
Ferulic Acid Ameliorates
Atherosclerotic Injury by Modulating
Gut Microbiota and Lipid Metabolism
Yuyan Gu1†, Yaxin Zhang1†, Mei Li 2†, Zhiyong Huang3, Jing Jiang1, Yihao Chen1,
Junqi Chen3, Yuhua Jia1, Lihua Zhang4* and Fenghua Zhou1*

1School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, 2VIP Healthcare Center, Third Affiliated
Hospital of Sun Yat-sen University, Guangzhou, China, 3Department of Otolaryngology, The Third Affiliated Hospital of Southern
Medical University, Guangzhou, China, 4Department of Gynaecology, Integrated Hospital of Traditional Chinese Medicine,
Southern Medical University, Guangzhou, China

Atherosclerosis is a leading cause of death worldwide. Recent studies have emphasized
the significance of gut microbiota and lipid metabolism in the development of
atherosclerosis. Herein, the effects and molecular mechanisms involving ferulic acid
(FA) was examined in atherosclerosis using the ApoE-knockout (ApoE-∕-, c57BL/6
background) mouse model. Eighteen male ApoE−/− mice were fed a high-fat diet (HFD)
for 12 weeks and then randomly divided into three groups: the model group, the FA
(40 mg/kg/day) group and simvastatin (5 mg/kg/day) group. As results, FA could
significantly alleviate atherosclerosis and regulate lipid levels in mice. Liver injury and
hepatocyte steatosis induced by HFD were also mitigated by FA. FA improved lipid
metabolism involving up-regulation of AMPKα phosphorylation and down-regulation of
SREBP1 and ACC1 expression. Furthermore, FA induced marked structural changes in
the gut microbiota and fecal metabolites and specifically reduced the relative abundance of
Fimicutes, Erysipelotrichaceae and Ileibacterium, which were positively correlated with
serum lipid levels in atherosclerosis mice. In conclusion, we demonstrate that FA could
significantly ameliorate atherosclerotic injury, which may be partly by modulating gut
microbiota and lipid metabolism via the AMPKα/SREBP1/ACC1 pathway.
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INTRODUCTION

Cardiovascular and cerebrovascular diseases, which mainly develop from atherosclerosis, have
become the leading cause of death worldwide, especially in developed countries (Liu et al., 2019).
Atherosclerosis is characterized by excessive cholesterol deposition within the intima, especially in
the aorta and coronary artery. A lipid metabolism disorder has been considered the key pathological
mechanism involved in the pathogenesis of atherosclerosis.
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Cholesterol has been considered the primary promoter of
atherosclerosis development for nearly a century. The
atherosclerotic plaque, derived from passive lipid accumulation
within the artery wall, is the most significant pathological change
of atherosclerosis visible under the microscope (Luo et al., 2015).
AMP-activated protein kinase (AMPK), a key regulator of lipid
and energy metabolism, can improve lipid metabolism, including
lipogenesis, lipolysis, lipid transport, and lipid oxidation (Ma
et al., 2017; Park et al., 2017). AMPK not only reduces lipogenesis
by activating sterol regulatory element binding protein 1
(SREBP1) and acetyl-CoA carboxylase (ACC) (Jung et al.,
2012; Park et al., 2017), but also regulates lipid transport by
mediating reverse cholesterol transport (Ma et al., 2017).
Furthermore, AMPK modulates lipid oxidation through the
AMPK/proliferator-activated receptor-γ coactivator 1α/
peroxisome proliferator-activated receptor α (PPARα) pathway
(Araújo et al., 2020).

The gut microbiota is an important part of the gut
microenvironment. Recently, a growing body of evidence
has revealed that the gut microbiota is closely associated
with the development of atherosclerosis (Tang et al., 2019).
The gut microbiota and its products can regulate lipid
metabolism and the immune system, which play key roles
during the progression of atherosclerosis (Jonsson and
Bäckhed, 2017). Oral administration of probiotics, such as
Lactobacillus, not only prevents atherosclerosis, but also
regulates the expression of AMPK, SREBP1, ACC, ATP-
binding cassette transporter A1 (ABCA1), ATP-binding
cassette transporter G1, peroxisome proliferator-activated
receptors, and liver X receptor (LXR), factors that
associate with lipid metabolism in mice fed a high-fat diet
(HFD) (Zhao et al., 2019). Furthermore, the products of the
gut microbiota, such as short chain fatty acids (SCFAs) and
amino acids, absorbed from bowel and transported to the
liver, can modulate energy homeostasis and lipid metabolism
(Araújo et al., 2020; Deroover et al., 2017; Zhang et al., 2007).
Taken together, the gut microbiota may exert an important
role in the development of atherosclerosis, although the
mechanism still remains unclear.

Ferulic acid (FA) belongs to the family of phenolic acids
and is abundant in Angelica sinensis (Oliv.) Diels and
Ligusticum chuanxiong. Previous studies have reported
that FA relieved atherosclerosis through antioxidant, anti-
hyperlipidemic, and anti-inflammatory effects (Chmielowski
et al., 2017). However, the exact pharmacological
mechanisms involved remain to be clarified. Recently,
researchers have shown that FA modulates the gut
microbiota composition in mice presenting nonalcoholic
fatty liver disease and increased levels of intestinal
Lactobacillus in the transverse aortic constriction mouse
model (Liu et al., 2019; Ma et al., 2019). Nonetheless,
whether FA could regulate gut microbiota composition
and metabolism in atherosclerosis has not been reported.
Therefore, we aimed to investigate the effects of FA on the gut
microbiota and lipid metabolism in the atherosclerotic mice
and clarify its molecular mechanism.

MATERIALS AND METHODS

Materials and Reagents
FA (purity >98.00%) was purchased from Chengdu Mansite
Biotechnology Co., Ltd. (China)., and simvastatin tablets from
Hangzhou MSD Pharmaceutical Co., Ltd. (China). Antibodies
against phosphorylated-AMPKα/AMPKα, ACC1, GAPDH, and
goat anti-rabbit antibodies were purchased from Affinity
Biosciences Ltd (USA). Antibodies against SREBP1 were
obtained from Beijing Bioss Biotechnology Co., Ltd (China),
and DyLight 488/549, goat anti-rabbit lgG was from Abbkine
Scientific Co., Ltd. (United States). Assay kits for Masson
trichrome and Oil Red-O (ORO) staining, triglycerides (TG),
and reagent kits for assessing total cholesterol (TC), low density
lipoprotein-cholesterol (LDL-C), and high density lipoprotein-
cholesterol (HDL-C) were purchased from NanJing JianCheng
Bioengineering Institute (China). SYBR Green qPCR Supermix,
PrimeScript™ RT reagent Kit with gDNA Eraser were purchased
from Takara Bio Inc. (Japan). GoTaq® qPCR Master Mix was
obtained from Vazyme-innovation in enzyme technology
(China), primers for GAPDH, ABCA1, LXRα, SREBP1,
AMPK, ACC1, fatty acid synthase (FASN) and stearoyl-CoA
desaturase-1 (SCD1) were from Shanghai Sangon Biotech Co.,
Ltd. (China).

Animal Models
The following experiments were approved by the Animal Care
and Use Committee of Southern Medical University. Eighteen
eight-week-old male ApoE−/− (c57BL/6 background) and six
eight-week-old male c57BL/6 mice were purchased from Vital
River Laboratories Co., Ltd., which distributed originally from
The Jackson Laboratory. ApoE−/−mice were fed with a HFD (21%
fat +0.15% cholesterol), while c57BL/6 mice were fed a common
diet. After 12 weeks, 18 ApoE−/−mice were randomly divided into
groups treated as follows: the model group (n � 6), the FA group
(40 mg/kg/day) (n � 6), the simvastatin group (5 mg/kg/day) (n �
6), and six c57BL/6 mice served as the control group. FA and
simvastatin were administered by gavage 5 days per week for 12
weeks. The mice in the control and model groups were given an
equal volume of saline. All mice were housed in a controlled
environment (22 ± 2°C, in 55 ± 5% relative humidity, with a 12-h
light/dark cycle) and given water and food ad libitum. Mice were
weighed every 4 weeks.

Serum Biochemical Analysis
Mice were anesthetized with chloral hydrate (10 mg/kg) and
blood samples were collected by cardiac puncture after fasting
for 12 h. Serum levels of SOD, MDA, LDH, AST, ALT, TC, TG,
LDL-C, and HDL-Cwere measured using the respective assay kits
following the manufacturer’s instructions.

Tissue Staining
The heart, aorta, and liver of mice were collected and histological
sections were prepared. Frozen sections of the aortic root and
liver were subjected to ORO staining and Masson trichrome
staining following the protocols indicated by the manufacturers.
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Paraffin-embedded sections of aortic and liver tissue slices were
stained with hematoxylin and eosin (H&E).

Quantitative Real-Time PCR
Total RNA was extracted from the mice liver, and cDNA was
synthesized using PrimeScript™ RT reagent Kit according to the
manufacturer’s protocol. GAPDH was used as an internal
control. The primer sequences of the target genes are shown
in Table 1. The reaction conditions were as follows: 95°C pre-
denaturation for 10 min; 95°C denaturation for 10 s, annealing at
60°C for 15 s, for a total of 40 cycles, followed by melting curve
analysis, 95°C for 15 s, 60°C for 15 s, and 95°C for 15 s. ThemRNA
levels were calculated using the 2−ΔΔ CT method.

Western Blotting
Liver protein was quantified using the BCAmethod. Total protein
(60 μg) was resolved by 10% SDS-PAGE and transferred to PVDF
membranes. After blocking at room temperature (RT) for 2 h in
0.5% BSA, membranes were incubated with primary antibody at
1:500 overnight at 4°C, and then washed with TBST 3 times.
Membranes were incubated with secondary antibody at 1:3,000
for 2 h at RT. Protein bands were detected by ECL and analyzed
using Image J software.

Immunofluorescence
Frozen sections were fixed with 4% paraformaldehyde for
30 min at RT. After permeating with 0.3% Triton X-100 for
10 min, sections were blocked with 10% goat serum for 1 h at
RT and incubated with primary antibodies (1:250) overnight at
4°C. Sections were incubated with secondary antibody (1:400) in
the dark for 2 h at RT, following staining of nuclei with DAPI for
10 min. Sections were then photographed by fluorescence
microscopy.

Gut Microbiota Analysis
At the end of 12 weeks of treatment, fresh fecal samples (5–8
pellets/mouse) were collected one day before the sacrifice of mice
and stored at −80°C. Total genomic DNA was extracted using

MOBIO PowerSoil® DNA Isolation Kit (MOBIO Laboratories,
Carlsbad, CA, United States). The V3–V4 region of 16S rRNA for
each species was amplified using forward primer 338F (5′-
GGACTACHVGGGTWTCTAAT-3′) and reverse primer 806R
(5′-ACTCCTACGGGAGGCAGCA-3′). PCR reactions,
containing 25 μl 2x Premix Taq, 1 μl each primer (10 mM)
and 3 μl DNA (20 ng/μl) template in a volume of 50 µl, were
amplified by thermocycling: 5 min at 94°C for initialization; 30
cycles of 30 s denaturation at 94°C, 30 s annealing at 52°C, and
30 s extension at 72°C; followed by 10 min final elongation at
72°C. After detecting by 1% agarose gel electrophoresis, PCR
products were mixed in equidensity ratios according to the
GeneTools Analysis Software (Version4.03.05.0, SynGene).
Then, mixture PCR products were purified with EZNA Gel
Extraction Kit (Omega, United States). Sequencing libraries
were generated using NEBNext® Ultra™ DNA Library Prep
Kit for Illumina® (New England Biolabs, MA, United States).
The library quality was assessed on the Qubit@ 2.0 Fluorometer
(Thermo Fisher Scientific, MA, United States) and Agilent
Bioanalyzer 2100 system (Agilent Technologies, Waldbron,
Germany). At last, Libraries were sequenced on an
IlluminaHiseq 2500 platform (Guangdong Magigene
Biotechnology Co., Ltd. Guangzhou, China). Sequencing data
were uploaded to NCBI database, and the accession number is
PRJNA678598.

The paired-end raw reads were quality filtered using
Trimmomatic (V0.33). Paired-end clean reads were merged
using FLASH (V1.2.11). Sequences were assigned to each
sample based on their unique barcode and primer using
Mothur software (V1.35.1). According to usearch software
(V10), sequences with ≥97% similarity were assigned to the
same operational taxonomic units (OTUs) (Fan et al., 2019).
After singleton OTU, chimera, and contamination OTU removal,
OTUs were normalized. For each representative sequence, the
silva (https://www.arb-silva.de/) database was used to annotate
taxonomic information (set the confidence threshold to default to
≥0.5). Next, QIIME (V1.9.1) was used to calculated Alpha (α)
diversity including the value of Chao1, Shannon and Simpson.

TABLE 1 | Primer sequences for quantitative real-time PCR amplification.

Gene name Gene number Sequence 59–39

GAPDH XM_036165840.1 Forward: 5′-AGGTCGGTGTGAACGGATTTG-3′
Reverse: 5′-TGTAGACCATGTAGTTGAGGTCA-3′

AMPK NM_001384157.1 Forward: 5′-GAGGTTCACAGTGCCCTTCT-3′
Reverse: 5′-TGGGGTTTCATTGGACTGCT-3′

SREBP1 XM_036156491.1 Forward: 5′-GCAGCCACCATCTAGCCTG-3′
Reverse: 5′-CAGCAGTGAGTCTGCCTTGAT-3′

ACC1 XM_036156218.1 Forward: 5′-ATGGGCGGAATGGTCTCTTTC-3′
Reverse: 5′-TGGGGACCTTGTCTTCATCAT-3′

LXRα XM_006499168.4 Forward: 5′-CTCAATGCCTGATGTTTCTCCT-3′
Reverse: 5′-TCCAACCCTATCCCTAAAGCAA-3′

ABCA1 XM_006537554.2 Forward: 5′-GCTTGTTGGCCTCAGTTAAGG-3′
Reverse: 5′-GTAGCTCAGGCGTACAGAGAT-3′

SCD1 NM_009127.4 Forward: 5′-TTCTTGCGATACACTCTGGTGC-3′
Reverse: 5′-CGGGATTGAATGTTCTTGTCGT-3′

FASN XM_030245556.1 Forward: 5′-GGAGGTGGTGATAGCCGGTAT-3′
Reverse: 5′-TGGGTAATCCATAGAGCCCAG-3′
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Beta (β) diversity was evaluated by principal coordinate analysis
(PCoA) on unweighted UniFrac distance matrix. Non-parametric
multivariate analysis of variance (adonis) using distance matrices
were performed by R software.

Fecal Metabolomic Analysis
Fecal samples were collected and the supernatants were loaded
onto a nuclear magnetic resonance (NMR) tube and sealed using
a 3 KDa Millipore Amicon® ULTRA. NMR spectroscopy data
were collected on a Bruker AV III 600 MHz spectrometer under
the following conditions: temperature (K): 298.03, NMR
frequency (MHz): 600.20, transients (scans): 128, frequency
domain size: 131,072, spectral width: 8,403.361, time domain
size: 65,536, and pulse sequence: noesygppr1d. Next, data was
normalized using Pareto scaling and analyzed using partial least
square-discriminant analysis (PLS-DA). Variable Importance in
Projection (VIP) scores were used to select differential
metabolites between groups. Candidate metabolites having
VIP> 1 and p < 0.05 were selected as potential biomarkers.

Statistical Analysis
Differential levels of serum biochemical variables, plaque area,
mRNA, protein, the relative abundance of gut microbiota and the
segmented integration of metabolites were analyzed using
graphpad prsim 8 (GraphPad Software, Inc. USA). Part of the
16S rRNA analysis was carried out in R software. Spearman
correlation was analyzed using software SPSS 22.0 (IBM SPSS
Statistics, IL, USA). All data was expressed as mean ± S.E.M. One-

way ANOVA and T-test were used when data accorded with
normal distribution and homogeneity of variance. Welch’s
ANOVA and Welch-corrected T-test were used when data
accorded with normal distribution but no homogeneity of
variance. A p-value < 0.05 indicated that the difference was
statistically significant.

RESULTS

FA Regulated Lipid Levels in HFD-fed
ApoE−/− Mice
The chemical structure of FA is shown in Figure 1A. Firstly,
we found that FA administration resulted in less body weight
gain between the 16th and 20th week (Figure 1B; p < 0.05). In
Figure 1D, there was a significant increase in TC, TG, and
LDL-C levels in model mice compared to control mice.
However, the HDL-C level showed no significant
differences in the model and control group. Specifically,
both FA and simvastatin markedly decreased levels of TC,
TG, and LDL-C (p < 0.05). Aherogenic index (AI) was used to
evaluate the risk of developing cardiovascular diseases (Sasso
et al., 2019). We found that the AI was significantly higher in
the model group than that in the control group, while FA
could significantly reduce the AI (2.17-fold; p < 0.05;
Figure 1E). Results were similarly in the simvastatin
group. In summary, the result suggests that FA could
greatly regulate lipid levels in ApoE−/− mice.

FIGURE 1 | FA regulated lipid levels in HFD-fed ApoE−/−mice (A) Chemical structure of FA. (B) The change of body weight. (C) Abdominal adipose weight of mice.
(D) Levels of serum lipids (TC, TG, LDL-C, HDL-C) in per group. (E)Atherogenic index of various groups. Control group (C), model group (M), Ferulic acid treatment group
(FA), simvastatin treatment group (S). n � 4. *p < 0.05, **p < 0.01; as compared to the control group. #p < 0.05; as compared to the model group.
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FA Reduced Atherosclerosis Injury in
ApoE−/− Mice
To evaluate the effects of FA on atherosclerotic plaque
formation, the lesion area at the aortic sinus was
calculated. Compared with control mice, there were
obvious atherosclerotic plaques in ApoE−/− mice (Figures
2A–C; p < 0.01). However, FA significantly reduced the
plaque size by 1.70-fold (p < 0.05) compared with the
model group. There was no significant difference between
FA and simvastatin group. Moreover, FA also stabilized the
lesion by increasing the collagen content of fibers
(Figure 2A). Meanwhile, H&E staining showed that FA
thickened the aortic intima with concomitant thinning of
the smooth muscle layer in ApoE−/− mice. The above results
indicate that FA treatment could greatly relieve
atherosclerosis injury and delay plaque deterioration.

FA Improved Fatty Liver Injury in ApoE−/−

Mice Induced by HFD
Long term HFD not only accelerates the progression of
atherosclerosis, but also induces redundant lipid
deposition in the liver. The liver weight and liver index in
model mice was much higher than that in control mice.

Compared with model mice, FA and simvastatin
significantly reduced the liver weight and index
(Figure 3B; p < 0.01). Lipid content was also reduced by
46.3% after FA treatment compared with that in model mice
(Figure 3D; p < 0.01). Meanwhile, FA and simvastatin greatly
reduced serum AST and ALT activities (Figure 3C; p < 0.01).
It is well known that oxidative stress, which could also be
induced by the HFD, is closely associated with liver damage.
Here, we found that the activity of MDA and LDH in model
mice was much higher than that in control mice, while SOD
was lower (p < 0.01). FA significantly reduced the activity of
MDA and LDH as well as increased that of SOD (Figure 3E;
p < 0.05). Overall, these results suggest that FA could relieve
fatty liver damage in ApoE−/− mice fed on HFD.

FA Regulated the Expression of Lipid
Metabolites-Related Genes in Mice Liver
To explore the underlying mechanism of FA on lipid
metabolism, the related genes and protein were evaluated.
Firstly, we found that the mRNA expression of SREBP1 (1.86-
fold), ABCA1 (2.03-fold), and ACC1 (3.03-fold) was greatly
increased in model mice, while the AMPK (0.29-fold) and
FASN (0.38-fold) were significantly decreased, compared

FIGURE 2 | FA reduced atherosclerosis injury in ApoE−/−mice (A) H&E staining of aorta (100×), Oil Red O and Masson staining of aortic root (40×). (B)Quantitative
analysis of plaque area in aortic root (n � 3). (C) Quantitative analysis of collagen fibers in aortic root (n � 3). *p < 0.05, **p < 0.01; as compared to the control group.
#p < 0.05; as compared to the model group.
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with those in control mice (Figures 4A–G; p < 0.05). FA
significantly reduced the mRNA levels of SREBP1 (0.30-fold,
p < 0.05), ACC1 (0.42-fold, p < 0.05) and increased that of
AMPK (41.33-fold, p < 0.01). However, no obvious difference
was observed in the expression of LXRα, ABCA1, FASN or
SCD1. Compared with control mice, the phosphorylation of
AMPKα was greatly inhibited by 0.45-fold in model mice,
while that of ACC1 increased by 1.62-fold (p < 0.05). The
expression of SREBP1 in the liver was up-regulated 1.87-fold
(p < 0.05). Compared with model mice, the FA markedly
increased protein levels of AMPKα and phosphorylated-
AMPKα by approximately 3.43-fold, 2.93-fold and reduced
levels of SREBP1, ACC1 protein by 0.79-fold, 0.14-fold,
respectively (Figures 5A,B; p < 0.05). Moreover,
immunofluorescence assays showed a similar trend with
western blotting in these target proteins (Figure 5C).

Simvastatin also increased the protein level of AMPKα and
decreased that of ACC1, which showed no difference
compared with FA. Taken together, the above data
indicated that FA regulated lipid metabolism by
modulation of lipid metabolism-related genes, partly via
the AMPKα/SREBP1/ACC1 signaling pathway.

Effect of FA on Gut Microbiota in ApoE−/−

Mice
The effect of FA on composition of gut microbiota was
analyzed by 16S rRNA sequence technology and
multivariate analysis. A total of 957951 clean reads were
obtained from 20 fecal samples (47897.55 ± 8,437.66 clean
reads per sample). After data processing, a total of 623 OTUs
(375.10 ±38.65 OTUs per sample) were obtained and then

FIGURE 3 | FA improved fatty liver injury in ApoE−/−mice induced by HFD. (A) H&E staining of liver paraffin sections, ORO staining of liver sections (200×). (B) Liver
weight, liver coefficent in various groups (n � 4). (C) The level of ALT and AST in serum (n � 4). (D)Quantitative analysis of Oil red O in liver (n � 3). (E) The change of serum
SOD, LDH, MDA in various groups (n � 4). *p < 0.05, **p < 0.01; as compared to the control group. #p < 0.05, ##p < 0.01; as compared to the model group.
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diversity comparison was performed. In our study, there was
a marked increase in Shannon values (p < 0.05) but no
significant difference in Chao1 (p � 0.18) and Simpson
values (p � 0.20) in FA group compared with the model
group (Figures 6B–D). As shown in Figure 6A, the
unweighted PCoA plot revealed that the cluster from FA
group was more similar to model group rather than
control group.

To assess the role of FA in gut microbiota, the composition
of bacteria was analyzed. At the phylum level, Fimicutes and
Bacteroidetes were the dominant bacteria in mice. The HFD
resulted in a higher abundance of Fimicutes and a lower
abundance of Bacteroidetes (p < 0.05), while FA treatment
reduced the abundance of Fimicutes (p < 0.05) and increased
that of Bacteroidetes (Figures 7A,B; p � 0.17). At the family
level, the relative abundance of Erysipelotrichaceae was much
higher in the model mice than in control mice and FA could
obviously reduce it (p < 0.05). In addition, the relative
abundance of Ruminococcaceae was significantly higher in
the FA group than that in the model group (Figures 7C,D; p <
0.05). At the genus level, the relative abundance of
Ileibacterium was significantly lower in the FA group than
in the model group (p <0.05). Conversely, the relative
abundance of Lactobacillus tended to increase by FA
(Figures 7E,F; p � 0.28). Simvastatin showed no impact on
the gut microbiota composition compared with model group.
Briefly, the results indicate that FA could influence the
composition and structure of gut microbiota.

FA Could Modulate the Fecal Metabolites in
ApoE−/− Mice
To evaluate whether FA could affect fecal metabolites, we
measured the fecal metabolites by 1H NMR. The PLS-DA plot
showed an excellent separation of the control and model groups,
while FA treatment decreased the distance (Figure 8A).
Furthermore, based on the VIP value and statistics analysis,
FA could up-regulate cholate and down-regulate acetate and
alanine (p < 0.05) compared with model group. There was no
significant difference in other metabolites such as leucine,
butyrate, propionate, and valine (p >0.05, Figures 8B–D).
Simvastatin showed no regulation in these metabolites
compared with model group. Together, the above data suggest
that FA treatment modulated the fecal metabolites in
ApoE−/− mice.

Correlation Between Gut Microbiota and
Atherosclerosis
Spearman correlation analysis was used to further examine the
possible connection between gut microbiota and
atherosclerosis. As shown in Figure 9, the relative
abundance of Fimicutes, Erysipelotrichaceae, Ileibacterium
was positively correlated with atherosclerotic plaque area
(p < 0.05) and serum lipid level (p < 0.05), while
Bacteroidetes was negatively correlated with serum level TC
(p < 0.05). Furthermore, the metabolites of gut microbiota
including acetate, alanine were positively correlated with the

FIGURE 4 | The effect of FA on lipid metabolism related genes in liver (A)–(G) Relative mRNA expression of genes related to lipid metabolism in the liver, including
LXRα, ABCA1, AMPK, SREBP1, ACC1, SCD1, FASN (n � 4). *p < 0.05; as compared to the control group. #p < 0.05, ##p < 0.01; as compared to the model group.

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 6213397

Gu et al. Ferulic Acid Ameliorates Atherosclerotic Injury

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


plaque area and serum lipid level (p < 0.05), while cholate was
not significantly correlated with those. Notably, acetate,
alanine was also positively correlated with the relative
abundance of Fimicutes and Erysipelotrichaceae.

DISCUSSION

The present study was designed to determine the impact of FA on
atherosclerosis in ApoE−/− mice. We found that FA could
markedly alleviate atherosclerotic injury in mice. Meanwhile,
FA treatment could not only reduce redundant lipid
deposition both in the aorta and liver, but also modulate gut
microbiota and its metabolites. Moreover, the modulation of FA
on the gut microbiota also showed a correlation with

atherosclerotic injury. Further study indicated that FA could
regulate lipid metabolism, mainly through regulating the lipid
metabolism-related genes via the AMPKα/SREBP1/ACC1
pathway. Collectively, FA improved atherosclerosis partly
through modulation of gut microbiota and lipid metabolism
via AMPKα/SREBP1/ACC1 pathway (Figure 10).

Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong has
been used in Chinese clinical medicine for more than 2000 years.
FA is the main ingredient of both herbs. FA is mainly absorbed in
stomach and small intestine after oral administration (Mo et al.,
2012). Although FA hardly reaches the cecum, it can be
metabolized into three products including cafferic acid,
Hydrogenated FA and Demethoxylated FA by the gut
microbiota (Zhang et al., 2014). The cafferic acid ameliorates
colitis in association with increased Akkermansia population in

FIGURE 5 | FA regulated the expression of lipid metabolites-related Proteins in HFD-fed ApoE−/−mice (A), (B) Protein expression of AMPKα, P-AMPKα, SREBP1,
ACC1 in liver (n � 3), (C) inmmunofluorescence staining of ACC1, SREBP1 in Liver sections (200 ×). *p < 0.05; as compared to the control group. #p < 0.05, ##p < 0.01; as
compared to the model group.
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FIGURE 6 | FA increased species diversity of gut microbiota in ApoE−/− mice (A) PCoA analysis based on unweighted Unifrac metrics for all samples at the OTU
level (n � 5). (B–D) Diversity of gut microbiota samples from mice, including Chao1, Shannon and Simpson values (n � 5). #p < 0.05; as compared to the model group.

FIGURE 7 | The Effect of FA on gut microbiota composition in ApoE−/− mice (A) Relative abundances at phylum level. (B) Relative abundances of Firmicutes and
Bacteroidetes (n � 5). (C) Relative abundances at family level. (D) Relative abundances of Erysipelotrichaceae and Ruminococcaceae (n � 5). (E) Relative abundances at
genus level. (F) Relative abundances of Ileibacterium and Lactobacillus (n � 5). *p < 0.05; as compared to the control group. #p < 0.05; as compared to the model group.
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FIGURE 8 | The Effect of FA on gut microbiota metabolite in ApoE−/− mice. (A) The PLS-DA Scores plots in per group. (B) One-way ANOVA plots of metabolite
among groups. The metabolite above the horizontal line had a difference among groups with p < 0.05. (C) The metabolites with VIP values >1.0 were regarded as
important. Red and blue indicated increased and decreased levels, respectively. (D) The content of differential metabolites (acetate, leucine, butyrate, propionate,
Cholate, valine, Glutamate and alanine) among groups (n � 4). #p < 0.05; as compared to the model group.

FIGURE 9 | Correlations between gut microbiota and atherosclerosis. Spearman correlation analysis (heatmap) was used to analyze the correlations between gut
microbiota and physiological indices including serum levels of lipids and plaque area. The correlation analysis value was represented by colors of grids. Red stood for
positive correlation and blue for negative correlation. The deeper red or blue represented higher correlation values. *p < 0.05, **p < 0.01.
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the gut microbiota of mice (Zhang et al., 2016). The effect of
cafferic acid on hepatocellular carcinoma may be related to the
modulation of the gut microbiota and metabolites (Zhang et al.,
2017). FA itself has been identified to modulate the gut
microbiota in previous studies (Liu et al., 2019; Ma et al.,
2019), which is consistent with our finding here. These studies
suggest that FA could possibly influence the gut microbiota
through its product, mainly cafferic acid. The effect of FA on
atherosclerosis has been reported in the previous study
(Chmielowski et al., 2017). In our present study, we found FA
not only reduced the plaque area in the aortic sinus comparably
with the effect of simvastatin, but also increased the content of
fiber collagen to stabilize the plaque. This finding is consistent
with another study (Kwon et al., 2010). The results indicated that
FA slowed the progression of atherosclerosis in ApoE−/− mice.

Atherosclerosis is a crucial underlying pathology of cardiovascular
diseases, and is the leading cause of death worldwide (Liu et al., 2019).
Atherosclerosis, which is characterized by atherosclerotic plaque
deposits within the aortic intima, develops from lipid disorder and
results in vascular stenosis-related diseases, including acute coronary
syndrome, heart failure, and stroke. A series of studies has
demonstrated that improving lipid metabolism is an effective
intervention for atherosclerosis (Ou et al., 2018). Statins have been
used as the first-line medicine for patients with atherosclerosis for
several decades; however, their side effects, such as myolysis and
kidney injury, should not be ignored. Herein, we show that FA
treatment significantly decreased the serum level of TC, TG, and
LDL-C in mice. The lipid-lowering effect of FA is consistent with
previous studies (Kwon et al., 2010; Naowaboot et al., 2016; Ma et al.,
2019).

Since HFD always leads to excess cholesterol accumulation in the
liver (Feltenberger et al., 2013), the target organ for lipid metabolism,
we also evaluated the effects of FA on fatty damage in the liver. We
found that FA treatment reversed the increase in liver weight and the
liver index. FA also improved liver function by regulation of serum
ALT and AST levels. Second, FA treatment significantly suppressed
redundant lipid deposition in the liver, which is consistent with
previous studies (Ma et al., 2019). Lipid accumulation in
hepatocytes causes lipid peroxidation and increases oxidative stress

(Chienwichai et al., 2019), which is an important mechanism in liver
injury (Li et al., 2015;Dey et al., 2020). The antioxidant effect of FAhas
also been identified in other studies (Bumrungpert et al., 2018).
Herein, we found that FA caused a significant decrease in plasma
LDH, and MDA levels and an increase in SOD. MDA is an indicator
of lipid peroxidation. Collectively, these results suggest that FA
treatment improves the liver injury induced by HFD.

AMPK is composed of a catalytic subunit (α-subunit) and two
regulatory subunits (β- and γ-subunits). AMPKα is phosphorylated
and activated at its threonine residue (Thr 172) by increasing AMP/
ATP ratio and reactive oxygen species (Emerling et al., 2009; Garcia
and Shaw, 2017). As a metabolic master switch in the regulation of
hepatic lipid homeostasis (Li et al., 2018), AMPK improves lipid
metabolism including lipogenesis, lipolysis, lipid transport and
oxidation (Ma et al., 2017; Park et al., 2017). Additionally, some
studies have reported that AMPK activators suppressed
atherosclerotic plaque size by reducing arterial deposition of
excess lipids (Vasamsetti et al., 2015; Kimura et al., 2020).
Herein, we found that FA treatment significantly increased the
phosphorylation of AMPKα. Furthermore, other studies have
shown that AMPK not only reduced lipogenesis by regulating
SREBP1, ACC (Jung et al., 2012; Park et al., 2017), but it also
regulated lipid transport by activating the expression of LXRα and
ABCA1 in human macrophages (Kemmerer et al., 2016). We also
found that FA significantly down-regulated the expression of
SREBP1, ACC1 in atherosclerotic mice. However, there was no
significant difference in mRNA level of LXRα or ABCA1. As an
important mediator in regulating lipid metabolism, SREBP1
activates the synthesis of fatty acids and triglycerides (Shao and
Espenshade, 2012; Zhang et al., 2019). It has been reported that
AMPK directly represses the cleavage processing and suppressed the
transcription of SREBP1 by phosphorylation (Li et al., 2011).
Further, AMPK activation was reported to ameliorate
atherosclerosis and hepatic steatosis by inhibiting SREBP activity
in the liver of obese LDLR−/− mice (Li et al., 2011; Shao and
Espenshade, 2012). It is well known that lipogenic genes
including ACC1, FASN, and SCD1 are the target genes of
SREBP1 (Horton et al., 2002). In this study, FA has significantly
down-regulated the expression of ACC1, which is an essential rate-

FIGURE 10 | The proposed mechanism for FA reducing atherosclerosis injury in ApoE−/− mice (Huang et al., 2019).
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limiting enzyme in fatty acid metabolism. Inhibition of ACC1 can
improve various metabolic diseases including obesity and diabetes
(Chen et al., 2019). In brief, we found that FA up-regulated the
phosphorylation of AMPKα and down-regulated the expression of
SREBP1 and ACC1, which suggested that FA regulates lipid
metabolism possibly via the AMPKα/SREBP1/ACC1 pathway in
ApoE−/− mice.

Recently, the role of gut microbiota in atherosclerosis has attracted
increasing attention. Studies have determined that the impact of gut
microbiota on atherosclerosis is closely associated with plasma lipid
levels (Lindskog Jonsson et al., 2018). A HFD diet decreased the
diversity of gut microbiota (Han et al., 2020), which was reversed by
FA treatment in this study. HFD feeding also altered the composition
of gut microbiome (Han et al., 2020). At the phylum level, FA
significantly decreased the relative abundance of Firmicutes, and
that of Bacteroidetes tended to increase. Lower relative abundance
of Firmicutes and higher relative abundance of Bacteroides are the
preventive factors for lipid metabolism (Abdallah Ismail et al., 2011;
Lyu et al., 2017). Our results are similar to the previous study (Ma
et al., 2019). Analysis at deeper taxonomic level showed that FA
decreased the relative abundance of Erysipelotrichaceae, which is
positively associated with host lipid deposition (Kaakoush, 2015).
Furthermore, FA also increased the relative abundance of a health-
associated family, Ruminococcaceae, which promotes intestinal health
and decreases the level of triacylglycerols, phospholipids and
cholesteryl esters in mice (Zhang et al., 2020). At the genus level,
FA treatment significantly decreased the relative abundance of
Ileibacterium, which protects mice from adiposity (den Hartigh
et al., 2018). Moreover, the relative abundance of Lactobacillus
tended to increase after mice were treated by FA, which was
significantly increased in a previous study (Liu et al., 2019).
Lactobacillus acidophilus in the intestinal flora regulated lipid
metabolism by decreasing cholesterol absorption and regulating
reverse cholesterol transport involving PPARα, LXRα, ABCA1 and
ABCG1 (Chen et al., 2013; Huang et al., 2014). In addition,
Lactobacillus plantarum NA136 supplementation achieved a lipid-
lowering effect via the AMPK pathway, which phosphorylated ACC
and suppressed SREBP-1/FAS signaling in HFD-fedmice (Zhao et al.,
2019). We also found the relative abundance of Fimicutes,
Erysipelotrichaceae, Ileibacterium were positively correlated with
atherosclerotic plaque area or serum lipid level here. Overall, the
above data indicate that FA regulates lipid levels in atherosclerotic
mice possibly through the modulation of gut microbiota composition.

In the present study, we found that FA regulated somemetabolites
of the gut microbiota. Specifically, cholate was up-regulated, while
acetate, alanine down-regulated. Acetate belongs to SCFAs, which
affect atherosclerosis after being absorbed by capillaries in the colon
(Ohira et al., 2017). Acetate is the major substrates of denovo
lipogenesis and cholesterol synthesis, which could inhibit adipose
tissue lipolysis in previous study (Yun et al., 2020). Alanine is an amino
acid and contributes to lipogenesis by increasing TC and LDL-C in
rats (Coqueiro et al., 2019). In addition, cholate may influence
atherosclerosis by regulating lipoproteins and the proinflammatory
responses (Deeg, 2003). Furthermore, the concentrations of acetate
and alanine were positively correlated with atherosclerotic plaque area
or serum lipid level in our study, while cholate showed no significant

correlation. Given the above, we speculate that FA may regulate lipid
metabolism in atherosclerosis mice by modulating the structure and
products of the gut microbiota. However, the content of metabolites
was only detected in feces and those in serum remained unclear.
Therefore, more researches are needed in the future.

CONCLUSION

The present study has shown that FA treatment decreases serum
lipids and reduces atherosclerotic plaques in ApoE−/− mice. FA also
modulates the composition of gut microbiota and fecal metabolites,
which is closely related to atherosclerosis. In addition, FA regulates
lipid metabolism through activation of the AMPKα/SREBP1/ACC1
pathway in the liver. In brief, we demonstrate that FA could
significantly ameliorate atherosclerotic injury, which may be
partly by modulating gut microbiota and lipid metabolism via the
AMPKα/SREBP1/ACC1 pathway. Nevertheless, the direct link of
FA on gut microbiota and atherosclerosis requires further studies.
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