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Osteoarthritis (OA) is a major degenerative joint disease. Oxidative stress and inflammation
play key roles in the pathogenesis of OA. 3′-Sialyllactose (3′-SL) is derived from humanmilk
and is known to regulate a variety of biological functions related to immune homeostasis.
This study aimed to investigate the therapeutic mechanisms of 3′-SL in interleukin-1β (IL-
1β)-treated SW1353 chondrocytic cells. 3′-SL potently suppressed IL-1β-induced
oxidative stress by increasing the levels of enzymatic antioxidants. 3′-SL significantly
reversed the IL-1β mediated expression levels of reactive oxygen species in IL-1β-
stimulated chondrocytic cells. In addition, 3′-SL could reverse the increased levels of
inflammatory markers such as nitrite, prostaglandin E2, inducible nitric oxide synthase,
cyclooxygenase-2, IL-1β, and IL-6 in IL-1β-stimulated chondrocytic cells. Moreover, 3′-SL
significantly inhibited the apoptotic process, as indicated by the downregulation of the pro-
apoptotic protein Bax, upregulation of the anti-apoptotic protein Bcl-2 expression, and
significant reduction in the number of TUNEL-positive cells in the IL-1β-treated
chondrocytic cells. Furthermore, 3′-SL reversed cartilage destruction by decreasing
the release of matrix metalloproteinases (MMP), such as MMP1, MMP3, and MMP13.
In contrast, 3′-SL significantly increased the expression levels of matrix synthesis proteins,
such as collagen II and aggrecan, in IL-1β-treated chondrocytic cells. 3′-SL dramatically
suppressed the activation of mitogen-activated protein kinases (MAPK) and
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) signaling pathways, which are related to the
pathogenesis of OA. Taken together, our data suggest that 3′-SL alleviates IL-1β-induced
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OA pathogenesis via inhibition of activated MAPK and PI3K/AKT/NF-κB signaling
cascades with the downregulation of oxidative stress and inflammation. Therefore, 3′-
SL has the potential to be used as a natural compound for OA therapy owing to its ability to
activate the antioxidant defense system and suppress inflammatory responses.
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INTRODUCTION

Osteoarthritis (OA) is a complex progressive degenerative joint
disorder that accompanies cartilage degradation and physical
disability (Sanchez et al., 2005; Sanchez et al., 2008; Jeon et al.,
2017). The development and progression of OA are related to
oxidative stress-induced cartilage damage and an imbalance
between catabolic and anabolic factors in joints (Loeser, 2009;
Appleton, 2018). Although the occurrence and development of
OA have been studied extensively, there is currently no
efficient therapy to prevent OA progression.

The accumulation of reactive oxygen species (ROS) causes
an increase in oxidative stress, and these reactive products are
detoxified by the anti-oxidative defensive system (Betteridge,
2000; Jones, 2008). ROS are free radicals that are mainly
generated by mitochondria, in the form of non-
mitochondrial membrane-bound nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and xanthine
oxidase (XO) (Turrens, 2003). Several studies have indicated
that elevated oxidative stress and excessive generation of ROS
are observed in OA patients (Altindag et al., 2007; Erturk et al.,
2012; Altay et al., 2015).

Recent studies revealed that excessive generation of ROS
occurs as OA develops, leading to increased inflammation
(Bolduc et al., 2019; Xie et al., 2019; Ansari et al., 2020).
Interleukin-1β (IL-1β) and IL-6 are highly upregulated in
OA joints and play important roles in the pathogenesis of
OA by modulating oxidative stress, apoptosis, cartilage
extracellular matrix degradation extracellular matrix (ECM)
synthesis, and intracellular signaling pathways in OA (Kapoor
et al., 2011; Lepetsos and Papavassiliou, 2016; Collins et al.,
2018). In particular, mitogen-activated protein kinases
(MAPK) and phosphoinositol 3 kinase (PI3K)/protein kinase
B (AKT)/nuclear factor-κ light chain enhancer of activated
B cells (NF-κB) pathways play vital roles in OA pathogenesis
(Ahmed et al., 2005; Lu et al., 2018; Huang et al., 2019). Thus,
oxidative stress and inflammation are closely related, and their
regulation should be considered as therapeutic strategies of OA.

Human breast milk contains various bioactive factors with
developmental and protective functions (Gila-Diaz et al., 2019).
3′-Sialyllactose (3′-SL) contains N-acetyl-D-neuramic acid and
galactose subunit of lactose (Luo et al., 2014). 3′-SL is known to
regulate a variety of biological functions in immune homeostasis
(Zenhom et al., 2011; Donovan and Comstock, 2016). Moreover,
3′-SL has demonstrated therapeutic effects in OA and
rheumatoid arthritis by protecting cartilage degradation and
modulating chemokines and cytokines, respectively (Jeon
et al., 2018; Kang et al., 2018). However, the antioxidant and
inflammatory activities of 3′-SL in OA remain uncharacterized.

Human SW1353 chondrocytic cells and human chondrocytes
have similar phenotypes. Previous studies have shown that IL-1β
can mimic the pathological microenvironment of OA
chondrocytes (Jia et al., 2013; Bao et al., 2016). Herein, we
investigated the antioxidant and anti-inflammatory activities
and mechanisms of action of 3′-SL on IL-1β-treated human
SW1353 chondrocytic cells and explored the mechanisms
underlying potential therapeutic effects in OA.

MATERIALS AND METHODS

Reagents
SW1353 human chondrocytic cells were obtained from American
Type Culture Collection (ATCC HTB-94; Manassas, VA,
United States). Dulbecco’s modified Eagle medium with high
glucose medium (DMEM-HG) was obtained from Hyclone
(Grand Island, NY, United States). Fetal bovine serum (FBS)
was purchased from T&I (Seoul, Korea). Phosphate-buffered
saline (PBS) was provided by Welgene (Daegu, Korea).
Penicillin-streptomycin, trypsin-EDTA, and BCA™ Protein
Assay Kit were obtained from Thermo Fisher Scientific
(Waltham, MA, United States). 3′-SL was provided by
GeneChem Inc (Daejeon, Korea). Recombinant human IL-1β
protein, nitrite, prostaglandin E2 (PGE2), IL-1β, and IL-6 ELISA
kits were purchased from R&D Systems (Minneapolis, MN,
United States). Nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) inhibitor Bay 11-7082, dimethyl
sulfoxide, and gelatin were obtained from Sigma-Aldrich
(Saint Louis, MO, United States). Total antioxidant capacity
(TAC) assay kit, 2′,7′-dichlorofluorescin diacetate (DCFDA)-
cellular ROS assay kit, superoxide dismutase (SOD) activity
assay kit, catalase activity assay kit, and oxidative stress
defense cocktail were purchased from Abcam (Cambridge,
MA, United States). DeadEnd™ Fluorometric Terminal dUTP
Nick End-Labeling (TUNEL) System and 4,6-diamidino-2-
phenylindole (DAPI; Vectorshield were purchased from
Promega (Madison, WI, United States) and Vector
Laboratories (Burlingame, CA, United States), respectively.
TRIzol reagent, 4–12% Bis-Tris gels, 1× NuPage MES SDS
running buffer, MOPS SDS running buffer, PVDF membrane,
and NuPage Transfer Buffer were obtained from Invitrogen Life
Technologies (Carlsbad, CA, United States). ReverTra Ace®
qPCR RT Master Mix with gDNA Remover and qPCRBIO
SyGreen Mix Hi-ROX were purchased from Toyobo (Osaka,
Japan) and PCR BIOSYSTEMS (London, United Kingdom),
respectively. Bax, Bcl-2, iNOS, COX-2, MMP1, MMP3,
MMP13, collagen II, aggrecan, p-extracellular signal-regulated
kinase (ERK), ERK, p-P38, P38, p-c-Jun N-terminal kinase
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(JNK), JNK, p-PI3K, PI3K, p-AKT, AKT, p-inhibitor of nuclear
factor kappa B (p-IκBα), IκBα, p-P65, P65, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), and horseradish
peroxidase–conjugated secondary antibodies were obtained
from Santa Cruz Biotechnology (Dallas, TX, United States).
p-PI3K antibody and enhanced chemiluminescence detection
system were purchased from Cell Signaling Technologies
(Beverly, MA, United States) and Amersham Pharmacia
Biotech (Little Chalfont, United Kingdom), respectively.

Cell Culture
Human chondrocytic cells were maintained in DMEM-HG with
10% FBS and 1% penicillin-streptomycin at 37°C. When
approximately 80% confluency was achieved, the cells were
washed with PBS and harvested with 0.05% trypsin-EDTA.
Next, the cells were washed, centrifuged (1,000 g, 5 min,
25°C), resuspended, and finally seeded in new plates. The
medium was replaced every 2–3 days. The cells were
treated with IL-1β (10 ng/ml) under hypoxic conditions for
24 h, as previously described (Baek et al., 2018a; Baek et al.,
2018b) to mimic the pathological microenvironment of OA
chondrocytes. Then, 50 or 100 μM of 3′-SL was added and
incubation continued for 24 h. In the NF-κB inhibitor
experiment, the cells were pretreated with Bay 11-7082
(10 µM), which was dissolved in dimethyl sulfoxide, before
the cells were exposed to IL-1β with or without 3′-SL. The
culture supernatants were harvested, centrifuged (2,000 g,
5 min, 25°C), and stored at −70°C until further analysis.
The cell pellets were washed with ice-cold PBS, centrifuged
(2,000 g, 5 min, 4°C), and stored at −70°C until further
analysis.

Enzyme-Linked Immunosorbent Assay
Cell culture supernatants were collected, centrifuged (12,000 ×g,
5 min, 4°C), and stored at −70°C until use. The production of
ROS, activities of TAC, SOD, and CAT, and the levels of IL-1β,
IL-6, nitrite, and PGE2 in cell culture supernatants were
measured according to the manufacturer’s instructions.

Terminal dUTP Nick End-Labeling Assay
For analysis of apoptosis, SW1353 human chondrocytic cells were
seeded in gelatin-coated slides in 6-well cell plates. IL-1β and 3′-SL
treatments were performed as described in Cell Culture. The
DeadEnd™ Fluorometric TUNEL System was conducted
according to the manufacturer’s protocol. Samples were mounted
on glass slides with fluorescent mounting medium with DAPI
for imaging, using the Zeiss Axio Imager M2 (Carl Zeiss,
Gottingen, Germany) fluorescence microscope. The number
of positively stained cells over the total number of cells per
specimen field was measured, and the percentage of positive cells
was calculated. Four individual specimens per group were analyzed.

Quantitative Real-Time Reverse
Transcription Polymerase Chain Reaction
Total RNA extraction from the cell pellets was carried out using the
TRIzol reagent, according to the manufacturer’s protocol. Total

RNA was used in cDNA synthesis with ReverTra Ace® qPCR RT
Master Mix with gDNARemover. The mRNA expression of genes
such as iNOS, COX-2, MMP1, MMP3, MMP13, collagen II,
aggrecan, and GAPDH was profiled with qPCRBIO SyGreen
Mix Hi-ROX in a StepOnePlus Real-Time PCR System
(Applied Biosystems, Foster City, CA, United States). Data
analysis was performed using the
2-ΔΔCT method. Primers used for qRT-PCR are described in
Table 1.

Western Blot Analysis
To assess the oxidative stress defense WB cocktail, Bax, Bcl-2, iNOS,
COX-2,MMP1,MMP3,MMP13, collagen II, aggrecan, p-ERK, ERK,
p-P38, P38, p-JNK, JNK, p-PI3K, PI3K, p-AKT, AKT, p-IκBα, IκBα,
p-P65, P65, and GAPDH. The proteins from cell pellets were
harvested and quantified using the BCA™ Protein Assay Kit. The
protein samples were denatured and separated in 4–12%Bis-Tris gels
with 1× NuPage MES and MOPS SDS running buffer. Proteins were
transferred onto a PVDF membrane in NuPage Transfer Buffer with
methanol at 4°C. Themembranes were blocked with TBS plus Tween
20 in 5% skim milk and then incubated overnight at 4°C with the
following primary antibodies: oxidative stress defenseWB cocktail (1:
250), Bax (1:1,000), Bcl-2 (1:1,000), iNOS (1:1,000), COX-2 (1:1,000),
MMP1 (1:1,000), MMP3 (1:1,000), MMP13 (1:1,000), collagen II (1:
1,000), Aggrecan (1:1,000), p-ERK (1:1,000), ERK (1:1,000), p-P38 (1:
1,000), P38 (1:1,000), p-JNK (1:1,000), JNK (1:1,000), p-PI3K (1:
1,000), PI3K (1:1,000), p-AKT (1:1,000), AKT (1:1,000), p-IκBα (1:
1,000), IκBα (1:1,000), p-P65 (1:1,000), P65 (1:1,000), and GAPDH
(1:1,000). The next day, the blots were washed three times with TBS
plus Tween 20 and incubated with horseradish
peroxidase–conjugated secondary antibodies (1:3,000) at 25°C for
1 h. After the blots were rinsed three times, the protein was detected
with an enhanced chemiluminescence detection system (Amersham
Pharmacia Biotech, Little Chalfont, United Kingdom). The
relative expression of each protein was quantified using the
internal controls (smooth muscle actin and GAPDH) or the total
form of proteins (ERK, P38, JNK, PI3K, AKT, IκBα, and P65) with
Multi Gauge (v3.0) software (Fujifilm, Tokyo, Japan).

Statistical Analysis
All data are expressed as mean ± standard error of themean fromat
least three independent experiments. Statistical analyses were
conducted using the Statistical Package for Social Sciences (SPSS)
version 25.0 (SPSS, Inc, Chicago, IL, United States). To confirm
statistically significant results, one-way analysis of variance, followed
by a post hoc Bonferroni comparison, was conducted. Statistical
significance was set at p < 0.05.

RESULTS

39-Sialyllactose Suppressed
Interleukin-1β-Induced Oxidative Stress in
the Chondrocytic Cells
To determine whether 3′-SL has antioxidant effects, generation of
ROS in the chondrocytic cells was induced by IL-1β. Treatment with
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IL-1β elevated ROS levels in the chondrocytic cells. This elevation
was significantly attenuated by treatment with 3′-SL in a dose-
dependent manner (Figure 1A, **p < 0.01, and ***p < 0.001). Next,
total antioxidant capacity and antioxidant enzyme activities were
examined. 3′-SL potently suppressed IL-1β-induced oxidative stress,
as revealed by the significant increase in total antioxidant capacity
and levels of antioxidant enzymes, such as SOD and catalase, in a
dose-dependent manner (Figures 1B–D, *p < 0.05, **p < 0.01, and
***p < 0.001). Similarly, thioredoxin, which was decreased by IL-1β,
was significantly increased after 3′-SL treatment of the chondrocytic
cells (Figures 1C,D, *p < 0.05, **p < 0.01, and ***p < 0.001). Taken
together, these findings suggest that 3′-SL could suppress IL-1β-
induced oxidative stress in chondrocytic cells via the reduction of ROS
and the upregulation of antioxidant enzyme activities.

39-Sialyllactose Suppressed
Interleukin-1β-Induced Inflammatory
Response in the Chondrocytic Cells
To determine whether 3′-SL has the ability to act against the
inflammatory response induced by IL-1β, the expression of
inflammatory mediators was examined in chondrocytic cells. 3′-SL
significantly reduced the increased mRNA and protein levels of iNOS
and COX-2 (Figures 2A–C, *p < 0.05, **p < 0.01, and ***p < 0.001).
Moreover, the production of endogenous nitrite and PGE2 was
upregulated when cells were treated with IL-1β (Figure 2D, *p <
0.05, **p < 0.01, and ***p < 0.001). However, after treatment with 3′-
SL, the production of nitrite and PGE2 was significantly
downregulated (Figure 2D, *p < 0.05, **p < 0.01, and ***p <
0.001). Moreover, IL-1β treatment significantly increased IL-1β

TABLE 1 | Primers used for qRT-PCR.

Gene symbol Forward primer (59→39) Reverse primer (59→39)

iNOS AGGGACAAGCCTACCCCTC CTCATCTCCCGTCAGTTGGT
COX2 CTGGCGCTCAGCCATACAG CGCACTTATACTGGTCAAATCCC
MMP1 GGGGCTTTGATGTACCCTAGC TGTCACACGCTTTTGGGGTTT
MMP3 CTGGACTCCGACACTCTGGA CAGGAAAGGTTCTGAAGTGACC
MMP13 TCCTGATGTGGGTGAATACAATG GCCATCGTGAAGTCTGGTAAAAT
COL2A TGGACGCCATGAAGGTTTTCT TGGGAGCCAGATTGTCATCTC
Aggrecan GTGCCTATCAGGACAAGGTCT GATGCCTTTCACCACGACTTC
GAPDH AAGGGTCATCATCTCTGCCC GTGAGTGCATGGACTGTGGT

FIGURE 1 | Effect of 3′-SL on IL-1β-induced oxidative stress in the chondrocytic cells. Chondrocytic cells were stimulated with or without IL-1β (10 ng/ml) for 24 h
and then treated with the different concentrations of 3′-SL (50 and 100 μM) for 24 h. (A) Generation of ROS was measured using the DCFDA assay. (B) Antioxidant
enzyme activities were analyzed using specific enzyme assay kits (C) The oxidative stress defense (Catalase, SOD1, TRX, smoothmuscle actin) western blot cocktail was
determined by western blot and (D) quantification analysis. The values are mean ± standard error of the mean. *p < 0.05, **p < 0.01, and ***p < 0.001. 3′-SL, 3′-
Sialyllactose; IL-1β; interleukin-1β; ROS, reactive oxygen species; DCFDA, 2′,7′-dichlorofluorescin diacetate; SOD1, superoxide dismutase 1; TRX, thioredoxin.
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and IL-6 production (Figure 2E, *p < 0.05, and ***p < 0.001). The
increased production of these molecules was reversed by treatment
with 3′-SL. Taken together, these results indicate that 3′-SL could
exert anti-inflammatory properties by inhibiting the inflammatory
response in chondrocytic cells.

39-Sialyllactose Suppressed
Interleukin-1β-Induced Apoptosis in the
Chondrocytic Cells
To investigate whether 3′-SL could inhibit IL-1β-induced apoptosis,
terminal deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) staining and the expression of apoptosis-related
proteins were examined in the chondrocytic cells. The percentage
of TUNEL-positive cells was significantly upregulated in IL-1β-
treated chondrocytic cells (Figures 3A,B and ***p < 0.001). The
percentage of TUNEL-positive cells was significantly decreased after
treatment with 3’-SL (Figures 3A,B and ***p < 0.001). Next, IL-1β
significantly increased the expression of the pro-apoptotic protein
Bax and decreased the expression of anti-apoptotic Bcl-2 (Figures
3C,D, *p < 0.05, and ***p < 0.001). However, treatment with 3’-SL
significantly reversed these alterations (Figures 3C,D, **p < 0.01,
and ***p < 0.001). Taken together, these results show that 3′-SL
could reduce apoptosis in IL-1β-treated chondrocytic cells.

39-Sialyllactose Suppressed
Interleukin-1β-Induced Cartilage Matrix
Degradation in the Chondrocytic Cells
To assess whether 3′-SL can prevent the production of MMPs,
which are catabolic factors in OA pathogenesis, the expression of

MMPs was examined in IL-1β-treated chondrocytic cells. 3′-SL
significantly suppressed IL-1β-induced expression of MMP1,
MMP3, and MMP13 (Figure 4, *p < 0.05, **p < 0.01, and
***p < 0.001). Collagen II and aggrecan are the two major
components of the matrix, and they are considered as ECM
synthesis genes. To explore whether 3′-SL mitigates IL-1β-
induced ECM degradation in the cell model of OA, the
expression of ECM synthesis genes was examined. As shown in
Figure 4, IL-1β decreased the expression levels of collagen II and
aggrecan, while 3′-SL treatment significantly suppressed IL-1β-
induced cartilage degradation (*p < 0.05, **p < 0.01, and ***p <
0.001). Taken together, these results indicate that 3′-SL could
inhibit cartilage matrix degradation by alleviating ECM
degradation in IL-1β-induced chondrocytic cells.

39-Sialyllactose Suppressed
InterleukinL-1β-Induced Activation of
Mitogen-Activated Protein Kinases and
PI3K/AKT/NF-kB Signaling Pathways in the
Chondrocytic Cells
Several studies have reported that the activation of MAPKs and
phosphatidylinositol-3-kinase (PI3K)/AKT/nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling
pathways plays an important role in OA progression (Hu et al.,
2017; Zhang et al., 2019). Therefore, to explore whether 3′-SL can
exert antioxidant protective effects, the two signaling cascades were
examined. The MAPK signaling pathway was significantly activated
after treatmentwith IL-1β in the chondrocytic cells (Figure 5, *p< 0.05,
**p < 0.01, and ***p < 0.001). However, treatment with 3′-SL
significantly suppressed the IL-1β-induced phosphorylation of P38,
ERK, and JNK in chondrocytic cells (Figure 5, *p < 0.05, **p < 0.01,

FIGURE 2 | Effect of 3′-SL on IL-1β-induced inflammatory responses in the chondrocytic cells. Chondrocytic cells were stimulatedwith or without IL-1β (10 ng/ml) for 24 h and
then treated with different concentrations of 3′-SL (50 and 100 μM) for 24 h. (A) The mRNA expression levels of iNOS and COX-2 were assayed by qRT-PCR. (B) The protein
expression levels of iNOS andCOX-2were determined bywestern blot and (C) quantification analysis. (D) The nitrite levels in the culturemediumwere assessed by theGriess reaction.
The levels of PGE2were determined using ELISA. (E)The levels of IL-1β and IL-6were determined using ELISA. The values are themean± standard error of themean. *p<0.05,
**p < 0.01, and ***p < 0.001. 3′-SL, 3′-Sialyllactose; IL-1β; interleukin-1β; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2.
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and ***p < 0.001). Moreover, 3′-SL significantly reversed the increased
expression of PI3K, AKT, P65, and IκBα induced by IL-1β (Figures
6A–D, *p < 0.05, **p < 0.01, and ***p < 0.001). To further investigate
the functional roles of 3′-SL, the cells were pretreatedwith Bay 11-7082,
which significantly reduced the IL-1β-induced activation of NF-κB
cascades (Figures 6E,F, **p < 0.01, and ***p < 0.001). Taken together,
these findings demonstrate the suppressive effects of 3′-SL on the
activated MAPK and PI3K/AKT/NF-κB signaling in IL-1β-treated
chondrocytic cells, whichwas presumably attributed to the suppression
of oxidative stress and inflammation.

DISCUSSION

In the present study, we evaluated the underlying mechanisms of the
therapeutic effects of 3′-SL using IL-1β-treated chondrocytic cells. Our
data revealed that 3′-SL efficiently protects the cells from oxidative
stress, inflammation, apoptosis, and cartilage matrix degradation by
suppressing the activated MAPK and PI3K/AKT/NF-κB signaling
pathways (Figure 7). These results provide novel insights into the
therapeutic mechanisms of action of 3′-SL as a treatment for OA.

Oxidative stress is closely associated with cartilage destruction and
OA progression (Sokolove and Lepus, 2013; Hu et al., 2017). The
elevated production of ROS can make chondrocytes more vulnerable
to oxidant-mediated cell death and lead to defective antioxidant
mechanisms (Del Carlo and Loeser, 2003). Antioxidants, including
SOD, catalase, and thioredoxin, are dysregulated and insufficient to
detoxify ROS in OA patients (Altindag et al., 2007; Erturk et al., 2012;

Gu et al., 2019; Zhong et al., 2019). Therefore, increasing the levels of
these antioxidants can be used as a promising approach to prevent
OA. Herein, our data revealed that 3′-SL significantly attenuated ROS
production and changed intracellular redox status in the cell model of
OA, as evidenced by decreased intracellular ROS production and
increased oxidative stress defense system. These results demonstrated
that 3′-SL can attenuate oxidative stress in IL-1β-treated
chondrocytic cells.

Oxidative stress induces synovial inflammation, chondrocyte
apoptosis, cartilage matrix synthesis, and intracellular signaling in
OA progression (Lepetsos and Papavassiliou, 2016). Since a previous
study showed that NLR family pyrin domain containing 3 (NLRP3)
inflammasome activation in humans and mice is not involved in
stressed-induced OA (Bougault et al., 2012), this studymainly focused
on oxidative stress-related inflammation. It has been reported that
nitric oxide catalyzed by iNOS and PGE2, produced from COX-2,
could expedite the development of OA through ECM degradation
(Sasaki et al., 1998).Moreover, IL-1β could induce an increase in iNOS
and COX-2 (Daheshia and Yao, 2008; Sheu et al., 2015). Herein, the
expression of iNOS, COX-2, NO, and PGE2 was usually enhanced in
the cell model of OA.We found that the additional treatment with 3′-
SL significantly downregulated the levels of iNOS, COX-2, NO, and
PGE2. The synovial fluid and serum levels of IL-1β and IL-6 in OA
patients are higher than in healthy normal subjects (Wojdasiewicz
et al., 2014). In addition, it was observed that 3′-SL significantly
suppressed the expression of IL-1 and IL-6 in the cell model of OA.
These results demonstrated that 3′-SL can attenuate oxidative stress-
derived inflammatory responses in IL-1β-treated chondrocytic cells.

FIGURE 3 | Effect of 3′-SL on IL-1β-induced apoptosis in the chondrocytic cells. Chondrocytic cells were stimulated with or without IL-1β (10 ng/ml) for 24 h and
then treated with different concentrations of 3′-SL (50 and 100 μM) for 24 h. (A) Cell death was evaluated by Terminal deoxynucleotidyl transferase dUTP nick-end
labeling (TUNEL) staining and representative images were shown. Scale bar: 100 μM. (B) The quantification of the number of TUNEL+ cells. (C) The protein expression
levels of Bax and Bcl-2 were determined by western blot and (D) quantification analysis. The values are themean ± standard error of themean. *p < 0.05, **p < 0.01,
and ***p < 0.001. 3′-SL, 3′-Sialyllactose; IL-1β; interleukin-1β.
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Oxidative stress can cause mitochondrial apoptosis through
the increased expression of the pro-apoptotic protein Bax and
the decreased expression of the anti-apoptotic protein Bcl-2
(Pena-Blanco and Garcia-Saez, 2018). Our data revealed
that 3′-SL significantly attenuated these changes in the
expression of apoptotic proteins in IL-1β-treated chondrocytic
cells. Likewise, the number of TUNEL-positive cells in the

chondrocytic cells was significantly increased after IL-1β
treatment. However, 3′-SL significantly decreased the number
of TUNEL-positive cells. These results demonstrated that 3′-SL
could reduce oxidative stress-derived apoptosis in IL-1β-treated
chondrocytic cells.

Furthermore, the release of excess cartilage matrix degrading
enzymes, such as MMP1, MMP3, and MMP13, is implicated in OA

FIGURE 4 | Effect of 3′-SL on IL-1β-induced cartilage destruction in the chondrocytic cells. Chondrocytic cells were stimulatedwith or without IL-1β (10 ng/ml) for 24 h and
then treated with different concentrations of 3′-SL (50 and 100 μM) for 24 h. (A) The mRNA expression levels of MMP-1, MMP-3, MMP-13, collagen II, and aggrecan were
assayed by qRT-PCR. (B) The protein expression levels of MMP-1, MMP-3, MMP-13, collagen II, and aggrecan were determined by western blot and (C) quantification analysis.
The values are the mean ± standard error of the mean. *p < 0.05, **p < 0.01, and ***p < 0.001. 3′-SL, 3′-Sialyllactose; IL-1β; interleukin-1β; MMP, matrix metalloprotein.

FIGURE 5 | Effect of 3′-SL on IL-1β-inducedMAPK signaling pathway in the chondrocytic cells. Chondrocytic cells were stimulated with or without IL-1β (10 ng/ml)
for 24 h and then treated with the different concentrations of 3′-SL (50 and 100 μM) for 24 h. (A) The protein expression levels of p-ERK, ERK, p-P38, P38, p-JNK, and
JNK were determined by western blot and (B) quantification analysis. *p < 0.05, **p < 0.01, and ***p < 0.001. 3′-SL, 3′-Sialyllactose; IL-1β; interleukin-1β; MAPK,
Mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; JNK, c-JUN N-terminal kinase.
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progression (Ahmed et al., 2005; Wang et al., 2011; Maldonado and
Nam, 2013). MMPs are a family of 23 enzymes with a specific function
of inhibiting the synthesis of collagen II and aggrecan, which are critical
for the synthesis of matrix-related proteins in cartilage (Dahlberg et al.,
2000; Yamamoto et al., 2016). Proteolysis and pathological cartilage
breakdown in OA are followed by abnormal expression of MMP
members (Murphy et al., 2002). Among these MMP members,
MMP1, MMP3, and MMP13 are responsible for the degradation of
ECM inOA articular cartilage (Yoshihara et al., 2000). In this study, IL-
1β increased the expression of MMP1, MMP3, and MMP13, while the
expression of matrix related proteins, such as collagen II and aggrecan,
was significantly downregulated in IL-1β-treated chondrocytic cells.
However, all these changes could be restored by treatment with 3′-SL.
These results demonstrate that 3′-SL could attenuate oxidative stress-
derived cartilage matrix degradation in IL-1β-treated chondrocytic cells.

MAPK and PI3K/AKT/NF-κB signaling pathways are key
mediators of cartilage degradation and OA progression (Sun
et al., 2017; Zhang et al., 2019). MAPK signaling, which consists

of ERK 1/2, P38, and JNK, can transduce extracellular stimuli
into the nucleus (Keshet and Seger, 2010; Sugiura et al., 2011). In
addition, MAPK activation is involved in the disruption of ECM
(Sondergaard et al., 2010). Subsequently, the PI3K/AKT/NF-κB
signaling cascade induces increased expression of catabolic
factors and can contribute to cartilage degradation (Rigoglou
and Papavassiliou, 2013; Jenei-Lanzl et al., 2019). Our data
showed that the phosphorylation levels of P38, ERK, JNK,
PI3K, and AKT, P65, and IκBα were significantly increased
in the cell model of OA. However, these activated pathways were
reversed by treatment with 3′-SL. The upstream regulators of
NF-κB involve the MAPK and PI3K/AKT signaling pathways
(Schulze-Osthoff et al., 1997; Yum et al., 2001). Thus, we
evaluated the functional kinase activities using BAY 11–7082
in IL-1β-treated chondrocytic cells. In our study, the
phosphorylation of IκBα and P65 was attenuated by pre-
treatment with Bay 11–7082 in IL-1β-induced chondrocytic
cells. Furthermore, the inhibition of NF-kB activation by 3′-

FIGURE 6 | Effect of 3′-SL on IL-1β-induced PI3K/AKT/NF-κB signaling pathway in the cell model of OA. Chondrocytic cells were stimulated with or without IL-1β
(10 ng/ml) for 24 h and then treated with the different concentrations of 3′-SL (50 and 100 μM) for 24 h. (A) The protein expression levels of p-PI3K, PI3K, p-AKT, and
AKT were determined by western blot and (B) quantification analysis. (C) The protein expression levels of p-IκBα, IκBα, p-P65, and P65 were determined by western blot
and (D) quantification analysis. (E) Chondrocytic cells were pretreated with Bay 11–7,082 (10 μM) for 2 h, stimulated by IL-1β (10 ng/ml) for 24 h, and then treated
with the different concentrations of 3′-SL (50 and 100 μM) for 24 h. The protein expression levels of p-IκBα, IκBα, p-P65, and P65 were determined by western blot and
(F) quantification analysis. The values are mean ± standard error of the mean. *p < 0.05, **p < 0.01, and ***p < 0.001. PI3K, Phosphatidylinositol 3-kinase; AKT, protein
kinase B; NF-κB, nuclear factor kappa light chain enhancer of activated B cells.
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SL and Bay 11–7082 was observed in IL-1β-induced
chondrocytic cells. These observations highlight the
importance and need to further investigate the detailed
mechanisms for the activity of other kinases. Taken together,
these results reveal that the regulation of MAPK and PI3K/
AKT/NF-κB signaling pathways plays a vital role in preserving
the structural integrity of the matrix in the cell model of OA.

It should be note that although the chondrosarcoma cell line
SW1353 is widely used as a substitute for primary adult articular
chondrocytes, our results cannot be totally translated to primary OA
chondrocytes considering the difference in gene expression between
SW1353 and primary OA chondrocytes after treatment with IL-1β
(Gebauer et al., 2005). This was the limitation of this study.

Sialyllactose is a representative human milk oligosaccharide in
human breast milk. It can regulate immune homeostasis through
receptor-mediated endocytosis and phagocytosis (Kim et al.,
2019). Considering this and the multiple inhibitory effects of
3′-SL on IL-1β-mediated effects observed in this study, 3′-SL may
mediate the receptor-mediated mechanism and could be used as a
therapeutic agent for OA treatment. Further prospective studies
are warranted to determine the accurate target of 3′-SL on IL-1β-
induced oxidative stress and inflammation.

In conclusion, results from this study demonstrated that 3′-
SL can counteract oxidative stress and inflammation via the
suppression of activated MAPK and PI3K/AKT/NF-κB
signaling pathways in IL-1β treated chondrocytic cells.
Based on these findings, 3′-SL may be potentially used to
protect against OA.
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