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Gene-set analysis is commonly used to identify trends in gene expression when cells,
tissues, organs, or organisms are subjected to conditions that differ from those within the
normal physiological range. However, tools for gene-set analysis to assess liver and kidney
injury responses are less common. Furthermore, most websites for gene-set analysis lack
the option for users to customize their gene-set database. Here, we present the TOXPANEL

website, which allows users to perform gene-set analysis to assess liver and kidney injuries
using activation scores based on gene-expression fold-change values. The results are
graphically presented to assess constituent injury phenotypes (histopathology), with
interactive result tables that identify the main contributing genes to a given signal. In
addition, TOXPANEL offers the flexibility to analyze any set of custom genes based on gene
fold-change values. TOXPANEL is publically available online at https://toxpanel.bhsai.org.
TOXPANEL allows users to access our previously developed liver and kidney injury gene sets,
which we have shown in previous work to yield robust results that correlate with the degree
of injury. Users can also test and validate their customized gene sets using the TOXPANEL

website.
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INTRODUCTION

TOXPANEL is a web-based tool to assess liver and kidney injury from in vitro or in vivo genomic data. In
the field of toxicogenomics, a common assumption is that toxicity is associated with a change in the
expression of either a single gene or a set of genes (i.e., a module or a gene signature) (Hamadeh et al.,
2002; Segal et al., 2004; Fielden et al., 2005; Minowa et al., 2012; Sahini et al., 2014; Ippolito et al.,
2015; Parmentier et al., 2017; Sutherland et al., 2019; Wang et al., 2019). Using a toxicogenomic
approach, we previously derived 11 liver- and 8 kidney-injury modules (Te et al., 2016) from the
Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs)
database (Igarashi et al., 2015), where each injury module is uniquely associated with a specific
organ-injury phenotype, see Table 1. The TG-GATEs database contains gene-expression data from
Sprague Dawley rats exposed to different chemicals for 4–29 days with corresponding documented
and graded histopathological injury phenotypes.

With the use of TG-GATE, we identified common gene responses (injury modules) that
correlated with the severity of injury, including fibrosis, using in silico approaches. In Table 1
we summarized the injury modules we identified in previous studies (Te et al., 2016). For a biological
interpretation, we categorized the histological endpoint into their pathological responses,
inflammation, degeneration, and proliferation. The gene module approach outperforms
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individual genes in predicting severity of histological damage
(AbdulHameed et al., 2014; Tawa et al., 2014; Te et al., 2016;
Schyman et al., 2020b).

Adverse outcome pathway (AOP) is a recent development in
toxicology that emphasize a mechanism-based approach to
toxicological evaluation as an aid in developing alternatives to
animal testing (Ankley et al., 2010). It typically summarizes
complex toxicological phenotype in a flow chart-like diagram
consisting of molecular initiating events (MIE), key events (KE),
and adverse outcomes (AO) (Vinken, 2013). This type of
mechanistic outline allows for the development of new in vitro
tests that captures the adverse outcome caused by in vivo
chemical exposures (Kleinstreuer et al., 2018). We and others
have shown that gene expression data can be used to gain insights
into the key events of an AOP at a molecular-level (Oki et al.,
2016; AbdulHameed et al., 2019). The modules listed in Table 1
represent gene sets that have been associated with adverse
outcome. The focus of current paper is on the development of
a web-based tool that will allow any user to access and evaluate
the activation of these gene modules for their own data. The
output from ToxPanel can also be construed as a molecular-level
read out for activation of key event in adverse outcome pathway.
Our injury modules complement Wiki-AOPs as they offer an
interpretation of an adverse biological response that is non-
chemical specific. However, they do not offer detail
mechanistic insights, which KEGG pathways or wiki-pathways
can provide (Kanehisa and Goto, 2000; Martens et al., 2020). We
have shown that the combination of our modular approach to
identify key injury phenotype together with pathway analysis,
provided in ToxPanel, can be useful when understanding the
underlying molecular mechanisms in e.g., liver or kidney injury
(Schyman et al., 2020a; Schyman et al., 2020b).

We previously validated these injurymodules in vivo by treating
Sprague Dawley rats with thioacetamide (Schyman et al., 2018), an
organosulfur compound extensively used in animal studies as a
fibrosis-promoting liver toxicant. Our TOXPANEL approach correctly
identified cellular infiltration and fibrogenesis as primarily liver-
injury phenotypes induced by thioacetamide (Figure 1). Figure 1
shows the increased injury module activations over time related to
inflammation and proliferation in accord with the progression of
the fibrosis injury phenotype.

Furthermore, we have found that our injury modules can
predict in vivo injury endpoints from in vitro RNA sequence
(RNA-seq) data with a strong correlation (R2 > 0.6) (Schyman
et al., 2019). In this study we compared in vivo rat data with
in vitro cellular data 24 h after treatment of thioacetamide. The-
top ranked liver-injury modules identified by our in vitro studies
agreed with those identified in vivo using thioacetamide,
indicating that in vitro cell injury was also associated with
changes in the expression levels of fibrogenic genes.

Analysis of gene sets typically involves the use of tools for the
enrichment analysis of specific biological pathways in gene
annotation databases, such as KEGG (Kanehisa and Goto, 2000)
and GO terms (The Gene Ontology Consortium, 2018). Pathway
enrichment analysis tools are readily accessible in many widely
used web applications, such as GSEA (Subramanian et al., 2005)
and DAVID (Huang et al., 2008). An alternative approach involves
analyzing activation scores derived from the aggregated fold-change
(FC) values of the genes in a gene set or pathway and comparing it
to a background set of FC values. Although this gene-set activation
approach provides robust results (Ackermann and Strimmer, 2009;
Yu et al., 2017), it is not available in most web applications.

Here, we present a web application that uses two gene-set
activationmethods, which we denote as aggregated FC (AFC) and
aggregated absolute FC (AAFC). These methods are not limited
to FC values per se, as they can also accept beta-values from
Kallisto-Sleuth output (Bray et al., 2016; Pimentel et al., 2017) or
z-score values as inputs. Figure 2 outlines a schematic image of
TOXPANEL‘s input and output files. AAFC and AFC can be used for
predefined or custom-designed gene sets. In the application, the
current default gene sets for these methods are liver- and kidney-
injury modules, which are gene sets associated with specific injury
phenotypes, such as liver fibrosis and kidney necrosis (Ippolito
et al., 2015; AbdulHameed et al., 2016; Te et al., 2016; Schyman
et al., 2018; Schyman et al., 2019; Wang et al., 2019; Schyman
et al., 2020a; Schyman et al., 2020b). We also offer access to the rat
and human KEGG pathways, as determined using Entrez gene
IDs (Maglott et al., 2011). The gene-set format is compatible with
MSigDB (Liberzon et al., 2011) and can be uploaded to the
TOXPANEL website for analysis. In a recent study in rats, we
showed that our injury modules could link genomic responses
to observed organ injuries (Schyman et al., 2018; Schyman et al.,

TABLE 1 | List of liver and kidney injury modules grouped into general classes with the number of genes in each module.

Inflammation Degeneration Proliferation

Liver Fibrogenesis 48 Anisonucleosis 65 Bile duct proliferation 16
Cellular infiltration 25 Nuclear alteration 111 Oval cell proliferation 126
Hematopoiesis 27 Cytoplasmic alteration 18 Cellular foci 35
Single cell necrosis 11 Granular degeneration 18

Kidney Necrosis 18 Degeneration 65
Fibrogenesis 125 Dilatation 8
Cellular infiltration 42 Inclusion bodies (cytoplasmic) 40

Casts (hyaline) 23
Hypertrophya 16

aHypertrophy can also be the result of proliferation.
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2020a), demonstrating the promise of the modular approach in
predicting rat in vivo results from rat and human in vitro genomic
responses (Schyman et al., 2019; Schyman et al., 2020b).

METHODS

Aggregated Fold-Change Activation
Detailed descriptions and performance characteristics of the
aggregated fold change (AFC) activation method can be found

in the original literature (Ackermann and Strimmer, 2009; Yu
et al., 2017). In this method, we define the gene-set or KEGG
pathway score as the sum of the log-transformed FC values of all
genes in the set or pathway. We then use the pathway scores to
perform null hypothesis tests and estimate the significance of
each pathway by its p-value, defined as the probability that the
pathway score for a random data set is greater than the score from
the actual data set. The z-score is the number of standard
deviations by which the actual gene-set value differs from the
mean of randomly selected FC values (10,000 times). The sign of

FIGURE 2 | Schematic illustration of typical User Input and the optional Custom Gene Set file formats. The TOXPANEL Output presents the calculated AFC and AAFC
values for each gene set based on the log FC values in the User Input file.

FIGURE 1 | Gene-expression changes in the rat liver 8 and 24 h after thioacetamide (TAA) [100 mg/g] exposure. The right panel shows a strong inflammatory
response 24 h after TAA exposure with cellular infiltration and fibrogenesis as primarily liver-injury phenotypes.

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 6015113

Schyman et al. A Web-Tool for Predictive Toxicology

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the gene-set score represents the direction of regulation: we
consider the pathway up-regulated (overexpressed genes) if the
net sum of the gene-expression levels after treatment is increased
relative to control and down-regulated (suppressed genes) if it is
decreased.

Aggregated Absolute Fold-Change
Activation
We recently used the aggregated absolute fold-change (AAFC)
activation method to calculate the activation score of a gene set
(Schyman et al., 2018; Schyman et al., 2019). This method
identifies gene sets that are significantly changed or disrupted

without considering the direction of change. The method, which
takes the absolute values of the log-transformed FC values,
performs well in identifying significantly altered pathways
(Ackermann and Strimmer, 2009). Its potential shortcoming is
that it disregards information about the direction of change in a
pathway (whether it is up- or down-regulated i.e., if the sum of the
activation scores of genes in a pathway increases or decreases
relative to control).

The AAFCmethod first reads a list of gene FC values uploaded
by the user and takes the absolute value of the log-transformed FC
value for each gene. For each gene set, it then sums all of the
absolute values to calculate the total absolute FC value.
Subsequently, we use the gene-set scores to perform null

FIGURE 3 | The figure illustrates the two input file formats for Step 1 and Step 3. The Step 1 input file with the gene expression data is required, but the p-values in
column C are optional. The Step 3 Custom Gene Sets file is optional if one uses Human or Rat Entrez ID but required if Other gene IDs are used. The Custom Gene Sets
format follows the .gmt format illustrated in the figure.
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hypothesis tests and estimate the significance of each gene set by
its p-value, defined as the probability that the score for randomly
selected FC values (10,000 times) is greater than the score from
the actual gene set. A small p-value implies that the gene-set value
is significant. As in the AFC method, the z-score is the number of
standard deviations by which the actual gene-set value differs
from the mean of the randomly selected FC values (10,000 times).
The AAFC method, however, considers only positive z-score
values, as negative z-score values indicate FC values smaller than
the average absolute FC value.

Implementation of the Web-Application
The TOXPANEL web-application is delivered through encrypted
Hypertext Transfer Protocol Secure (HTTPs) and can be accessed
at toxpanel.bhsai.org. The implementation of TOXPANEL consists
of controller, database, and front view. The controller is written in
Java and runs in JDK 1.8. The controller handles interaction with
the user from file uploading to job submission. When submitting
a job, the controller stores a record in the database and queue the
job, which will run an R script for the analysis. After completing
the job, the controller stores the result and notify the user through
email. On the database side, PostgreSQL 10.5 is employed to
provide sufficient data storage and retrieval capability. The front
view is implemented with PrimeFace 7.0 library and BootsFaces 1.
3.0 library with decoration of ChartJS 2.9.3 and customized
Cascading Style Sheets (CSS). The two libraries provide
convenient syntax and a wide range of user interface
components. They serve as the backbone for the web user
interface. The ChartJS 2.9.3 provides more advanced chart
drawing and allows further tuning. The web service runs on

Tomcat 8.5, which resides inside a docker container. This allows a
speedy recovery if the web service ever encounters critical failure.

Upon visiting the site, the user is directed to the login page.
The user can either login with a registered account or login as
guest. The guest account is primarily for demonstration purpose,
but all features are available. Once logged in, the user can upload
gene expression data, specify job variables, and submit a job. The
job will be queued and once completed the user can visit the result
page through the history table.

RESULTS AND DISCUSSION

Themain purpose of the TOXPANEL website is to offer a platform to
provide access to our liver- and kidney-injury modules and to
calculate gene-set activation scores for gene-set analysis using log-
transformed FC values. The website also allows users to upload
their own gene sets or pathways. Figure 3 shows the job
submission page with supported input file formats for gene
expression data and customized gene sets. For each gene set,
the program calculates the z-scores and p-values for both the AFC
and AAFC methods. If the user provides gene-level p-values in
the input file, it also calculates the aggregated p-value for a gene
set, based on Fisher’s probability test (Fisher, 1932).

Users can view all of the results on the TOXPANEL website or
download them for offline analysis. Figure 4 shows a typical
output for changes in gene expression following exposure to
thioacetamide. By clicking on the name of a gene set, the user can
view the genes in that gene set and their corresponding FC values.
This is useful for identifying the main genes contributing to a

FIGURE 4 | Screenshot of typical results for gene sets activated by the liver toxicant, thioacetamide. Headings: Gene Set—name of gene set, injury module, or
pathway; Filter—type of gene set (e.g., KEGG pathway) displayed when selected; Aggregate Fold Change z-Score—positive for an up-regulated gene set and
negative for a down-regulated gene set; Aggregate Absolute Fold Change z-Score—gene-set activation, as calculated by summing the changes in the expression
levels for all genes within the gene set; Aggregate p-Value—Fisher’s combined p-value for all genes in the gene set.
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gene set. For each KEGG pathway, we offer a link to its webpage.
The main results are shown under the headings of Aggregate
Fold Change and Aggregate Absolute Fold Change. We display
both the z-score and p-value for each gene set so that users can
easily identify significantly activated gene sets. In the example
shown in Figure 4, the gene sets are ranked by the z-score of the
AAFCmethod. The top-ranked gene set is Cellular infiltration for
liver injuries, with an AAFC z-score of 13.97.

In this paper, we introduced TOXPANEL as a new tool for
assessing liver and kidney injury based on gene expression
data. Furthermore, TOXPANEL complements existing gene and
pathway analysis tools by providing a platform for users to
access the AFC and AAFC methods. We have shown that the
genes sets provided in TOXPANEL can be used for making
predictions of liver and kidney injury occurrence in rats before
the damage appears (Schyman et al., 2018; Schyman et al., 2020a);
and, that rat and human in vitro gene expression data correlate
with in vivo injury observed in rat (Schyman et al., 2019; Schyman
et al., 2020b). Thus, TOXPANEL can potentially be used in early drug
discovery and chemical safety valuations to assess chemical-
induced liver and kidney injury from in vitro gene
expression data.
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