaint and differentiated gabapentinoid
efficacy over amitriptyline which may be a more clinically
relevant reflexive endpoint, although it is rarely measured
preclinically or clinically.

Stimulus evoked sensory endpoints are robust, reproducible, high
throughput measures, with face (although not in terms of
prevalence) and predictive validity (back translation, Table 1).
However, chronic neuropathic pain is a system based subjective
experience that relies on cortical activation and motivational-
affective aspects (Melzack and Casey, 1968; Borsook and Becerra,
2006), which is farmore complex than a reflex in response to sensory
stimulation (spinal or spinal–brainstem–spinal pathways).

Restricting preclinical evaluation of pain and analgesia to
exclusively subjective, reflexive outcomes is both oversimplified
and can be argued not clinically relevant given the continuous
lack of forward translation across diverse mechanisms (Figure 1,
lack of face and predictive validity). Despite the unsustainable high
forward translation attrition rate stimulus evoked sensory endpoints
remain the primary decision-making method of neuropathic pain
assessment in animals and highlights the necessity to address this
clear mismatch of methodological assessment of neuropathic pain in
animals and humans.

THE MISMATCH PROBLEM

Preclinical scientists and clinicians have become acutely aware of
these methodological mismatch issues and consequently it is
becoming more conventional to consider markers in patients
that can help design more clinically relevant pain assessment tests
in animals (bidirectional research). Since the presence or absence
of analgesia in animals can only be inferred from observations
made by humans (surrogate behaviors, objective measurements)
and cannot be self-reported (Percie du Sert and Rice, 2014) this
presents a challenge. Many research groups are now looking to
improve the markers used preclinically and clinically with the
goal of producing markers that can successfully forward translate
preclinical candidates to human clinical trials.

FIGURE 3 | Multiple preclinical neuropathic pain assessment endpoints in development to improve translatability of preclinical to clinical research. *Primary
endpoint, RCT (randomised clinical trial), EEG (electroencephalogram), QoL (quality of life).
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ALTERNATIVE NEUROPATHIC PAIN
ASSESSMENT ENDPOINTS TO IMPROVE
TRANSLATABILITY BETWEEN ANIMALS
AND HUMANS (BIDIRECTIONAL
RESEARCH) (FIGURE 3)

Alternative preclinical assessments can be used to infer signs of
not just the classical reflex hypersensitivity but also spontaneous
pain measurements along with the other comorbidities such as
anxiety, depression, sleep issues and cognitive deficits so often
found associated with chronic pain patients (Figure 3). Here we
examine evidence from preclinical and clinical studies focusing
on how bidirectional research is addressing current research gaps
and helping to develop greater translational, predictive, and more
clinically relevant neuropathic pain assessment endpoints. We
critique the validity of these alternative behavioral endpoints of
spontaneous neuropathic pain and associated comorbidities
(QoL, affective and cognitive measures) and how translational
techniques, such as EEG, present potential developments in the
field for measuring objective signatures of neuropathic pain.

Spontaneous Pain and Daily Living (QoL):
Assessment Questionnaires (Patient and
Companion Animals) Correlation to Efficacy
Doses
Because pain is an internal, private experience, self-report
remains the gold standard for its measurement in the clinic
(Fillingim et al., 2016) and the development of easy to use
questionnaires, based mainly on self-report of symptoms, has
improved diagnosis and management. Two types of
questionnaires (screening and assessment) have been validated,
rapidly translated and revalidated in several languages (Attal
et al., 2018). A number of pain scales are implemented in the
clinic for the assessment of the different components of
neuropathic pain (for reviews see (Cruccu et al., 2010;
Hjermstad et al., 2011; Fillingim et al., 2016; Attal et al., 2018)).

An excellent example of cross-species use of assessment tools
has been the use of the numerical rating scale (NRS) in the
assessment of pregabalin efficacy in dogs. In human clinical trials,
pregabalin efficacy in peripheral neuropathy has been evaluated
with success using patients’ daily pain scores (Jenkins et al., 2012).
In the first RCT reporting the efficacy of pregabalin in dogs with
neuropathic pain, Sanchis-Mora et al. (2019) used the owners
“daily pain assessment” with a NRS as the primary efficacy
endpoint and stimulus evoked sensory endpoints as the
secondary endpoint. Owners assessed spontaneous
vocalisations, phantom scratching episodes and exercise
impairment (spontaneous behaviors previously validated using
VAS (Plessas et al., 2012)) to score the pain severity daily (from 0
no pain to 10 worse pain). Owners’ daily NRS scores were
significantly lower during the pregabalin treatment phase
compared to placebo. In this study, the daily owner
assessment NRS appeared to be a reliable and reproducible
assessment tool. An advantage of daily NRS scoring was that
potential bias from assessing isolated timepoints was avoided

(Colloca et al., 2016; Sanchis-Mora et al., 2019) and the endpoint
is translatable across species. However, the disadvantage remains
that the assessment of pain being owner dependent is
anthropomorphic, therefore inferred by humans and
consequently not objective.

Whilst subjective measures of pain in humans does not
present the same challenges as subjective measures in
preclinical species there is still room for improvement.
Subjective measures in humans still introduce variability and
limit the translational potential of markers used preclinically to
clinical trials, through using different endpoints. Whilst an
important improvement to forward translatability would be to
use objective preclinical endpoints with the current subjective
clinical ones. Using the same objective endpoint in both is the
ideal goal for markers of neuropathic pain.

Pain Supressed Behavioral States:
Hoarding, Grooming, Rearing, Nesting,
Wheel Running, Burrowing, Gait
Rodents possess several naturalistic/innate characteristics within
their behavioral repertoire and suppression of these
characteristics can be observed in a similar way to the
assessment of QoL measures in neuropathic pain patients.
These include wheel running (Stevenson et al., 2011; Pitzer
et al., 2016; Green-Fulgham et al., 2020), nesting (Jirkof,
2014), rearing/climbing/exploration (Piel et al., 2014; Pitzer
et al., 2016; Deuis et al., 2017) and burrowing (Andrews et al.,
2011; Huang et al., 2013; Fisher et al., 2015; Rutten et al., 2018;
Sliepen et al., 2019). However, others have found no change in
locomotion or rearing in the chronic constrictive injury (CCI)
and spared nerve injury (SNI) mice models (Mogil et al., 2010)
and that CCI and SNI mice had no change in markers of QoL
(Urban et al., 2011). This may be due to nature of rodents as prey
animals that will avoid displaying injury or pain to predators
(Roughan and Flecknell, 2001).

Analysis of burrowing behaviors in rodent pain models has
become increasingly popular over the last 10 years (Pubmed
search on pain and burrowing revealed 5 publications in 2010
and 25 in 2019) and demonstrates reproducible results across
laboratories (Wodarski et al., 2016). Rodent burrowing is reduced
in mono-neuropathic pain states and reversed by clinical
analgesics (gabapentin, pregabalin) at 10-fold lower doses (in
line with therapeutic exposure in humans) than are needed to
decrease hypersensitivity (Andrews et al., 2011; Lau et al., 2013;
Rutten et al., 2018). This suggests its usefulness as an objective
measure of pain with improved face and predictive validity over
stimulus evoked measures of hypersensitivity. Experimental
design should always include assessment of drug treatment on
burrowing in naïve animals to ensure there is no false positive
direct drug effect(s) on this natural behavior. One confound that
occurs with all pain supressed spontaneous rodent behavioral
tests is that any stimulus that disrupts wellbeing, including
disruption of memory (Deacon et al., 2002; Deacon, 2009) can
decrease rodent behaviors such as nesting and burrowing. For
example, it has recently been demonstrated that a high dose of
STZ (75 mg/kg) induces diabetic poly-neuropathic pain,
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hypersensitivity and abolishes burrowing. However, in contrast to
mono-neuropathic pain models burrowing is not reversed by
pregabalin, which the authors suggest reflects diabetes associated
alteration of the animals’ welfare; and not spontaneous pain
(Rutten et al., 2018). Previously, our group have reported a
similar decline in burrowing following a high dose (65 mg/kg)
of STZ that is resistant to pregabalin but can be reversed by social
pairing, indicating pair housing of diabetic rats can improve their
welfare and consequently burrowing behavior (Fisher et al.,
2015).

This emotional contagion whereby burrowing behavior of STZ
type-1 diabetic rats increased if they burrowed with their cage
partner (rather than alone) and their individual burrowing
increased if they were socially housed with a control partner
not in pain (compared with an STZ partner, Fisher et al., 2015)
has also been observed by other groups (Langford et al., 2006).
The experiments in the laboratory of Mogil et al., demonstrated
that mice display higher levels of pain behavior when tested
alongside familiar (but not stranger) conspecifics, and featured
synchronization of both level and timing of that behavior within
the partnership (Langford et al., 2006). Therefore, when
evaluating pain suppressed spontaneous behaviors,
consideration of the use of appropriate controls is essential e.g.
dose of STZ, consistent housing (pair housing at least) during
pain testing (stimulus evoked sensory endpoints, burrowing) and
testing with control groups is recommended to maximize the
welfare and wellbeing of rodents.

As with many other pain supressed behaviors, gait analysis is
applicable across a wide range of species and the animal literature is
supported by many human studies examining the effect of
neuropathic pain on gait (Lalli et al., 2013; Karmakar et al., 2014;
Alam et al., 2017). The use of gait analysis to assess pain possesses
several advantages most notably themeasurements are performed in
freelymoving animals. Furthermore, when considering development
of potential treatments in early drug discovery, only drugs that
improve movement will pass screening. Compounds that produce
sedative or motor impairments will not restore normal walking and
therefore will fail due to side effect profiling. Furthermore, data from
gait analysis studies tend to be reproducible across trials and animals
within a specific condition (Tappe-Theodor et al., 2019). When
considering the use of gait analysis in neuropathic pain models it is
worthwhile to note that neuropathic conditions cause both pain and
motor effects, either of which can alter gait. The lack of a correlation
between the time course for neuropathy induced mechanical
hypersensitivity and gait change, in combination with the lack of
recovery of normal gait following treatment with standard analgesics
would indicate a motor problem (Mogil et al., 2010; Lau et al., 2013;
Shepherd and Mohapatra, 2018) which may confound results.

Pain suppressed spontaneous natural behaviors have some
important limitations and can be affected by various factors such
as caging and animal welfare. However, their aim to provide
objective measures of neuropathic pain preclinically is important.
If objective pain suppressed behaviors such as burrowing/gait
behavior can be successfully refined and developed into robust
high throughput markers (initially alongside mechanical
hypersensitivity markers), these may improve the translatability
potential of preclinical data.

Pain Stimulated Behavioral States
Facial Pain Scoring/Grimace Scale Assessment
“Pain Face”
Changes in facial features of humans convey a wide range of states
and emotions which have been extensively studied in the context
of pain, particularly in neonates (Grunau and Craig, 1987;
Maxwell et al., 2013; Chow et al., 2016; Jones et al., 2018;
Kappesser et al., 2019) and non-verbal patients (Chow et al.,
2016). The idea that facial expressions can reflect the affective
(“emotional”) component of the pain experience has been
extrapolated to identify pain specific features (“pain face”)
using pain scales (“grimace-scales”) for a number of non-
human species including rodents (Table 2). The rodent
grimace scale originally developed in the laboratory of Jeffrey
Mogil by Langford et al., 2010 relies on photo analysis for scoring
and consequently is a subjective non-evoked endpoint. Frame
grabbing can be done manually, which is very time consuming,
however with the development of the Rodent face finder
software™ it can now be done automatically (Sotocinal et al.,
2011). The system works by recognizing frames containing an eye
or ear and tracts pixel movement to ensure extracted images are
free from motion blur, thus improving accuracy.

Despite the extensive amount of literature (Table 2), the use of
the grimace scale in rodent neuropathic conditions has been
hampered by an apparent disparity between pain duration,
expression of a painful grimace and mechanical sensitivity
(Sotocinal et al., 2011; De Rantere et al., 2016). It is likely that
the mismatch arises because of the difference in time course
between evoked and spontaneous pain. Furthermore, a lack of
grimacing does not mean that the animal is pain free, just that the
pain no longer elicits a grimace (Tappe-Theodor and Kuner,
2014). As with ultrasonic vocalisation (USV) (described below)
the selectivity of facial grimacing has also been called into
question with changes in facial musculature observed in
aggressive and fearful contexts (Defensor et al., 2012) and
nausea (Yamamoto et al., 2017). Despite this, the use of the
grimace scale has shown face validity in several neuropathic pain
models including reduction of the grimace scale with fentanyl in
the CCI of the infraorbital nerve (Akintola et al., 2017), with
meloxicam in a rodent model of radiculopathy (Philips et al.,
2017) and Schneider et al. (2017) have shown facial action units
are increased following stimulation with acetone in a rat spinal
cord injury (SCI) model. Therefore, the rodent grimace scale
shows great promise as a valid non-evoked subjective marker of
preclinical spontaneous neuropathic pain.

Ultrasonic Vocalisation
USV would seem an ideal pain stimulated behavior which can be
detected using an inexpensive bat detector (as well as several
other commercially available USV detection systems), recorded,
and quantified (Sirotin et al., 2014) for review see (Tappe-
Theodor and Kuner, 2014; Mogil, 2019b; Turner et al., 2019).
The range of rodent sounds fall into the human audible (<20 kHz
frequency) and ultrasonic vocalisation (USVs; > 20 kHz
frequency) (Roberts, 1975). Many of the studies investigating
USVs within the chronic pain space have looked at the “alarm”
calls rats emit at approximately 22 kHz. Pain induced USVs have
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been observed in mice in the SNI model of neuropathic pain
(Kurejova et al., 2010) and SCI model of neuropathic pain (Ko
et al., 2018) where morphine reduced the SCI induced USVs.
Kurejova et al. (2010) used an improved method which enabled
the temporal recording of USVs in freely moving mice repeatedly
over several weeks and demonstrated a reduction in the SNI
induced USVs with gabapentin. The strength of their study, and
perhaps the reason why USV effects were observed where others
have not seen any (Wallace et al., 2005) lies in the reporting of
USVs on a longitudinal timescale and the use of higher
frequencies of 37 and 50 kHz, avoiding the 22 kHz frequency
range so often used. The criticisms of this endpoint pertain to
alarm calls as unselective for pain measurements, being initiated
by human handling (Brudzynski and Ociepa, 1992) stress/anxiety
(Naito et al., 2003), anticipation of negative events (Knutson et al.,
2002) and tightly coupled to sniffing behavior (Sirotin et al.,
2014). Furthermore, USVs are highly sensitive to background
noise requiring further validation of this technique for use in pain
measurements.

Affective/Cognitive State
Anxiety, Depression, Sucrose Preference
As already discussed, neuropathic pain in the clinic is
characterized by disturbances of both sensory and affective
components. These frequently encountered comorbidities
which include appetite decrease, depression, anhedonia and
disruptions to sleep cycles present behaviors that can influence
pain directly within the preclinical setting (Kontinen et al., 1999).
Anxiety/depression like behaviors have recently shown utility
within the preclinical setting and the study of neuropathic pain
(Narita et al., 2006; Yalcin et al., 2011, Yalcin et al., 2014; Alba-
Delgado et al., 2013). Several studies have demonstrated the time
dependent nature in the symptomatic development of these
comorbidities (Seminowicz et al., 2009; Yalcin et al., 2011;
Barthas et al., 2015; Sellmeijer et al., 2018), which have been
shown to present long after the mechanical hypersensitivity has
worn off (Sellmeijer et al., 2018). This highlights the importance
of measuring more than one behavioral change whilst taking into
consideration the time at which the measures are captured and
analgesia is monitored.

Sucrose preference can measure anhedonia, a key feature of
depression (Nestler andHyman, 2010) which is frequently seen in

chronic pain patients but rarely measured in behavioral animal
pain studies, despite evidence that depression alters the threshold
of pain (Ang et al., 2010). Sucrose preference has been used to
explore the influence that chronic pain may have on otherwise
rewarding behaviors and has been shown repeatedly to be
supressed in chronic neuropathic pain models (Wang et al.,
2011; Bura et al., 2013; Amorim et al., 2014; Thompson et al.,
2018). We (Fisher et al., 2015) have found that STZ type-1
diabetic rats show a dramatic reduction in 2% sucrose
preference within 48 h of STZ administration that is
maintained for up to 8 days. This is in line with Wang et al.
(2011) who also observed a reduced sucrose preference within
2 days following SNI surgery that persists for up to 2 months, but
only in those animals that developed mechanical hypersensitivity,
indicating that reduced sucrose preference offers an objective
anhedonia marker of spontaneous neuropathic pain. In contrast
to Wang et al. (2011), we have consistently observed that STZ
type-1 diabetic rats switch back to a 90% sucrose preference (not
significantly different from control rats) 9 days after STZ
administration despite mechanical hypersensitivity allodynia
persisting for at least 18 days (Fisher et al., 2015). This
indicates mechanical hypersensitivity may not be a key driver
of the acute or chronic anhedonia. It is likely that STZ-dosed
animals drink significantly less 2% sucrose than control animals,
not due to anhedonia, but as a result of their increased water
consumption, due to the emerging diabetes hyperglycaemia and
polydipsia phenotype (Lenzen et al., 2008). The development of
polyphagia, polydipsia, hyperglycaemia and mechanical
hypersensitivity all stabilize 8 days after STZ administration at
the same time point that the now diabetic animals switch to a
normalized sucrose preference, indicating anhedonia is not an
endpoint that can be measured using sucrose preference in this
STZ type-1 diabetic rat model of poly-neuropathic pain (Fisher
et al., 2015). The fact that localized nerve ligation neuropathic
pain models demonstrate persistent reduced sucrose preference
alongside mechanical hypersensitivity over many weeks (Wang
et al., 2011; Bura et al., 2013) indicates anhedonia offers a
pharmacodynamic objective marker in mono-neuropathic pain
models. A potential confound when measuring sucrose
preference involves potential analgesic (or hyperalgesic) effects
of the sweeteners themselves (Suri et al., 2010; Shahlaee et al.,
2013) and therefore it is essential to correlate any objective

TABLE 2 | Species in which pain assays producing a grimace scale have been used.

Species References

Human Ashraf et al. (2009), Lucey et al. (2011), Bartlett et al. (2014)
Rodent (rats and mice) Langford et al. (2010), Sotocinal et al. (2011), Matsumiya et al. (2012), Leach et al. (2012), Oliver et al. (2014), Faller et al.

(2015), Miller et al. (2016), De Rantere et al. (2016), Akintola et al. (2017), Philips et al. (2017), Schneider et al. (2017), Sperry
et al. (2018), Dalla Costa et al. (2018), Cho et al. (2019), Klune et al. (2019), Leung et al. (2019), Ernst et al. (2020)

Pigs/Piglets Di Giminiani et al. (2016), Viscardi et al. (2017)
Cat Evangelista et al. (2019), Evangelista et al. (2020)
Sheep Häger et al. (2017)
Rabbit Banchi et al. (2020)
Ferrets Reijgwart et al. (2017)
Horse Dalla Costa et al. (2014), Dalla Costa et al. (2018)

For review see (Tappe-Theodor and Kuner, 2014; Deuis et al., 2017; Mogil, 2019b; Tappe-Theodor et al., 2019; Turner et al., 2019).
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changes in sucrose preference alongside changes in other markers
of neuropathic pain, such as stimulus evoked sensory endpoints
when validating its suitablility for translatability.

Operant and Classical Conditioning (Place Avoidance,
Place Preference)
Non-evoked ongoing (spontaneous) pain along with the
motivational/affective component of spontaneous pain can be
assessed using conditioned place avoidance (CPA), conditioned
place preference (CPP) (King et al., 2009; Navratilova et al., 2013)
and place escape/avoidance paradigm (PEAP) for reviews see
(Sufka, 1994; Tzschentke, 2007; Navratilova et al., 2013; Tappe-
Theodor and Kuner, 2014; Tappe-Theodor et al., 2019). CPA is
induced by pairing a painful experience with a distinct context
which subsequently results in avoidance of the same contextual
cues (Johansen et al., 2001; Johansen and Fields, 2004), thereby
utilizing the protective function of pain to motivate escape and
avoid harm. CPP is the opposite of CPA and assumes that pain
relief is rewarding. CPP works by pairing a rewarding experience
with a distinctive environment resulting in an increase in the time
spent in that environment (Navratilova and Porreca, 2014;
Navratilova et al., 2015, Navratilova et al., 2016). The most
popular protocol for inducing CPP or CPA as described in
rats and mice uses two conditioning chambers distinguished
by visual, textural and occasionally odor cues (Figure 3). CPA
simply occurs by pairing a painful experience with a specific
chamber. In PEAP testing an animal with a paw made
hypersensitive is placed in a chamber with a dark (normally
preferred) side and a bright side, on top of a wire mesh. At regular
intervals one paw is mechanically stimulated with a stiff filament,
the hypersensitive paw when the animal is on the dark side and
the paw with normal sensitivity when the animal is on the bright
side. The shift in the fraction of time the animals spends in the
normally preferred dark side provides a measure of the
aversiveness of the stimulation of the sensitive paw (Usdin
and Dimitrov, 2016).

Synonymous with the time reliant changes observed with
anxiety/depression-like behaviors the use of CPP has proved
useful in demonstrating the temporal nature in the
development of spontaneous ongoing neuropathic pain
(Agarwal et al., 2018; Gao et al., 2019). Additionally, it has
dissociated the spinal and supraspinal effects of gabapentin
(Bannister et al., 2017) and the sensory from the affective/
motivational and cognitive aspects of chronic pain (Tappe-
Theodor and Kuner, 2014; Shiers et al., 2020). The ability to
measure both the affective and non-evoked ongoing/spontaneous
component of chronic pain is a major advantage of the CPP/CPA
and PEAP paradigms. However, they are all relatively labor
intensive and require complicated and time-consuming
protocols. Another limitation of the technique is that it does
not measure pain in real time; the existence of pain in the past
must be inferred by the presence of a CPP in the present (Mogil,
2019a). Long term or chronic neuropathic pain states are not
suitable for inducing CPA as they persist outside the context and
are therefore not specific to the distinctive environment (Tappe-
Theodor et al., 2019). Although there are many difficulties
associated with CPP/CPA and PEAP they have and continue

to play an influential role in understanding the motivational/
affective component of chronic neuropathic pain in animals as
well as aiming to improve forward translatability by assessing
subjective comorbidities as indirect markers of neuropathic pain
in animals, as is the case in RCTs.

Cognitive State
Chronic neuropathic pain patients can produce poor
performance in tasks requiring cognitive flexibility even when
taking commonly prescribed analgesics (Ryan et al., 1993;
Povedano et al., 2007; Attal et al., 2014). Cognitive
malfunction can be translated and measured in rodents (see
Usdin and Dimitrov, 2016 for a review). Indeed, many
preclinical studies have demonstrated pathological changes in
the hippocampus following peripheral nerve injury (SNI or spinal
nerve ligation) that may underlie cognitive deficits (Ren et al.,
2011; Mutso et al., 2012; Moriarty et al., 2016; Liu et al., 2017) for
example increased TNF-α (Ren et al., 2011; Liu et al., 2017) and
altered hippocampal synaptic plasticity and neurogenesis (Mutso
et al., 2012).

Studies investigating cognitive dysfunction that can occur
during chronic neuropathic pain have been able to dissociate
the effects of gabapentin from that of the anti-diabetic drug
metformin on cognition (Shiers et al., 2018) and the effects of
amitriptyline from those of lornoxicam (Hu et al., 2010). In
the elegant studies by Shiers et al. (2018) gabapentin
demonstrated a worsening effect in the attentional set
shifting task (ASST) in the SNI model whereas metformin
completely reversed the cognitive impairment, at doses that
completely reversed static mechanical allodynic (Shiers et al.,
2018). Further studies from this group using the MNK
inhibitor tomivosertib (eFT508) have identified MNK-
eIF4E as a novel pathway playing a crucial role in the
development of spontaneous pain (measured using CPP)
and executive functioning using ASST (Shiers et al., 2020).
Whereas no effect was observed on the mechanical
hypersensitivity, which the authors attribute to the afferent
fiber type affected in the neuropathic pain model (Shiers et al.,
2020). In a recent review from Shiers and Price they expand on
this dissociation by highlighting the fact that pain relief using
currently prescribed transient analgesics is insufficient to
reverse cognitive impairments and therefore, there is a
clear need to investigate treatment options that can target
both pain and its prefrontal cortex driven indirect
comorbidities (Shiers and Price, 2020) to improve patient
outcome measures.

Using the same mono-neuropathic model, Higgins et al. (2015)
have demonstrated that following SNI surgery rats show the
equivalent behavioral response to sham controls for food
reward under a progressive ratio schedule, thereby implying a
similar level of motivation. In contrast, a performance deficit was
observed in the 5-choice serial reaction time task (5-CSRTT, a test
of attention and reaction time) in the SNI animals only. The deficit
became apparent in the second month post-surgery, consistent
with an attentional deficit (Higgins et al., 2015) again highlighting
the importance of temporal profiling in chronic neuropathic pain
models measured over long periods of time.
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TECHNIQUES WITH THE POTENTIAL TO
PRODUCE OBJECTIVE MEASURES OF
NEUROPATHIC PAIN
Currently the most promising advances toward objective
measures of neuropathic pain have been made using
microneurography, neuroimaging and EEG. These techniques
can be conducted on both preclinical species and on humans and
thus data from these techniques can be directly translated
between species providing a key opportunity for the
development of objective markers for neuropathic pain.

Microneurography
Microneurography (minimally invasive recording of intact
peripheral nerve fibers in vivo) provides the opportunity to
study the pathophysiology of sensory and axonal abnormalities
in pain processing; abnormalities which may underlay the
phenomenon of spontaneous pain (Jørum and Schmelz, 2006;
Cruccu et al., 2010; Serra et al., 2010) and can also be used as a
powerful diagnostic tool for use in patients with neuropathic pain
(Serra et al., 2004; Jørum and Schmelz, 2006; Cruccu et al., 2010).
Microneurography studies have identified spontaneous activity
(primarily in C fibers) that is related to pain, suggesting a
potential peripheral mechanism for neuropathic pain
(Kleggetveit et al., 2012; Serra, 2012). Importantly from a
translational perspective, microneurography can also be used
in the rat (Serra et al., 2010; Garcia-Perez et al., 2018) and pig
(Jones et al., 2018) providing the opportunity for direct
translation of in vivo evidence of efficacy, from the preclinical
through to the clinical setting.

Microneurography can be time consuming and relies on a fully
trained technical expert investigator. Furthermore,
microneurography is currently performed in only a few
centers around the world. For these reasons, it has only been
used on very few occasions to study neuropathic pain patients
(Cruccu et al., 2010) (only 21 publications over the last 10 years).
These few extant studies have observed similar conductance
velocities in rodents and humans (Handwerker et al., 1991;
Cain et al., 2001). There is no published normative data for
healthy subjects, and published reports are unblinded group
comparisons only (Cruccu et al., 2010).

Neuroimaging
The brain neuroimaging technologies, including magnetic
resonance imaging (MRI), positron emission tomography
(PET), and magnetoencephalography (MEG), have
contributed substantially to our understanding of the
perception and processing of pain in humans. The use of
PET and MRI for assessment of the brain response to pain,
in man, particularly neuropathic pain have been reviewed
previously (Peyron et al., 2000; Moisset and Bouhassira,
2007; Morton et al., 2016). Their applicability within rodents
positions their use as a key translational biomarker in
understanding the same processes from the clinic to the pre-
clinical situation (Tracey and Mantyh, 2007; Thompson and
Bushnell, 2012; Da Silva and Seminowicz, 2019; Tracey et al.,
2019). In rodents, MRI is the most commonly used with PET

rarely employed (Da Silva and Seminowicz, 2019). MRI has the
advantage of providing better spatial and temporal resolution
than PET. However, PET allows for the imaging of
neurotransmitters and non-neuronal cells, e.g. astrocytes, in
addition to functional imaging.

Functional magnetic resonance imaging (fMRI) is often
viewed as the gold standard for longitudinal studies because it
is non-invasive. This technique typically uses the blood oxygen
level dependent (BOLD) methodology to identify changes in
hemoglobin oxygenation which indicates alterations in neural
metabolism over time. Although fMRI possesses good spatial
resolution it provides only an indirect measure of neuronal
activity associated with a task or stimulus and is associated
with poor temporal resolution. PET is hampered by both poor
spatial and temporal resolution but its advantage over fMRI is
that via glucose metabolism, using fluodeoxyglucose (FDG)-PET,
it is a more direct measurement of neuronal activity than the
BOLD signal. Well-known major confounds associated with
rodent brain imaging are the methods used to secure the
subject during the scan. Unquestionably, anesthetic agents and
restraint techniques impact the results obtained from rodent
studies and must be taken into consideration in their design
and interpretation (Lancelot and Zimmer 2010). Some PET
methods do allow for tracer uptake before the animal is
anesthetized however, imaging a moving animal is also not
without drawbacks (Gold et al., 2018).

PET scanning using translocator protein (TSPO)-binding
radioligands (e.g. [11C]PBR28) is a promising option for
studies of neuroinflammation (Albrecht et al., 2016;
VanElzakker et al., 2019). TSPO is an 18 kDa, five
transmembrane domain protein, mainly situated in the outer
membrane of mitochondria. TSPO is thought to be involved in a
wide array of vital cellular functions, including steroidogenesis,
mitochondrial respiration and cellular proliferation (Herrera-
Rivero et al., 2015; Albrecht et al., 2016). It has recently
become the molecule of choice for most PET imaging studies
which are aimed at imaging glial activation and
neuroinflammation (Albrecht et al., 2016). therefore it is ideal
for imaging neuropathic pain studies where inflammation and
mitochondrial activation represent a predominant feature e.g.
diabetes induced neuropathy (Fernyhough, 2015) and traumatic
neuropathy (Ellis and Bennett, 2013).

Under healthy baseline conditions TSPO is expressed
constitutively at low levels by multiple cell types including
neurones and glial cells (Cosenza-Nashat et al., 2009). During
an inflammatory response, TSPO becomes substantially
upregulated predominantly, if not exclusively, in glial cells in
many animal models and human disorders (Chen and Guilarte,
2008; Rupprecht et al., 2010;Wei et al., 2013; Sandiego et al., 2015;
Liu et al., 2016). For example, TSPO expression in spinal cord
dorsal horn is upregulated in a rodent model of spinal nerve
ligation and returns to baseline once the neuropathic pain has
resolved or is reversed by the TSPO agonist, Ro5-4864; suggesting
that the TSPO upregulation might act as a marker of neuropathic
pain and its subsequent recovery.

Though, not all studies find a correlation between the rodent
and human microglia/macrophage TSPO response to
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lipopolysaccharide (LPS) inflammation (Owen et al., 2017).
Owen et al. demonstrate no change in TSPO expression in
primary human microglia/macrophages compared to a 9-fold
increase in rodent primary microglia/macrophages following LPS
stimulation (Owen et al., 2017). The authors suggest that TSPO
expression (hence TSPO PET binding) may reflect changes in
microglia density/proliferation rather than cell activation, which
appears to be different from rodents. Whilst others have found an
increase in TSPO PET binding possibly reflecting microglial
activation in humans following intravenous LPS (Sandiego
et al., 2015). This highlights a lack of correlation between
activation and induction of TSPO expression. Differentiating
whether TSPO PET binding reflects microglia proliferation/
density and/or activation in vivo is a challenge and
extrapolation of TSPO biology from rodent to human myeloid
cells should be done with caution (Owen et al., 2017).

Despite the innate challenges associated with the various
imaging techniques this technology is still commonly used in
rodents and considerable progress is continuing to be made in
this field. As such, this has led to the identification of a core
pattern of nociceptive-evoked events and brain regions activated
in human pain imaging studies (somatosensory cortex, cingulate
cortex, thalamus) that are also activated in the majority of the
rodent studies (Tracey and Mantyh, 2007; Thompson and
Bushnell, 2012). Moreover, pharmacological imaging in
rodents shows overlapping activation patterns with pain and
opiate analgesics, similar to that found in humans. For
example, many of the pain related regions in the brain possess
mu opioid receptors e.g. the periaqueductal gray, amygdala and
thalamus (Zubieta et al., 2001) and imaging studies in both
rodents (Shah et al., 2005) and man (Casey et al., 2000) have
elucidated the activity of opioids alone and following induction of
pain on these specific brain regions. Following opioid
administration these studies have demonstrated a clear
reduction in the pain-evoked activation of the brain region
demonstrating the translational nature of this methodology.

Electroencephalography (EEG)
EEG, first conducted in humans by Hans Berger in 1924, is the
technique used to study the electrical currents produced in the
brain (Berger, 1929). It is recorded using electrodes: in humans
commonly placed on the scalp (Sazgar and Young, 2019); in
rodents usually placed in direct contact with the dura mater
(Lundt et al., 2016), to produce an EEG signal. The EEG signal
represents synchronized electrical activity from populations of
neurons (Binnie and Prior, 1994). EEG signal patterns may be
useful as objective and translatable central markers of
neuropathic pain as EEG signals can be recorded in both
animals and humans without introducing observational bias,
that current neuropathic pain stimulus evoked sensory
endpoints may create (Bove, 2006; Leiser et al., 2011; Wilson
et al., 2014; Sullivan et al., 2015).

Early evidence showed neuropathic pain patients had an increased
theta (4–8 Hz) power, decreased alpha (8–12Hz) power and
increased rhythmicity of theta oscillations termed thalamocortical
dysrhythmia (Llinas et al., 1999). Evidence from animal models
indicated the ventral posterolateral nucleus of the thalamus as the

cause of thalamocortical dysrhythmia, which transmits spinal cord
signals to the somatosensory cortex (Gerke et al., 2003; Caylor et al.,
2019). Thalamocortical dysrhythmia has continued to be a
commonly referenced model for the changes in theta oscillations
seen in neuropathic pain (LeBlanc et al., 2016b; Vuckovic et al., 2018a;
Vanneste et al., 2018). However, in humans Stern et al. (2006)
identified that although there were many similarities in EEG
signal (such as increase theta power), differences in the extent of
this increase in theta power were related to the neuropathic pain
cause. Thus, further development of EEG may produce individual
patterns of EEG changes for different neuropathic pain causes.

Findings in humans that spinal cord stimulation (SCS) reduces
neuropathic pain have now been replicated in rodents through using
EEG patterns as a marker. This procedure involves a surgically
implanted device applying an electrical stimulation to the spinal
cord of patients to alter neuronal activity (Caylor et al., 2019). SCS has
been used in humans formany years to treat chronic and neuropathic
pain, although the mechanism of action is still being investigated
(Sivanesan et al., 2019). Human neuropathic pain patients
successfully treated with SCS have shown a reduction in delta
(0.5–3 Hz), theta (3–8Hz) (Sufianov et al., 2014) and high theta
(7–9Hz) power (Schulman et al., 2005). Findings in the CCI rat
model show that SCS successfully reversed thermal hyperalgesia and
reduced the increased EEGpower in the 3–4 Hz range (Koyama et al.,
2018b). This provides supportive evidence that the increase in theta
power seen in many neuropathic pain studies may be a reliable
marker that can be used to screen drugs against. To this end Koyama
et al. (2018a) have developed a rodent model of pain that uses
increased theta (4–8Hz) power as a marker. This model
demonstrated a reversal of theta power and allodynia after
treatment with pregabalin and EMA 401 (an angiotensin II type 2
receptor inhibitor with positive efficacy in a phase II postherpetic
neuralgia trial, although clinical development has now been halted
due to toxicological side effects) (Rice et al., 2014). However,
Moreover, minocycline (glial cell inhibitor with poor results in
human clinical trials) failed to reverse these markers (Vanelderen
et al., 2015). Significantly, sub- and supra-optimal doses equivalent to
human exposure were identified only when using theta power and
not allodynia as an endpoint, providing strong evidence for the use of
EEG signal patterns as a translational marker of neuropathic pain
(Koyama et al., 2018a). This back translation of the effect of
pregabalin is an important step in validating this method as a
marker of neuropathic pain.

Other than the potential of data generated through EEG
recordings as a translatable marker, it also has uses in neuropathic
pain treatments that avoid the use of animals, by being applied
directly to humans. One such method is neurofeedback modulation
(NFB) which uses a real time EEG display, to allow patients to
monitor and regulate their brain oscillations (Jensen et al., 2008).
After training, patients are given targets such as to increase alpha
(9–12 Hz), whilst decreasing theta (4–8 Hz) and high beta
(20–30Hz) oscillations. This method of NFB has been found to
significantly reduce pain for some neuropathic pain patients (Hassan
et al., 2015). Recently, patients have been able to practice NFB at
home when it is most needed. In this study 12/15 patients achieved a
statistically significant reduction in pain, with upregulation of alpha
(9–12 Hz) oscillations being the most successfully achieved
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(Vuckovic et al., 2019). Although placebo-controlled testing is
difficult in NFB, pre-recorded EEG data has been examined
during training session and patients reported no changes in pain
scoring (Hassan et al., 2015). This provides additional evidence that
modulating EEG oscillations can provide therapeutic benefit.

In SCI, EEG signals have been used to classify (Wydenkeller et al.,
2009) and even predict patients that will develop neuropathic pain
(Vuckovic et al., 2018b; Vuckovic et al., 2018a). Wydenkeller et al.
(2009) found that reduced peak EEG frequency between 6 and 12Hz
was able to classify between neuropathic pain and non-neuropathic
pain patients with 84% accuracy. Recently, EEG reactivity to eyes
opening (Vuckovic et al., 2018b) and feature classification (Vuckovic
et al., 2018a), have been used to predict neuropathic pain
development in SCI. In 85% of cases on average these methods
predicted non-neuropathic pain patients that would develop
neuropathic pain. Interestingly this study found that the
oscillations involved in the most accurate predictions included
alpha (8–12Hz) and beta (4–8 Hz). This contributes to the
developing theory that theta changes occur progressively with
neuropathic pain development and alpha and beta changes are
seen before neuropathic pain onset (Vuckovic et al., 2018a). Our
research is investigating whether these findings can be translated into
an animal model such as the STZ type-1 diabetic rat to open an
exciting avenue of research into drugs to slow or even prevent the
development of neuropathic pain.

The use of data produced by EEG as a marker of neuropathic
pain has solid potential; however, it does come with limitations.
One key example is the different methods of EEG electrode
placement in humans and rodents (Lundt et al., 2016; Sazgar
and Young, 2019). The skull and skin have different conductivities
which can alter EEG recordings and affect translatability between
species (Drinkenburg et al., 2016; Vorwerk et al., 2019). One way to
improve this is using epicranial screws in rodents that are placed
into but not through the skull which is closer to the placement of
electrodes in humans (LeBlanc et al., 2016a; Koyama et al., 2018a,
Koyama et al., 2018b). Additionally, differences between rodent
and human EEG signals may occur due to physiological differences
in brain size and pathways, or procedural differences in EEG
recordings (Leiser et al., 2011; Wilson et al., 2014). For example,
coherence in the theta (4–9 Hz) band was increased in human
neuropathic pain patients but decreased in rats (Llinas et al., 1999;
Sarnthein and Jeanmonod, 2008; Leblanc et al., 2014).

An important consideration when using EEG to investigate
neuropathic pain is whether the changes seen in the brain or
spinal cord are most important. Whilst it is important to continue
work in both areas, the current understanding that pain is a
combination of both sensory and emotional aspects leads to the
likelihood that EEG recordings focusing on changes in the brain
will have a greater ability to analyze the true pain experience.
However, the changes seen in the spinal cord may provide a more
accessible target as shown by SCS where the effects of neuropathic
pain are not clouded by additional factors such as mental state
and previous experiences.

EEG is a technique that provides a promising way of producing
data that can be used as a biomarker of neuropathic pain as it is both
translatable and unbiased. Further development is needed to fully
characterize the changes produced by individual neuropathic pain

causes and identify specific EEG patterns that translate between
animals and humans.

CONCLUSION

In this review, we have discussed how bidirectional research is
attuning animal models closer to the human condition, by
refining neuropathic pain assessment outcome measures to aid
translation of preclinical results to the clinic. Alternative
behavioral measures outlined in this review provide a means
by which preclinical researchers can study not only the
development of neuropathic pain but the analgesic response to
clinical candidates in a more comprehensive manner. However,
the very nature of moving away from simple reflex based
measures does mean that behavioral measures may be more
easily perturbed by subtle changes relating to environmental
events e.g. housing conditions and minor protocol variations
that can result in inter-laboratory and inter-group variability. For
example, short term social isolation has been shown to suppress
burrowing behavior in STZ type-1 diabetic but not control rats
(Fisher et al., 2015). Given that observational pain behavioral
measures are easily modifiable and subjective we advocate a need
for further validation of objective pain markers such as data
produced by EEG. Despite automation, objective markers of pain,
by their very nature, are longer lasting and more labor intensive
than the routinely favored stimulus evoked sensory measures.
Although, results from such studies can be translated directly into
and back from human studies. The more examples of successful
back and forward translation that are documented using multiple
neuropathic pain endpoints, the more evidence we will have as to
whether these provide superior animal to human predictivity,
compared to stimulus evoked sensory endpoints alone, and the
more confidence we are likely to have in the success of clinical
interventions derived from and/or supported by rational drug
discovery.
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