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Neuroinflammation, as defined by the presence of classically activatedmicroglia, is thought
to play a key role in numerous neurodegenerative disorders such as Alzheimer’s disease.
While modulating neuroinflammation could prove beneficial against neurodegeneration,
identifying its most relevant biological processes and pharmacological targets remains
highly challenging. In the present study, we combined text-mining, functional enrichment
and protein-level functional interaction analyses to 1) identify the proteins significantly
associated to neuroinflammation in Alzheimer’s disease over the scientific literature, 2)
distinguish the key proteins most likely to control the neuroinflammatory processes
significantly associated to Alzheimer’s disease, 3) identify their regulatory microRNAs
among those dysregulated in Alzheimer’s disease and 4) assess their pharmacological
targetability. 94 proteins were found to be significantly associated to neuroinflammation in
Alzheimer’s disease over the scientific literature and IL4, IL10 and IL13 signaling as well as
TLR-mediated MyD88- and TRAF6-dependent responses were their most significantly
enriched biological processes. IL10, TLR4, IL6, AKT1, CRP, IL4, CXCL8, TNF-alpha,
ITGAM, CCL2 and NOS3 were identified as the most potent regulators of the functional
interaction network formed by these immune processes. These key proteins were indexed
to be regulated by 63microRNAs dysregulated in Alzheimer’s disease, 13 long non-coding
RNAs and targetable by 55 small molecules and 8 protein-based therapeutics. In
conclusion, our study identifies eleven key proteins with the highest ability to control
neuroinflammatory processes significantly associated to Alzheimer’s disease, as well as
pharmacological compounds with single or pleiotropic actions acting on them. As such, it
may facilitate the prioritization of diagnostic and target-engagement biomarkers as well as
the development of effective therapeutic strategies against neuroinflammation in
Alzheimer’s disease.
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INTRODUCTION

Despite extensive research there is still no cure for Alzheimer’s disease,
the commonest cause of dementia. Alzheimer’s disease is characterized
by neuronal loss in specific brain regions associated with the formation
of amyloid-beta senile plaques and tau-immunoreactive neurofibrillary
tangles (Polanco et al., 2018). Another hallmark of the disease is the
presence of neuroinflammation as defined by the presence of
classically activated microglial cells (Fan et al., 2017; Dani et al.,
2018). Microglial cells are the resident immune cells of the central
nervous system (Ransohoff and Cardona, 2010). While their
activation is needed to defend the brain from injury, it has
become clear that a sustained and uncontrolled inflammation
could contribute to neurodegeneration, for instance leading to
vascular dysfunction, mitochondrial dysfunction and oxidative
stress (Sochocka et al., 2013; Orsucci et al., 2013).

Several lines of evidence support that better understanding the
neuroinflammatory process in Alzheimer’s disease could lead to the
development of new diagnostic and therapeutic tools. Positron
emission tomography showed that microglial activation is observed
from the earliest stages of Alzheimer’s disease and correlates both with
amyloid deposition and tau aggregation (Dani et al., 2018). Moreover,
exciting data demonstrated that the immune challenges could trigger
and exacerbate tau and amyloid pathologies (Bhaskar et al., 2010;
Krstic et al., 2012), possibly contributing to a pathological vicious circle
that could favor regulated neuronal death. Genetic studies including
genome-wide studies have also associated inflammation-related genes
to the etiology of Alzheimer’s disease (i.e. ABCA7, CLU, CR1, HLA-
DRB1, HLA-DRB5, PICALM, and TREM2) (Lambert et al., 2009; Jun
et al., 2010; Guerreiro et al., 2013; Lambert et al., 2013; Jansen et al.,
2019), further supporting the concept of neuroinflammation as a
pathogenic factor in Alzheimer’s disease. To date, a major challenge is
to identify the key processes and proteins linked to
neuroinflammation in Alzheimer’s disease. Available information
reveals a complex picture with the implication of central and
peripheral cell types and of a plethora of proteins including pro-
inflammatory cytokines, anti-inflammatory cytokines,
chemoattractant molecules, peripheral immune mediators as well
as their receptors and downstream signaling targets (Itagaki et al.,
1988; Togo et al., 2002; Monsonego et al., 2003). Mining useful
information in these data for the development of diagnostic and
therapeutic neuroprotective strategies remains highly challenging.

Integrated bioinformatics can help to explore complex biological
pathways, by analyzing large amount of data and by performing
analyses over many distinct datasets. In the present study, we used
integrated bioinformatics to perform a systematic review of the
proteins associated to neuroinflammation in Alzheimer’s disease
over the scientific literature and then to identify themost represented
biological processes and the key candidate proteins to modulate
them. We combined text-mining, Gene Ontology and Reactome
functional enrichment analysis, protein-protein functional
interaction analysis, non-coding RNA-target interaction analysis
and drug–protein interaction analysis and identified eleven
proteins with the highest ability to modulate neuroinflammatory
processes in Alzheimer’s disease. As such, our study provides data
that could help to further explore the time-dependent role of the
immune response in Alzheimer’s disease and to prioritize the

development of neuroinflammation-centered diagnostic or
therapeutic tools against Alzheimer’s disease.

MATERIALS AND METHODS

Protein Collection (Text-Mining)
A systematic review of the proteins relating to Alzheimer’s disease
neuroinflammation was collected using the pubmed2ensembl
resource that has been developed as an extension to the BioMart
system for mining the biological literature for genes (http://
pubmed2ensembl.ls.manchester.ac.uk/) (Baran et al., 2011). The
string ‘neuroinflammation alzheimer’ was used to retrieve the
Ensembl Gene ID related both to neuroinflammation and
Alzheimer’s disease in the Homo sapiens (human) genome
assembly GRCh37 from Genome Reference Consortium. We
then used UniProtKB Retrieve/ID mapper (https://www.uniprot.
org/) to retrieve theUniProtKB protein identifiers associated to these
Ensembl Gene ID (UniProt, 2019). All the protein identifiers were
imported into Cytoscape 3.7.2 for subsequent analysis.

Gene Set Enrichment
Gene Ontology (GO) enrichment of the collected proteins was first
performed using the ClueGo + CluePedia Cytoscape plug-in, with
annotation from GO Cellular Component, GO Molecular Function
and GO Biological Process categories (Bindea et al., 2009). A p-value
<0.05 was considered as the cutoff criterion. The most enriched
annotations were then visualized using the ggplot2 package in R
language (www.r-project.org). Functional enrichment analysis of the
proteins was subsequently performed and visualized using the
Reactome Pathway database (https://reactome.org) (Fabregat et al.,
2017; Jassal et al., 2020). Proteins from the 10 most significantly
enriched biological processes identified with Reactome were selected
for subsequent analysis.

Protein-Protein Functional Interaction
The STRING protein query database (http://string-db.org) was used to
construct a protein-protein functional interaction network inCytoscape
(Szklarczyk et al., 2019). The minimum required interaction score was
set to 0.7 to retain only high-confidence functional interactions. We
thenused theCentiScaPeCytoscape plug-in to calculate thenodedegree
and betweenness centrality of each protein. The nodes that had a degree
centrality and abetweenness centrality greater thanor equal to themean
were identified as key proteins (e.g. more likely to modulate
neuroinflammation) and retained for subsequent microRNA-target
and drug-protein interaction analyses.

Integration of Regulatory MicroRNAs and
Long Non-Coding RNAs (lncRNAs) in the
Key Protein Network
The microRNA-target interactions were identified using the
miRTarBase Homo sapiens 8.0 database that curates
experimentally validated microRNA-target interactions and
includes 502,652 microRNA target interactions (Huang et al.,
2020). The lncRNA-target interactions were obtained from the
LncRNA2Target 2.0 database, by retaining only interactions
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inferred from the low-throughput experiments such as
immunoprecipitation assays, RNA pull down assays, luciferase
reporter assays, RT-qPCR or western blot (Cheng et al., 2019).
Regulating microRNAs that are significantly dysregulated in the
blood of Alzheimer’s disease patients were selected based on the data
published by Leidinger and coworkers (Additional file 1 of their
electronic Supplementary Material; (Leidinger et al., 2013). The
microRNA-target and lncRNA-target interactions and the
microRNAs relative abundance in Alzheimer’s disease (log2(fold
change); (Leidinger et al., 2013) were mapped using the
CyTargetLinker v4.1.0 Cytoscape application (Kutmon et al., 2018).

Drug-Gene Interaction Analysis
TheDrug–Gene Interaction database 3.0 (DGIdb v3.0; http://www.
dgidb.org/) was used to search for existing associations between
drugs (e.g. small molecule compounds or immunotherapies) and
essential proteins from our dataset (Cotto et al., 2018). The results
of the search were visualized using Cytoscape so that information
on protein targetability, drug-protein interaction, drug nature and
drug FDA-approval could be easily apprehended.

RESULTS

Identification of Proteins Associated to
Alzheimer’s Neuroinflammation
The strategy of our study to identify key candidate proteins tomodulate
neuroinflammation in Alzheimer’s disease is depicted in Figure 1.
Text-mining using the pubmed2ensembl resource that links over
2,000,000 articles to nearly 150,000 genes (Baran et al., 2011)
allowed us to systematically collect a list of 94 unique proteins

related to neuroinflammation in Alzheimer’s disease. The list of the
94 proteins with corresponding Gene symbols, Ensembl Gene and
UniProtKB identifiers is provided in Supplementary Table 1.

Gene Ontology (GO) functional enrichment analyses were
performed using ClueGo + CluePedia plug-in to explore the cellular
localization, molecular functions and biological pathways associated to
these proteins. All the collected genes had functional annotations in the
selected ontologies. The Cellular Component annotations showed an
important enrichment (e.g. over-representation) of the proteins located
in the extracellular region, at the cell surface or periphery or at the
synapse. The gene ontology enrichment analysis of Biological process
annotations showed that the most enriched terms were inflammatory
response, positive regulation of cytokine production and response to
lipopolysaccharide. Finally, Molecular function annotations revealed an
enrichment for proteins with amyloid-beta or peptide binding activities
or cytokine receptor binding activities. Other enriched terms were
related to arachidonic acid and fatty acid binding, to NADPH
oxidoreductase activity or to ionotropic glutamate receptor activity.
The top eight enriched terms of the Cellular Component, Biological
Process andMolecular Function are shown inFigure 2. The proteins of
our dataset that are annotated for the top eight enriched Molecular
Function annotations are listed in Figure 3.

Together, our results show that the proteins associated to
Alzheimer’s disease neuroinflammation are primarily connected to
amyloid beta as well as oxidative stress and lipid metabolism that are
critically involved in the neuropathogenesis of Alzheimer’s disease.

Selection of the Most Relevant Biological
Processes
To identify the most relevant biological processes involved in
neuroinflammation in Alzheimer’s disease, we performed a

FIGURE 1 | Study design. Text-mining was used to support large-scale screening of the scientific literature to collect 94 proteins related to neuroinflammation in
Alzheimer’s disease. The entire dataset was analyzed for functional enrichment by using Gene Ontology (GO) cellular localization, molecular functions, biological
pathways and by using the Reactome Pathway database and 52 proteins were associated to the 10 most significantly enriched pathways. Protein-protein functional
interaction using STRING and CentisScaPe allowed us to identify 11 key proteins most likely to modulate neuroinflammation in Alzheimer’s disease. Finally, non-
coding RNA-target interaction and drug-gene interaction analysis showed that the key proteins were indexed to be targetable by a total of 63microRNAs dysregulated in
Alzheimer’s disease and by 55 small molecules and 8 protein-based therapeutics.
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functional enrichment of the collected proteins by using the
Reactome Pathway database. The 10 most relevant pathways
sorted by p-value were Interleukin-4 and Interleukin-13
signaling (p � 1.11 × 10−16), Signaling by Interleukins (p � 1.11
× 10−16), Interleukin-10 signaling (p � 5.77 × 10−15), Immune

System (p � 9.30 × 10−14), Cytokine Signaling in Immune system
(p � 5.70 × 10−13), Innate Immune System (p � 6.60 × 10−8), Toll-
like Receptor Cascades (p � 8.11 × 10−7), TRAF6 mediated
induction of NFkB and MAP kinases upon TLR7/8 or 9
activation (p � 1.00 × 10−6), MyD88 dependent cascade initiated

FIGURE 2 | Functional enrichment analysis of the proteins associated to neuroinflammation in Alzheimer’s disease. The graph shows the top eight over-
represented Gene Ontology (GO) cellular localization, GO molecular functions and GO biological pathways annotations (Y-axis), the number of proteins of our dataset
included in each term (length of the histogram bars and number displayed next to each histogram bar, lower X-axis) and the −log10(p_value) levels (red segments, upper
X-axis). p-value ≤ 0.05.

FIGURE 3 | Connections between proteins associated to neuroinflammation in Alzheimer’s disease and the top eight over-represented molecular functions
annotations. Protein names are those belonging both to our dataset and the enriched GO molecular functions annotations.
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on endosome (p� 1.085× 10−6) andToll Like Receptor 7/8 (TLR7/8)
Cascade (p � 1.085 × 10−6) (Table 1). 52 proteins from the 10
aforementionedmost enriched pathways were retained for protein-
protein functional interaction analysis.

Identification of High-Confidence Protein
Functional Interactions
Figure 4 represents the protein-protein functional interaction
network of the aforesaid proteins. In this representation, nodes
represent proteins and edges represent functional interactions.

There were 47 interconnected nodes (e.g. proteins) and 244
relationship pairs (e.g. functional interactions). Degree average
value was 9.38 and betweenness average value was 47.69. We
selected nodes with both higher than average degree (e.g. the
measure of the total number of edges connected to the protein)
and betweenness (e.g. an indicator of how important the protein
is to the shortest paths through the network) as key proteins most
likely to have the ability to modulate the aforementioned
biological processes and thus neuroinflammation in
Alzheimer’s disease. The 11 proteins that met this selection
criterion sorted by high to low betweenness value were:

TABLE 1 | Function enrichment results of proteins associated to neuroinflammation in Alzheimer’s disease using the Reactome Pathway database. Count: enriched gene
number in the category.

Term Count p-value

Interleukin-4 and Interleukin-13 signaling 17 1.11 × 10−16

Signaling by interleukins 29 1.11 × 10−16

Interleukin-10 signaling 12 5.77 × 10−15

Immune system 53 9.30 × 10−14

Cytokine signaling in immune system 33 5.70 × 10−13

Innate immune system 29 6.60 × 10−8

Toll-like receptor cascades 10 8.11 × 10−7

TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 8 1.00 × 10−6

MyD88 dependent cascade initiated on endosome 8 1.085 × 10−6

Toll like receptor 7/8 (TLR7/8) cascade 8 1.085 × 10−6

FIGURE 4 |High confidence protein-protein functional interaction network of proteins associated to the most relevant biological processes in neuroinflammation in
Alzheimer’s disease. Among the 52 proteins associated to the biological processes, 5 (CD4, CHGA, GIG25, LAT2 andMIF) did not show high confidence protein-protein
functional interaction in the network and therefore are not represented here.
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interleukin (IL)10, Toll-like receptor (TLR)4, IL6, AKT1,
C-reactive protein (CRP), IL4, C-X-C motif chemokine ligand
(CXCL)8, Tumor necrosis factor (TNF) alpha, integrin alpha M
(ITGAM), C-C motif chemokine ligand (CCL)2 and nitric oxide
synthase (NOS)3 (Table 2). These proteins should be considered
as the most potent modulators of neuroinflammation in
Alzheimer’s disease and were next analyzed for microRNA-
and drug-protein interaction.

Integration of Regulatory Non-Coding RNAs
Into the Key Protein Network
Non-coding RNAs including microRNAs and lncRNAs play
crucial roles in regulating gene expression and have emerged
as key regulators of immune cell functions in innate and adaptive
immunity. We first aimed to identify microRNAs both 1)
regulating the key protein network as indexed in the
experimentally validated gene–microRNA interaction database
miRTarBase and 2) dysregulated in Alzheimer’s disease blood
samples, as reported by Leidiger and coworkers (Leidinger et al.,
2013). This led to the identification of 63 dysregulated mature
microRNAs including 22 with higher and 41 with lower
expression levels in Alzheimer’s disease (Figure 5). The
corresponding list of mature microRNAs with protein targets
is provided in Supplementary Table 2. We also integrated 13
lncRNAs known to regulate the key protein as indexed in the
LncRNA2Target database (Figure 5). The corresponding list of
lncRNAs with protein targets and bibliographic references is
provided in Supplementary Table 3.

Drug–Protein Network Construction and
Identification of Targetable Proteins
To assess to what extent the 11 proteins could be
pharmacologically targeted, drug-proteins relationships were
predicted using the Drug–Gene Interaction database 3.0.
Among the 11 proteins, 9 were indexed to be targeted by a
total of 63 drugs. The NOS3 protein had the most interactions
with drugs (n � 29), followed by TNF alpha (n � 19), AKT1 (n �
5) and TLR4 (n � 5) and IL6 (n � 4). There was a total of 67
drug–protein relationships in the network. Drugs comprised
8 protein-based therapies of which 6 had a FDA-approval as

well as 55 small compounds of which 10 had a FDA-approval.
Drug-protein interactions can be visualized in Figure 6.

DISCUSSION

This study used text-mining and data-based bioinformatics to
explore the protein network underlying neuroinflammatory
processes in Alzheimer’s disease. Text-mining has been
recommended for large-scale screening (O’Mara-Eves et al.,
2015) and can be used to identify key pathways and candidate
genes for drug-discovery and Human health (Singhal et al., 2016;
Lever et al., 2019; Pan et al., 2019). In our study, it allowed to
collect 94 proteins significantly associated to neuroinflammation
in Alzheimer’s disease over the scientific literature
(Supplementary Table 1). It is important to note that text-
mining has biases due to the imbalance in research attention
where some genes are highly investigated while others are ignored
(Wang et al., 2015; Oprea et al., 2018). Therefore, the obtained list
of proteins is not meant to be exhaustive and may particularly
miss proteins still sparsely mentioned in the literature. As such
our study may be considered as complementary to other studies
such as genome-wide association studies for the further
development of diagnostic and target-engagement biomarkers
for drug discovery.

Gene Ontology enrichment analysis was used to get first
insights into the profile of the 94 collected proteins (Bindea
et al., 2009). Cellular localization annotations showed an
overrepresentation of cellular compartments essential for
communication (e.g. extracellular space, synapse, presynaptic
compartment and side of membranes) consistent with the fact
that an altered cerebral microenvironment and a dysregulated
cell-to-cell crosstalk are critically involved in neuroinflammation
(Schwartz and Deczkowska, 2016; Fabiani and Antollini, 2019).
Most overrepresented molecular function annotations were
amyloid beta binding activity—an activity presented by
proteins such as ITGAM (also named CD11b) (Goodwin
et al., 1997) and TLR4 (Liu et al., 2020)—as well as cytokine
receptor binding activity, further linking the amyloid peptide to
the innate immune response in Alzheimer’s disease. Molecular
function annotations also defined NADPH oxidation, fatty acid
and arachidonic acid binding as well as glutamate signaling as
significant functions, therefore connecting neuroinflammation to
NADPH oxidases and arachidonic acid metabolism critically
involved in the neuropathogenesis of Alzheimer’s disease
(Fricker et al., 2018; Tarafdar and Pula, 2018; Chen et al.,
2020). Altogether, the Gene Ontology annotation enrichment
helped to capture a coherent picture of neuroinflammation in
Alzheimer’s disease and its connections to relevant molecular
functions and biological pathways.

Finding the biological processes that are mostly associated to
neuroinflammation in Alzheimer’s disease remains highly
challenging. We aimed to address this challenge without a
priori by analyzing the functional enrichment of our protein
dataset using the Reactome Pathway database. Signaling of the
anti-inflammatory cytokines IL4, IL10 and IL13 appeared as the
most significantly enriched processes. These pathways have been

TABLE 2 | Proteins with highest than average betweenness and degree in the
protein-protein functional interaction network.

Protein name UniProtKB ID Betweenness Degree

IL10 P22301 300,549477 24
TLR4 O00206 253,174429 24
IL6 P05231 208,838661 29
AKT1 P31749 204,665414 17
CRP P02741 190,958865 15
IL4 P05112 127,805378 18
CXCL8 P10145 118,536469 22
TNF P01375 116,879025 25
ITGAM P11215 94,1162934 17
CCL2 P13500 70,1571213 22
NOS3 P29474 62,2581681 11
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proposed to have protective role in Alzheimer’s disease by
inducing the clearance of amyloid-beta and the secretion of
anti-inflammatory cytokines and neurotrophic factors
(Szczepanik et al., 2001; Kawahara et al., 2012; Kiyota et al.,
2012; Tang et al., 2019). On the opposite, IL4 and IL13 signaling
could exacerbate oxidative stress by activating microglial
NADPH oxidases and cyclooxygenase 2 (Park et al., 2009;
Jeong et al., 2019). Likewise, TLR signaling as well as the
MyD88 and the TNF receptor associated factor (TRAF)6
dependent molecular cascades (that both play an essential role
in TLR-elicited intracellular signaling) were identified as
important processes. Here again, both beneficial and
detrimental roles were attributed to TLRs and for instance
TLR7, TLR8 and TLR9 signaling could enhance microglial
amyloid beta uptake in the early stage of Alzheimer’s disease,
but over time contribute to sustained neuroinflammation
(Gambuzza et al., 2014). Taken together, our data highlight
that the main processes associated to neuroinflammation in
Alzheimer’s disease have both beneficial as well as detrimental
roles, and these may be time-dependent. As such, developing
strategies to enhance their protective effects or to combat their
pathological responses in a disease-stage manner could prove
therapeutic potential for Alzheimer’s disease.

Identifying the proteins critically involved in the regulation of
the aforementioned processes required to detect key proteins
based on the network topology.We found 11 proteins with higher
than average degree and betweenness and thus with the highest
ability to control the immune processes. These key proteins
included the anti-inflammatory cytokines IL4 and IL10 and
the pro-inflammatory cytokines TNF-alpha and IL6 that
balance appears to be important for maintaining a less
pathologic immune profile, as suggested by a recent study of
Taipa and coworkers that found that a collection of both pro-
inflammatory and anti-inflammatory cytokines were correlated
with less cognitive decline in patients after one year (Taipa et al.,
2019). Key proteins also included the neutrophil chemoattractant
CXCL8 and CCL2 (also named monocyte chemoattractant
protein (MCP)1) that exert their effects on target cells via the
G protein-coupled receptors CXCL5/CXCL8 receptor (CXCR)1
and 2 and the C-C chemokine receptor (CCR)2, respectively
(Zhang et al., 2013; Mamik and Ghorpade, 2016; Chou et al.,
2018; Haarmann et al., 2019). Of note, both CXCL8 and CCL2
levels were found to be increased in the cerebrospinal fluid and
brain tissue of Alzheimer’s disease patients (Galimberti et al.,
2006; Sokolova et al., 2009) and higher CCL2 levels in
cerebrospinal fluid were associated with a faster rate of

FIGURE 5 | Non-coding RNA-protein interaction network. Experimentally validated interactions between microRNAs dysregulated in Alzheimer (blue to red round
shapes), lncRNAs (green round shapes) and key proteins in Alzheimer’s disease neuroinflammation (yellow round shapes). Blue to red gradient denotes low to high
relative abundance of microRNAs in Alzheimer’s disease patient samples according to (Leidinger et al., 2013).
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cognitive decline during the early stages of the disease (Westin
et al., 2012). Our study also pinpointed at TLR4 and ITGAM (also
named CD11b, one protein subunit that forms macrophage
antigen complex-1 (Mac-1) or complement receptor 3 (CR3))
that stimulation by amyloid beta leads to microglia activation,
resulting in increased cytokine production and oxidative stress
(Hong et al., 2016; Yang et al., 2020). Levels of natural CR3
ligands, such as complement fragments, ICAM-1, and fibrin, are
also increased in Alzheimer’s disease patients (van Oijen et al.,
2005; Daborg et al., 2012; Janelidze et al., 2018). Of interest, the
activation of CCR2 (Bakos et al., 2017), CXCR1 and CXCR2
(Lane et al., 2006), TLR4 (Fang et al., 2017) and ITGAM (Zhang
et al., 2011) all trigger the phosphoinositide 3-kinase (PI3K)/Akt
pathway that is perturbated in the brain of patients (Steen et al.,
2005; Liu et al., 2011) and that downstream targets include the
kinase AKT1, another key protein in our results. Also of interest,
the activity of calcium-responsive NOS3, another key node in our
study otherwise known as an important regulator of vascular
function and of oxidative homeostasis, is also intertwined with
that of AKT1 (Dossumbekova et al., 2008; Silva and Garvin,
2009). Finally, our study identified CRP that is increased in brain
tissue from Alzheimer’s disease patients (Wood et al., 1993;
Iwamoto et al., 1994) and that should be considered not only
as a marker but also as a driver of neuroinflammation, since CRP
can bind to the complement factor 1q (C1q) and activate the
classical complement cascade (Slevin et al., 2015; Braig et al.,

2017). The identification of these 11 functionally interconnected
proteins provides more specific biomarkers modulating
neuroinflammatory processes in Alzheimer’s disease.
Furthermore, the identification of microRNAs regulating these
proteins and known to be deregulated in Alzheimer’s disease such
as hsa-miR-26a-5p, hsa-miR-107, hsa-miR-26b-5p or hsa-let-7f-
5p support their implication in Alzheimer’s disease pathogenesis
as well as their interest as potential peripheral biomarkers (Wang
et al., 2008; Mendes-Silva et al., 2016; Guo et al., 2017; Swarbrick
et al., 2019). Likewise, the identification of lncRNAs acting on
targets such as CXCL8, TNF-alpha, IL6, IL10 or ITGAM support
their role, still largely unexplored, as important regulators of the
human innate immune response (Wang et al., 2014a; Cui et al.,
2014; Ilott et al., 2014; Li et al., 2014; Li et al., 2017)
(Supplementary Table 3).

Drug–protein interactions analysis revealed that 9 of the 11
key proteins could be targeted by a total of 55 small molecules and
8 protein-based therapeutics. The latter comprised FDA
approved TNF-alpha antagonists (infliximab, etanercept,
adalimumab, golimumab and certolizumab pegol) that were
found to be associated with lower Alzheimer’s disease risk in
patients with rheumatoid arthritis and psoriasis (Zhou et al.,
2020) and proved positive immune and cognitive outcomes in
rodent models of Alzheimer’s disease (Kim et al., 2016; Paouri
et al., 2017; Park et al., 2019). They also included the IL6-targeting
antibody siltuximab that was launched for the treatment of

FIGURE 6 | Protein-drug interaction network. Existing associations between drugs (e.g. small molecule compounds or immunotherapies; diamond shapes) and
key proteins in Alzheimer’s disease neuroinflammation (yellow round shapes). FDA-approved drugs and non-FDA-approved drugs are respectively colored in orange
and light beige. Protein-based therapies are bordered with purple.

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 6300038

El Idrissi et al. Network of Alzheimer’s Disease Neuroinflammation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


multicentric Castleman but that has not been evaluated to date in
the context of Alzheimer’s disease, to our knowledge. Drug-
protein interaction analysis also pictured small molecules such
as thalidomide that reduces the production of TNF-alpha
(Sampaio et al., 1991; Gabbita et al., 2012) and that more
potent derivative 3,6-dithiothalidomide ameliorated cognition
in a rat models of LPS-induced sustained microglia activation
(Belarbi et al., 2012) and in a triple transgenic mouse model of
Alzheimer’s disease (Tweedie et al., 2012). Likewise, we identified
glucosamine that was shown to inhibit in microglial cells
lipopolysaccharide-induced TNF-alpha expression, Ca2+ influx
and outward K+ currents, which are typically representative of
microglial activation (Yi et al., 2005). Interestingly, our analysis
also highlighted several phosphodiesterase inhibitors such as
apremilast (phosphodiesterase 4 inhibitor) that interferes with
NOS3 and cytokines production (Schett et al., 2010; Gulisano
et al., 2018), inamrinone (phosphodiesterase 3 inhibitor) or
ibudilast (a non-selective 3, 4, 10, 11 phosphodiesterase
inhibitor). Of note, ibudilast is currently approved for use as an
anti-inflammatory in Japan, improved amyloid beta-induced
cognitive impairment in rodent (Wang et al., 2014b) and acts
through TLR4 blockade (Schwenkgrub et al., 2017a), reduction of
pro-inflammatory cytokines TNF-alpha, IL6 and IL1-beta (Wakita
et al., 2003; Schwenkgrub et al., 2017b), up-regulation the anti-
inflammatory cytokine IL4 and IL10 and various neurotrophic
factors (Mizuno et al., 2004). Although these drug-protein
association should overall be taken with caution, given that the
drugs’ effects on the network may depend on their dose and on the
disease stage and severity, they may be useful to explore the
neuroinflammatory cascade involved in Alzheimer’s disease.

In conclusion, our study provides a review of proteins
associated to neuroinflammation in Alzheimer’s disease and
identifies 11 interrelated key proteins with the highest ability
to control neuroinflammatory processes in Alzheimer’s disease.
While some proteins such as TNF-alpha are largely evaluated, our
data provide evidence to encourage further investigation on
others such as CCL2, CXCL8, IL-10, TLR4, CRP or AKT1 that
appears as a key component for translating extracellular
information into downstream biological responses regulating
microglia phenotype. Assessing these proteins could then help
for the evaluation of disease-modifying properties, for example
for assessing the impact of the recently FDA-approved
aducanumab on neuroinflammation-related endpoints. A

major challenge for future therapies will be to enhance the
protective role or combat the pathological roles of immune
processes such as IL4, IL10 and IL13 or TLR-mediated
MyD88- and TRAF6- dependent signaling, and this will
require to better understanding the time-dependent role of
these processes in Alzheimer’s disease. Our study prioritizes
biomarkers and putative targets and identifies non-coding
RNAs and pharmacological compounds with single or
pleiotropic actions acting on them. As such, it may facilitate
the way to novel diagnostic and therapeutic neuroprotective
strategies for Alzheimer’s disease.
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