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Scope: Ellagitannins are polyphenols found in numerous fruits, nuts and seeds. The
elagitannin punicalagin and its bioactive metabolites ellagic acid and urolithins are
discussed to comprise a high potential for therapeutically or preventive medical
application such as in intestinal diseases. The present study characterizes effects of
punicalagin, ellagic acid and urolithin A on intestinal barrier function in the absence or
presence of the proinflammatory cytokine tumor necrosis factor-α (TNFα).

Methods and Results: Transepithelial resistance (TER), fluorescein and ion permeability,
tight junction protein expression and signalling pathways were examined in Caco-2 and
HT-29/B6 intestinal epithelial cell models. Punicalagin had less or no effects on barrier
function in both cell models. Ellagic acid was most effective in ileum-like Caco-2 cells,
where it increased TER and reduced fluorescein and sodium permeabilities. This was
paralleled by myosin light chain kinase two mediated expression down-regulation of
claudin-4, -7 and -15. Urolithin A impeded the TNFα-induced barrier loss by inhibition
of claudin-1 and -2 protein expression upregulation and claudin-1 delocalization in HT-
29/B6.

Conclusion: Ellagic acid and urolithin A affect intestinal barrier function in distinct ways.
Ellagic acid acts preventive by strengthening the barrier per se, while urolithin A protects
against inflammation-induced barrier dysfunction.
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INTRODUCTION

Health benefits of the ellagitannin punicalagin and its metabolites
are being extensively discussed in recent years. Punicalagin can be
found in pomegranate (Punica granatum), raspberries (Rubus
idaeus), strawberries (Fragaria sp.) or walnuts (Juglans regia).
Especially pomegranate has already been applied for thousands of
years in the traditional medicine (Longtin, 2003) to benefit from
its anti-diarrhea (Das et al., 1999; Zhao et al., 2018), anti-oxidant,
anti-obesity, anti-cancerogenic, and anti-inflammatory
properties (reviewed in Saeed et al., (2018). Ellagitannins are
not directly absorbed into the blood stream (Seeram et al., 2004)
but hydrolyzed. In the stomach and intestine, hydrolysis of
punicalagin yields ellagic acid (EA), which in turn is
metabolized to urolithin A and B by the intestinal microbiota
(Cerdá et al., 2005; Espín et al., 2007). Several studies showed
these metabolites exert anti-inflammatory effects in the intestine.
In a mouse model of ulcerative colitis, ellagic acid was effective in
reducing intestinal inflammation by inhibiting cyclooxygenase-2
and inducible nitric oxide synthases. It impeded pro-
inflammatory signaling via nuclear factor ’kappa-light-chain-
enhancer’ of activated B-cells (NFκB) and signal transducers
and activator of transcription 3 (STAT3) (Marín et al., 2013).
A very recent cell culture study reported ellagic acid to inhibit
pro-inflammatory effects of tumor necrosis factor α (TNFα). This
involved loss of epithelia barrier function, upregulation of
interleukin-6 and -8 secretion and induction of oxidative stress
by impeding TNFα-induced signaling via NF-κB, extracellular
signal-regulated kinases 1/2 (ERK1/2) and myosin light chain
kinase (MLCK) (Iglesias et al., 2020). Urolithin A (UroA) can be
detected at relatively high amounts in the colon. Its anti-
inflammatory activities were reported from a rat model of
colitis (Larrosa et al., 2010) and a colon fibroblast model
(Giménez-Bastida et al., 2012).

Intestinal inflammation causes intestinal barrier dysfunction
[(reviewed in Hering et al., (2012)). The intestinal barrier
integrity plays a central role for gut health by preventing an
abandoned passage of antigens, allergens, bacterial toxins or other
noxious agents from the intestinal lumen into the mucosa and
blood circulation. The intestinal epithelium is built up by a single
row of epithelial cells, which are connected by tight junctions
(TJs) at their most apical point. Dependent on the physiological
condition, the epithelial TJs regulates the paracellular passive
passage of water and nutrients. This is achieved by the specific
interplay of different TJ proteins, including the large family of
claudins, TJ-associated MARVEL proteins (Mineta et al., 2011),
such as tricellulin, and junctional adhesion molecules (Raleigh
et al., 2010). These transmembrane proteins are connected to
intracellular scaffold proteins (e.g. zonula occludens proteins,
ZO−1-3) and form a meshwork of numerous horizontally
oriented strands surrounding the epithelial cells. Changes to
this defined composition can result in altered barrier function.
Pro-inflammatory cytokines, as e.g. tumor necrosis factor α
(TNFα) are well-known to cause barrier dysfunction by
inducing epithelial apoptosis and by affecting TJ architecture,
including claudin protein expression and delocalization (Hering
and Schulzke, 2009).

So far, little is known about the impact of punicalagin, ellagic
acid or urolithin A on intestinal barrier function. Objective of the
present study was to elucidate their putative protective and
barrier strengthening properties on epithelial TJ integrity per
se or in state of inflammation. As their bioavailability differs along
the gastrointestinal tract (Espín et al., 2013), we hypothesized that
these bioactive compounds might act distinctly on barrier
function in ileum or colon. Therefore, we investigated two
different intestinal cell lines, ileum-like Caco-2 cells and HT-
29/B6 colon cells.

MATERIALS AND METHODS

Cell Culture and Dosage Information
Caco-2 cells are epithelial cells derived from a colorectal
adenocarcinoma (ATCC® HTB-37™). However, under specific
culturing conditions Caco-2 cells differentiate and polarize such
that they functionally and morphologically resemble the
phenotype of distal ileum enterocytes. They are characterized
by absorptive capabilities and active transport pathways, possess
enzymatic activities and an apical brush border. When cultured
on filter supports Caco-2 cells grow as polarized monolayers with
epithelial TJs (Hidalgo et al., 1989).

In the present study Caco-2 cells were cultured using
Minimum Essential Medium Eagle AqmediaTM containing
15% bovine serum and 1% penicillin/streptomycin (all Sigma-
Aldrich, Schnelldorf, Germany). Within two weeks after seeding
on permeable Millicell PCF filters (0.6 cm2 effective area; 0.4 μm
pores, Millicell PCF, Millipore, Schwalbach, Germany), they grew
to confluence and transepithelial resistance (TER) was usually
ranging between 280 and 450Ω·cm2. Fifteen days old monolayers
were challenged with different doses of punicalagin (10, 25, 50,
150 and 250 μM; Sigma Aldrich), ellagic acid hydrate (50, 100,
150, 200 and 300 μM; Sigma-Aldrich) or urolithin A (25, 50, 100,
150 and 250 μM; Sigma-Aldrich). Substances were dissolved in
dimethyl sulfoxide (DMSO). To avoid osmotic effects the
monolayers were usually challenged from the apical and
basolateral side. Control monolayers were treated with equal
amounts of DMSO. Three aspects considered the optimal
doses. 1) TER effect, 2) reproducibility (demonstrated by
SEM), and 3) the amount of dimethyl sulfoxide (DMSO). Due
to the toxicity of DMSO, concentrations above 1% DMSO were
not considered for optimal doses.

Myosin light chain kinase inhibitor PIK (150 µM) was pre-
incubated on Caco-2 monolayers 2 h before challenging with EA.
Phosphorylation events were studied under serum free
conditions.

The colon carcinoma cell line HT-29/B6 is a subclone of the
human colon carcinoma cell line HT-29 (Kreusel et al., 1991) and
was cultured on permeable filter supports (0.6 cm2 effective area;
3.0 μm pores, Millicell PCF, Millipore) using RPMI medium
(Sigma-Aldrich) containing 10% bovine serum and 1%
penicillin/streptomycin. Monolayers grew confluent within one
week, giving a TER of at least 350Ω·cm2and were pre-incubated
with 10 µM punicalagin, 150 µM ellagic acid and 150 µM or
250 µM urolithin A from both sides. Two hours later 500 U/ml
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TNFα (Pepro Tech, Hamburg, Germany) were added to the basal
compartment.

Changes in barrier integrity were assessed by measuring
transepithelial resistance (TER) with a pair of chopstick
electrodes at 37 C as described before (Heller et al., 2005).

Permeability Measurements
For permeability measurements, monolayers were mounted into
Ussing chambers. The standard bathing solution contained:
140 mM Na+, 123.8 mM Cl−, 5.4 mM K+, 1.2 mM Ca2+,
1.2 mMMg2+, 2.4 mM HPO4

2−, 0.6 mM H2PO4
−, 21 mM

HCO3
− and 10 mM D (+) -glucose. Flux measurements were

performed under voltage-clamp conditions with 0.1 mM
fluorescein (332 Da, Sigma-Aldrich, Schnelldorf, Germany),
which was added to the apical side of the monolayer. Samples
were collected from the basolateral side at defined time points.
Fluorescence was measured in a spectrofluorimeter (Infinite
M200, Tecan, Männedorf, Austria) at 525 nm. Fluorescein
permeability p (cm·s−1) was calculated from the ratio of flux J
(mol·h−1·cm−2) over concentration Δc (mol/L): p � J/Δc.

For the measurement of Na+ and Cl−permeability, voltage and
TER were monitored while reducing NaCl concentration in one
hemichamber. This was done by switching to a solution
containing a reduced concentration of NaCl and mannitol for
balancing osmolality. All other components were equivalent to
standard solution. NaCl permeability was determined from
dilution potentials and the Goldmann–Hodgkin–Katz equation
as previously reported (Amasheh et al., 2002; Günzel et al., 2009;
Yu et al., 2009).

Western Blot Analyses
For expression analyses, proteins were extracted using ice-cold
lysis buffer, including 10 mM Tris, pH 7.5, 150 mM NaCl, 0.5%
Triton X-100, 0.1% SDS and complete protease inhibitor mixture
(Roche, Basel, Switzerland). For phosphorylation studies, the lysis
buffer contained 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM Na2H2P2O7,
1 mM β-glycerolphosphate, 1 mM Na3VO4, 1 mg ml−1 leupeptin,
1 mM PMSF and complete protease inhibitor. For analysis of
caspase-3 cleavage, cell lysis was performed as described recently
(Hering et al., 2017).

Protein extracts (15–40 mg) were separated by SDS-gel
electrophoresis and blotted on PVDF membrane. Antibodies
used for immunodetection: anti-claudin-1 to −4, claudin−7
and −15 (1:1000, Thermo Fisher Scientific, Bremen, Germany),
β-actin (1:5000, Sigma-Aldrich), anti-phospho-myosin light
chain 2, anti-myosin light chain 2 (Cell Signaling Technology,
Danvers, MA, USA), and anti-caspase 3 (1:1000; Cell Signaling
Technology). Chemiluminescent imaging of bound antibodies
was performed with peroxidase-conjugated goat anti-rabbit IgG
or goat anti-mouse IgG antibodies, chemiluminescence substrate
Lumi-LightPLUS (Roche) and the FX7detection system (Vilber
Lourmat, Eberhardzell, Germany). Densitometry was carried out
with Image Studio Light (LI-COR Biosciences; NE, United States)
and values were normalized to β-actin that served as internal
loading control.

Immunofluorescence Staining and
Confocal Laser Scanning Microscopy
Monolayers were rinsed with PBS and fixed with 4% of
paraformaldehyde for 10 min at room temperature. After
permeabilization with 0.5% Triton X-100 monolayers were
blocked with 5% goat serum and 1% bovine serum albumin.
Immunostaining was carried out with primary antibodies for
anti-ZO-1 (1:100), anti-claudin-1, -4, -7 and -15 (all 1:100;
Thermo Fisher Scientific) at 4°C over night. Counterstaining
was performed using Alexa Fluor 488 goat anti-mouse and
Alexa Fluor 594 goat anti-rabbit IgG (1:1000; Thermo Fisher
Scientific) as described before (Luettig et al., 2016). Nuclei were
stained with 4′,6-Diamidin-2-phenylindol (DAPI) (1:5000).
Intensity and localization of claudins was analyzed by
confocal laser scanning microscopy (LSM 780, Zeiss, Jena,
Germany).

Freeze Fracture Electron Microscopy
Freeze fracture electron microscopy analysis was performed and
quantified as described elsewhere in detail (Krug et al., 2009).

Statistical Analyses
Statistical analysis was done using Student’s t-test and
Bonferroni-Holm adjustment in case of multiple comparison.
All data are expressed as mean ± SEM. p < 0.05 was considered
significant (*p < 0.05; **p < 0.01; ***p < 0.001 or #p < 0.05;
##p < 0.01; ###p < 0.001).

RESULTS

Stabilizing Effect of Punicalagin, Urolithin A
and Ellagic Acid on Barrier Properties of
Caco-2 Intestinal Cells
Punicalagin increased TER slightly from initial values in Caco-2
monolayers within 24h (Figure 1A; p < 0.05, p < 0.001 vs.
control). This TER increase could not be enhanced dose-
dependently (Figure 1A; p < 0.05 Puni 50 vs. 150 µM). In
contrast, the TER increase induced by urolithin A was more
pronounced (Figure 1B). While 25 µMwas not effective, doses up
to 100 µM UroA increased TER significantly from control
(Figure 1B; p < 0.001 vs. control). Higher doses than 100 µM
of urolithin A had no further increasing effects (Figure 1B).
Ellagic acid caused the strongest TER increase within 24 h. 50 µM
was as effective as 200 μMEA compared to control (Figure 1C;
p < 0.001 and p < 0.05 vs. control). Comparing the most effective
dose of each compound in one experiment proved ellagic acid
(150 µM) to induce the strongest TER increase in Caco-2
monolayers, followed by urolithin A (250 µM) and punicalagin
(10 µM) (Figure 1D; p < 0.001 vs. control and p < 0.001 vs. EA).
The TER increase induced by 150 µM ellagic acid was paralleled
by a permeability decrease of the 332Da marker molecule
fluorescein in Caco-2 monolayers (Figure 2A; p < 0.001 vs.
control). Neither 250 µM urolithin A nor 10 µM punicalagin
reduced fluorescein permeability (Figure 2A). Measurements
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of dilution potentials for sodium and chloride showed that
ellagic acid restricted sodium permeability, but not chloride
permeability in Caco-2 monolayers (Figure 2B; p < 0.001 vs.
control). The permeability ratios of sodium and chloride

(PNa/PCl) were reduced 3-fold from 28 ± 7 in control to 9 ± 1
in monolayers challenged with ellagic acid (p < 0.05 vs. control).

To analyze the barrier effect of ellagic acid in more detail, TJ
protein expression was examined after 24 h of challenging

FIGURE 1 | Impact of punicalagin, ellagic acid and urolithin A on transepithelial resistance (TER) in Caco-2 monolayers. Changes in TER from initial values were
measured at 24 h after challenging monolayers with different doses of (A) punicallagin (Puni) (p*<0.05, ***p < 0.001 vs. control; #p < 0.05 50 vs. 150 μM; n � 3–12) (B)
urolithin A (UroA) (***p < 0.001 vs. control; n � 3–12) or (C) ellagic acid (EA) (p*<0.05, **p < 0.01, ***p < 0.001 vs. control; n � 6–15) (D) Comparison of the most effective
dose of each compound on TER at 24 h after challenging (***p < 0.001 vs. control;###p < 0.001 vs. ellagic acid; n � 6–9).

FIGURE 2 | Ellagic acid decreases permeability to fluorescein and sodium in Caco-2 monolayers. Permeability measurements were performed in Ussing chambers
at 24 h after challenging. Ellagic acid (EA) reduces permeability to the (A) 332 Da marker molecule fluorescein (***p < 0.001 vs. control; n � 7–9) and (B) to sodium ions
(***p < 0.001 vs. control; n � 8) compared to untreated controls.
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FIGURE 3 | Ellagic acid reduces protein expression of TJ proteins claudin-4, -7 and -15 in Caco-2 monolayers (A) Representative Western blots and densitometry
show reduced expression of claudin-4, -7 and -15 in ellagic acid (EA)-challenged monolayers (p***<0.001 vs. control; n � 7–10) (B) Representative micrographs of
immunofluorescence staining show claudin-4, claudin-7 and claudin-15 in control and elllagic acid-challenged monolayers (green). ZO-1 served as TJ marker (red),
nuclei were DAPI stained (blue) (n � 3 each) (C) Representative freeze-fracture EM micrographs of control and ellagic acid-challenged monolayers show no
differences in TJ ultra-structure.
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monolayers with 150 µM ellagic acid. This reduced the protein
level of claudin-4, -7 and -15 (Figure 3A; p < 0.0001 vs. control),
but did not affect claudin-1, -2 or -3 and tricellulin (Figure 3A).
Claudin-5 and -8 were not expressed in our Caco-2 cells.
Expression down regulation of claudin-4, -7 and -15 obtained
from Western blot analyses were confirmed by confocal laser
scanning microscopy of immunostained Caco-2 monolayers. The
intensity of claudin-4, claudin-7 and claudin-15 signals was
reduced in monolayers challenged with 150 µM ellagic acid
(Figure 3B). Especially claudin-7 and -15 were only present in
single cells of the Caco-2 control monolayers. Ellagic acid
treatment reduced the number and frequency of these claudin-
7 or claudin-15 positive cells (Figure 3B). Overall TJ
ultrastructure was not influenced by ellagic acid.
Morphometric analyses of freeze fracture electron micrographs
revealed no alterations in TJ ultra-structure (Figure 3C). TJ
strand number (3.4 ± 0.2 vs. 3.2 ± 0.1 in control), density
(23 ± 3 vs. 22 ± 2 in control) and type, meshwork depth
(147 ± 17 vs. 143 ± 9 in control), and number of strand
breaks did not differ from control in ellagic acid-challenged
Caco-2 monolayers.

Signaling was studied by assessing different kinase inhibitors.
Although ellagic acid induced phosphorylation of p38 and
STAT3, specific phosphorylation inhibition of these kinases
could not impede the ellagic acid-stimulated TER increase
(data not shown). In contrast, inhibition of MLCK by PIK
prevented Myosin Light Chain 2 (MLC2) phosphorylation
and blocked the ellagic acid-induced TER increase

(Figure 4A; p < 0.001 vs. control). In parallel, PIK impeded
the ellagic acid-depended expression down-regulation of
claudin-4, -7 and -15 (Figure 4B; p < 0.05 PIK + ellagic acid
vs. ellagic acid alone). In PIK + ellagic acid co-treated
monolayers, protein levels did not differ from control
(Figure 4B).

Protective Effect of Urolithin A on
TNFα-Induced Barrier Loss in HT-29/B6
Cells
HT-29/B6 monolayers were challenged with the pro-
inflammatory cytokine TNFα that caused a TER drop of about
40% within 24 h (Figure 5A; p < 0.001 vs. control). Pretreatment
with 150 µM or 250 µM urolithin A partially reversed this TNFα-
induced decrease (p < 0.001 vs. TNFα), while both urolithin A
doses were comparably effective (Figure 5A). In contrast, 10 µM
punicalagin or 150 µM ellagic acid did not inhibit the TNFα-
induced TER decrease (Figure 5A). TNFα is well known to
upregulate expression of claudin-1 and -2 in HT-29/B6 cells.
Within the present study, pre-incubation with 150 µM urolithin
A prevented the TNFα-stimulated up-regulation of both claudins.
Western blotting showed an increase of about 40% in claudin-1
expression by TNFα (Figure 5B; p < 0.001 vs. control), while in
urolithin A co-treated monolayers expression remained at the
control level (Figure 5B). Claudin-2 protein level was increased
by TNFα about 50% from control values (Figure 5B; p < 0.01 vs.
control). Pre-treatment with urolithin A reduced claudin-2

FIGURE 4 | Ellagic acid strengthens barrier function via MLC2 signaling in Caco-2 monolayers (A) Pre-incubation with the MLCK specific inhibitor PIK impeded
ellagic acid (EA)-stimulated MLC2 phosphorylation and TER increase in Caco-2 monolayers at 24 h after challenge (p***<0.001 vs. control; n � 9)., (B) Representative
Western blots and quantification show that PIK inhibition blocked ellagic acid-stimulated down regulation of claudin-4, -7 and -15 in parallel (*p < 0.05; ***p < 0.001 vs.
control; #p < 0.05 ellagic acid vs. ellagic acid + PIK; n � 6–9).
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expression to 67% from control (Figure 5B; p < 0.05 vs. control).
Claudin-4 expression was not affected by TNFα or urolithin A
(Figure 5B).

Because TNFα causes epithelial apoptosis in HT-29/B6 cells,
effects of urolithin A on caspase-3 cleavage were examined by
Western blotting. As expected, TNFα enhanced caspase-3
cleavage compared to untreated controls (Figure 5C; p < 0.01
vs. control). Urolithin A did not reduce TNFα-induced caspase-3
cleavage, but seemed to stimulate it. However, this did not reach

statistical significance (Figure 5C). Beside expression regulation,
TNFα caused claudin-1 redistribution out off the TJ into
subapical compartments compared to untreated controls
(Figures 6A,B, indicated by white arrows in Figure 6B).
Representative micrographs of immunofluorescence staining
showed increased merging of claudin-1 with the TJ marker
protein ZO-1 in monolayers that were co-challenged with
TNFα and urolithin A (indicated by white arrows in
Figure 6C). In urolithin A-challenged monolayers, claudin-1

FIGURE 5 | Urolithin A antagonizes the TNFα–induced TER decrease and expression changes to claudin-1 and two in HT-29/B6 monolayers (A) 150 and 250 µM
urolithin A (UroA) partially prevented the TNFα-caused TER decrease in HT-29/B6 monolayers (***p < 0.001 vs. control; ###p < 0.001 TNFα vs. urolithin A + TNFα;
n � 6–12) (B) 150 µM urolithin A impeded TNFα-induced up-regulation of claudin-1 and -2 completely, as shown by representative Western blots and densitometry
(*p < 0.05, **p < 0.01, ***p < 0.001 vs. control; ##p < 0.01, ###p < 0.001 TNFα vs. urolithin A + TNFα or urolithin A; n � 5–8) (C) but 150 µM urolithin A did not prevent
caspases-3 cleavage caused by TNFα (**p < 0.01 vs. control; n � 5–6).
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intensity and localization appeared not different from control
(Figure 6D).

DISCUSSION

Epithelial barrier function is a key feature of intestinal health. The
present study examined the molecular mechanisms behind the
health claims of the bioactive polyphenol punicalagin and its
metabolites ellagic acid and urolithin A on epithelial barrier
function in vitro. Our data revealed that especially ellagic acid
and urolithin A affect barrier function in different ways in our
two cell models. Ellagic acid strengthened barrier function per se
by reducing the expression of pore-forming claudin-4, -7 and -15
via MLC2 signaling in ileum-like Caco-2 cells. Urolithin A
impeded the pro-inflammatory dysregulation and/or
redistribution of claudin-2 and -1 in colonic HT-29/B6 cells.
Punicalagin alone had only little or no effects on barrier function
in the two cell models.

The constitution of the epithelial TJ, particularly its
composition of pore-forming and sealing TJ proteins, is
crucial for intestinal barrier function. Barrier integrity can be
estimated by measuring TER and paracellular permeability of
differently sized molecules or ions. Especially in Caco-2 cells,

ellagic acid turned out to strengthen epithelial barrier function
per se, displayed by a strong increase in TER, reduction in
fluorescein and sodium permeability and down regulation of
claudin-4, -7 and -15 expression.

Tight junction ultra-structure was not changed as
demonstrated by freeze fracture electron microscopy.
Subsequently, barrier effects are not due to changes in overall
protein content but to TJ protein composition. Especially, the
downregulation of channel forming claudins seems rational.
Claudin-15 is predominantly expressed in the small intestine
(Inai et al., 2005; Fujita et al., 2006; Holmes et al., 2006) and forms
a paracellular cation- (Colegio et al., 2002; Van Itallie et al., 2003;
Samanta et al., 2018) and water-selective channel (Rosenthal
et al., 2020). Overexpression of claudin-15 in Caco-2 cells
caused a decrease in TER (Takehara et al., 2009). The
physiological function of claudin-4 and -7 is less clear as it is
not consistent and seems to depend on the interactions with other
TJ proteins and differs in different cell types and conditions
(Günzel and Fromm, 2012). Two studies on flavonoids in Caco-2
cells reported quercetin (Amasheh et al., 2008) or kaempferol
(Suzuki et al., 2011) to enhance barrier function by up-regulating
claudin-4 expression. In contrast, in a cell culture study on kidney
cells, claudin-4 was suggested to act as a chloride channel. Knock
down of claudin-4 resulted here in a decrease in PNa/PCl, which

FIGURE 6 | Effect of Urolithin A on TNFα-caused claudin-1 delocalization in HT-29/B6 monolayers. Localization of claudin-1 was studied by confocal laser
scanning microscopy in (A) control (B) TNFα (C) urolithin A (UroA) +TNFα and (D) urolithin A-challenged monolayers. Merging of claudin-1 (green) with the TJ marker
protein ZO-1 (red) was assessed by z-stack imaging, nuclei are DAPI stained (blue). TNFα caused delocalization of claudin-1 (indicated by white arrows in (B)), while
parallel Urolithin A treatment enhanced claudin-1-ZO-1 merging (indicated by white arrows in (C)). Bars indicate 5 µm.
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was paralleled by an TER increase (Hou et al., 2010). In an
epithelial co-culture model of Caco and HT29-MTX cells, a
decrease in TER induced by oxidative stress was associated
with an increase in claudin-7 (Bianchi et al., 2019). In kidney
cells, claudin-7 overexpression was associated with a decrease in
PCl and an increase in PNa (Alexandre et al., 2005). Taken
together, it seems rational that especially the reduction of
claudin-15 and claudin-7 are responsible for the decrease in
sodium permeability and the TER increase in ellagic acid-
challenged Caco-2 monolayers.

Ellagic acid enhanced the phosphorylation of STAT3, p38
and MLC2 in Caco-2 cells. However, only inhibition of MLC2
phosphorylation by the MLCK-inhibitor PIK impeded the
ellagic acid-stimulated TER increase, suggesting a central role
of MLC2 in ellagic acid-dependent barrier regulation.
Phosphorylation of the MLC2 by MLCK is linked to
actomyosin contraction and TJ regulation (Turner et al.,
1999; Zolotarevsky et al., 2002; Shen et al., 2006). We
showed that phosphorylation inhibition of MLC2 impeded
the ellagic acid-induced TER increase and down-regulation of
claudin-4, -7 and -15. So far, the role of non-muscle MLCK and
MLC2 for barrier function was predominantly discussed with
respect to TNFα-caused barrier loss (Zolotarevsky et al., 2002;
Wang et al., 2006; Ye and Ma, 2008). Iglesias et al., recently
showed ellagic acid to inhibit TNFα-stimulated MLC2
phosphorylation (Iglesias et al., 2020). In contrast, our data
show the activation of MLCK/MLC2 in a none-inflammatory
state and suggest that MLC2-triggered TJ regulation is not
necessarily related to barrier loss as it seems to depend on
the specific type of TJ protein affected.

Within the present study, the impact of punicalagin, ellagic
acid and urolithin A on inflammation-induced barrier
dysfunction was examined in the HT-29/B6 cell culture model,
which is a very well-studied inflammation model and more
sensitive to TNFα than Caco-2 cells. TNFα is known to up-
regulate the expression of sealing claudin-1 and channel forming
claudin-2, at which claudin-1 is additionally redistributed from
the TJ in HT-29/B6. Together with enhanced epithelial apoptosis,
these TJ changes are reported to critically contribute to the TNFα-
caused barrier loss (Gitter et al., 2000; Mankertz et al., 2009;
Amasheh et al., 2010). In contrast to urolithin A, neither
punicalagin nor ellagic acid were effective to inhibit the
TNFα-induced TER drop in HT-29/B6. Moreover, urolithin A
impeded up-regulation of caudin-1 and -2 and seemed at least
partially to prevent redistribution of claudin-1. These effects of
urolithin A are very similar to effects we observed in a former
study on the ginger-derived pungent component 6-shogaol that
also impeded the TNFα-induced up-regulation of claudin-2 and
disassembly of claudin-1 (Luettig et al., 2016). Furthermore,
TNFα enhances epithelial apoptosis contributing to epithelial
leakiness (Gitter et al., 2000). Urolithin A did not inhibit TNFα-
caused epithelial apoptosis in HT-29/B6, but even seemed to
stimulate it slightly. This is in concordance with other studies that
showed ellagitannins from pomegranate and urolithin
metabolites to inhibit proliferation and to induce apoptosis in
HT-29 cells (Kasimsetty et al., 2010).

These very distinct effects of punicalagin, ellagic acid and
urolithin A on intestinal barrier function in the two cell models
seem rational, because the bioavailability of these compounds
differs along the intestine. Punicalagin was reported to be
hydrolyzed already during the stomach passage where it yields
ellagic acid. Punicalagin itself probably does not reach the
intestine in high amounts, while ellagic acid might
predominantly interact with the enterocytes of the ileum. As
reported from clinical trials, ellagic acid was not detected in high
amounts in the colonic mucosa (Nuñez-Sánchez et al., 2014). In
contrast, an increasing gradient of urolithins from the jejunum to
the distal colon was described in an animal study (Espín et al.,
2007). So far, only very few studies addressed the question, how
much punicalagin has to be ingested to reach effective intestinal
concentrations of ellagic acid or urolithin A. In the present study,
the effects seemed to depend on the optimal dosage, which was
figured out for each compound. González-Sarrías et al. simulated
gastrointestinal digestion of pomegranate extracts yielding
around 500 µM ellagic acid, while plasma concentrations
remained low at 100 nM (Nuñez-Sánchez et al., 2014).
Subsequently, there are more studies needed to elucidate
dosage, intestinal side of conversion, and bioavailability of
these components in vivo.

CONCLUSION

Our study reveals that the punicalagin metabolites ellagic acid
and urolithin A have a protective impact on barrier function
in vitro. These findings support the hypothesis that
therapeutically application might act preventive by
strengthening and protecting the epithelial barrier in case of
diarrhea or inflammation. Moreover, the characterization of these
compounds might be of interest for the development of
multimodal functional food in the future.
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