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A computational workflow which integrates physiologically based kinetic (PBK) modeling,
global sensitivity analysis (GSA), approximate Bayesian computation (ABC), andMarkov Chain
Monte Carlo (MCMC) simulation was developed to facilitate quantitative in vitro to in vivo
extrapolation (QIVIVE). The workflow accounts for parameter and model uncertainty within a
computationally efficient framework. The workflow was tested using a human PBK model for
perfluorooctanoic acid (PFOA) and high throughput screening (HTS) in vitro
concentration–response data, determined in a human liver cell line, from the ToxCast/
Tox21 database. In vivo benchmark doses (BMDs) for PFOA intake (ng/kg BW/day) and
drinking water exposure concentrations (µg/L) were calculated from the in vivo dose
responses and compared to intake values derived by the European Food Safety Authority
(EFSA). The intake benchmark dose lower confidence limit (BMDL5) of 0.82 was similar to
0.86 ng/kg BW/day for altered serum cholesterol levels derived by EFSA, whereas the intake
BMDL5 of 6.88 was six-fold higher than the value of 1.14 ng/kg BW/day for altered antibody
titer also derived by the EFSA. Application of a chemical-specific adjustment factor (CSAF) of
1.4, allowing for inter-individual variability in kinetics, based on biological half-life, gave an intake
BMDL5 of 0.59 for serum cholesterol and 4.91 (ng/kg BW/day), for decreased antibody titer,
which were 0.69 and 4.31 the EFSA-derived values, respectively. The corresponding BMDL5
for drinking water concentrations, for estrogen receptor binding activation associated with
breast cancer, pregnane X receptor binding associated with altered serum cholesterol levels,
thyroid hormone receptor α binding leading to thyroid disease, and decreased antibody titer
(pro-inflammation from cytokines) were 0.883, 0.139, 0.086, and 0.295 ng/ml, respectively,
with application of no uncertainty factors. These concentrations are 5.7-, 36-, 58.5-, and 16.9-
fold lower than the median measured drinking water level for the general US population which
is approximately, 5 ng/ml.
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INTRODUCTION

In the environment of the modern world, chemicals of
anthropogenic and natural origin are ubiquitous. The diversity
of chemicals that risk assessors must appraise is large. For
example, in the food sector this includes anthropogenic
contaminants such as pesticides, biocides, food and feed
additives, pharmaceuticals, air pollutants, persistent organic
pollutants, heavy metals, perfluoroalkyl substances, brominated
flame retardants, dioxins, and those of natural origin (marine
biotoxins, mycotoxins, etc.) to name but a few. In this context,
human risk assessment of chemicals aims to quantify exposures
in human subpopulations from relevant sources and exposure
routes (exposure assessment), to identify and characterize adverse
effects and determine safe levels (hazard identification and
characterization) as well as quantify risks associated with such
exposures (risk characterization) (Ingenbleek et al., 2021).

Hazard identification and hazard characterization requires an
understanding of what the human body does to the chemical,
known as “toxicokinetics (TK)” and what the chemical does to the
body, known as “toxicodynamics (TD).” Over the last century,
the TD dimension and the derivation of acute and chronic safe
levels of exposure for human health has been mostly addressed
using animal toxicological studies in test species (rat, mouse,
rabbit, and dog). Such studies allow the identification of an apical
endpoint which is an observable outcome in the whole animal
including clinical signs or pathologies indicative of a disease state
that can result from exposure to a toxicant. For a given chemical,
the key apical endpoint is identified based on the role of the
endpoint in causing adversity and the dose-response relationship
observed in the critical toxicity study in a test species (rat, mouse,
rabbit, and dog). This principle is based on the requirement that
all relevant adverse effects should be considered in order to
achieve a sufficient level of protection. As a consequence, all
reliable toxicological studies and relevant apical effects are
considered to identify the highest dose that does not produce
any statistically significant increase in the incidence of an adverse
effect. Such a dose or concentration, known as the reference point
(RP) or point of departure (PoD), is defined as the point on a
toxicological dose–response curve established from experimental
data that corresponds to an estimated no-observed-adverse-effect
level (NOAEL) or low effect level. PoDs are used as the basis for
the derivation of safe levels of human exposure known as health-
based guidance values (HBGVs) (Ingenbleeks et al., 2021).

The most common RPs or PoDs are the NOAEL and the
benchmark dose (BMD). The NOAEL approach uses statistical
methods to identify the tested dose with no significant effect
compared to the control group. The BMD approach fits a
dose–response model(s) to a complete dose–response dataset
to identify the benchmark dose lower confidence limit
(BMDL) for a selected observed level of effect, the benchmark
response (BMR) (e.g., a 10% response). The BMD is increasingly
preferred by regulatory agencies, but its use is often limited by test
design (Bokkers and Slob, 2005; Bokkers and Slob, 2007;
European Food Safety, 2009; EFSA Scientific Committee et al.,
2017). From the RP or PoD, HBGVs are derived most often by
applying a default uncertainty factor (UF) of 100 allowing for

interspecies (10-fold) and inter-individual differences (10-fold)
when no TK and TD information is available. Alternatively, when
chemical-specific or pathway-specific TK or TD information
exists, more informed UF values can be used. For chemicals
with a threshold for toxicity (non-genotoxic) chemicals, HBGVs
in the food and feed safety area include the acceptable daily intake
(ADI) for food additives, feed additives and pesticides, tolerable
daily intake (TDI) for contaminants, upper limits (UL) for
vitamins and minerals, and, for acute effects, the acute
reference dose (ARfD) (Sheffer, 2009; EFSA Scientific
Committee, 2012).

Since PoDs and HBGVs mostly rely on toxicological studies in
test species, the international scientific community has been
involved in considerable research and validation efforts to
reduce animal testing and provide alternative-to-animal testing
methods (i.e., in vitro and in silico) known as new approach
methods (NAMs). The development of an alternative to animal
human safety testing strategy for chemicals has been described as
being akin to seeking the Holy Grail (Louisse et al., 2016). Efforts
toward achieving this goal have been ongoing since publication of
the United States National Research Council (NRC) report
“Toxicity Testing in the 21st Century: A Vision and a
Strategy” (NRC, 2007). In Europe, the development of such a
strategy received impetus following the full marketing ban
enforced under the EU Cosmetics Regulation (EC 1223/2009)
in 2013 for cosmetic products and ingredients tested on animals
anywhere in the world (Coecke et al., 2013).

In practice, alternative to animal methods invariably refer to
an in vitro bioassay-based strategy that ideally uses human cell
lines primarily for the determination of a RP. Importantly,
in vitro concentration–response data must be converted to in
vivo dose responses in order to be used in human safety testing of
chemicals. This activity is known as quantitative in vitro to in vivo
extrapolation (QIVIVE) (Bale et al., 2014; Hartung, 2017).
Examples of QIVIVE increasingly involve the application of
physiologically based kinetic (PBK) modeling–based reverse
dosimetry for the translation of in vitro to in vivo responses
and the derivation of in vivo BMDs (Adam et al., 2019; Boonpawa
et al., 2017; Li et al., 2017; Louisse et al., 2016; Louisse et al., 2010;
Louisse et al., 2012; Punt et al., 2017; Shi et al., 2020; Strikwold
et al., 2017a; Strikwold et al., 2013; Strikwold et al., 2017b; Zhang
et al., 2020; Zhao et al., 2019). Within this approach, all
parameters, other than input dose or exposure, are held fixed
at central values. An optimization routine is implemented in
order to minimize the discrepancy between a target in vivo
concentration, predicted by the PBK model and a given
in vitro concentration. The dose concentration which
corresponds to the target in vitro concentration is considered
to be a surrogate for the in vivo concentration. However, these
studies did not account for PBK model structure or parameter
uncertainty. Therefore, an algorithm, described in detail
previously (McNally et al., 2018), was developed to extrapolate
in vitro concentration–response to in vivo dose–response
relationships while applying a rigorous statistical framework
for accommodating uncertainty in both the parameters of the
PBK model, the quality of fit of the model to measure biological
monitoring data, and a consideration of how this affects an in vivo
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dose–response relationship in the context of QIVIVE (Judson
et al., 2011). This is important since the level of detail (fidelity)
captured in the model could have a bearing on model output
(Rowland et al., 2017). Understanding and quantifying the level
of uncertainty in each step of a chemical safety assessment with
NAMs is important for the development of confidence in this
approach (Berggren et al., 2017). The workflow uses global
sensitivity analysis (GSA), PBK modeling, approximate
Bayesian computation (ABC), and Markov Chain Monte Carlo
simulation to convert in vitro concentration–response data to in
vivo dose–response data (McNally et al., 2018).

There are a number of advantages with regard to exposure or
dose reconstruction provided by this probabilistic approach.
First, defining informative prior distributions around
parameters converts a deterministic model to a population
model which can account for inter-individual variability.
Second, the probabilistic approach is appropriate for systems
where tissue dose is not necessarily linearly related to external
exposure. Finally, this combination can extract population
variability and multiple routes of exposure information
integrated within pharmacokinetic data (McNally et al., 2012;
McNally et al., 2018).

In this report, we tested the workflow using HTS in vitro
concentration–response data for perfluorooctanoic acid (PFOA).
The data were obtained from the ToxCast/Tox21 database on the
US EPA Chemistry Dashboard (Williams et al., 2017) and
translated to in vivo dose responses with a PBK model for
PFOA (Worley et al., 2017). An in vivo BMD for PFOA intake
(ng/kg BW/day) was calculated from the in vivo dose responses
and compared to the intake also derived from a BMD used by the
European Food Safety Authority (EFSA) in the scientific opinion
on the risk to human health related to the presence of
perfluoroalkyl substances in food for effects on the immune
system (EFSA Contam Panel, 2020) and previously for
increases in serum cholesterol (EFSA Contam Panel et al., 2018).

PFOA is a synthetic chemical comprised of a fully fluorinated
eight carbon chain with a carboxylic acid functional group. It was
used in the manufacture of many consumer products including
fast food wrappers, non-stick cookware, a stain-resistant coating
used on carpets and other fabrics (Bartell et al., 2010). PFOA is
both hydrophobic and lipophobic, does not break down in the
environment, contaminates drinking water sources, and
accumulates in food chains (Bartell et al., 2010; Rayne and
Forest, 2009; Shin et al., 2011). It is not metabolized in the
human body, and the half-life is estimated to be between four
and five years (Emmett et al., 2006; Steenland et al., 2010).
Epidemiological studies support a possible association with
liver, pancreatic, and testicular cancer (Lau et al., 2007; Barry
et al., 2013; Vieira et al., 2013) and breast cancer (Bonefeld-
Jorgensen et al., 2011).

The purpose of this study, however, was not to propose an
animal-free risk assessment for PFOA, since it is recognized that
much work is still needed to demonstrate in vitro to in vivo
concordance for systemic, chronic exposures to environmental
xenobiotics. Instead, this study serves to further demonstrate the
utility of the algorithm in anticipation of the acceptance of in vitro
concentration–response data in chemical risk assessment.

Nevertheless, a workflow was followed which would be similar
to most risk assessment approaches. For example,
epidemiological studies reported that PFOA is a suspected
endocrine disruptor (Pierozan et al., 2018) associated with a
risk of breast cancer (Bonefeld-Jorgensen et al., 2011). Other
studies observed an increase in cellular triglyceride levels and in
vivo expression of genes involved in cholesterol metabolism
(Fletcher et al., 2013) and gene sets related to “PPAR
signaling,” “lipid metabolism,” “fatty acid beta oxidation,” and
“tRNA amino-acylation” which are related to “cholesterol
biosynthesis” which may be associated with hepatic steatosis
(Louisse et al., 2020). Functional thyroid disease was observed
in a large cohort of people exposed to PFOA in drinking water
contaminated from a mid-Ohio River Valley chemical plant
(Winquist and Steenland, 2014) where reduced expression of
parathyroid hormone 2 receptor which may increase risk for
conditions related to parathyroid hormone signaling was also
observed (Fletcher et al., 2013; Galloway et al., 2015). Finally,
recent epidemiological studies found associations with effects on
the immune system (reduced antibody titers) (EFSA Contam
Panel, 2020) which were hypothesized to result from a
dysregulated cytokine/chemokine response and impaired
neutralizing antibody response (Lee et al., 2017). Therefore,
in vitro datasets were selected as measured responses that
could be related to the mechanistic understanding related to
PFOA toxicity and observations in human exposure studies, such
as, estrogen receptor binding activation associated with breast
cancer, pregnane X receptor binding associated with hepatic
steatosis, thyroid hormone receptor α binding leading to
thyroid disease, and immunotoxicity (pro-inflammation from
cytokines).

MATERIALS AND METHODS

PBK Model
Software
The generic PBK model code describing the kinetics of
perfluorooctanoic acid (Worley et al., 2017) was provided by
Dr Rachel Worley1 in CSL syntax, the equation-based language
implemented in acslX™ software. However, support for acslX™
was discontinued in November 2015 (Lin et al., 2017). Therefore,
the CSL code was translated into the GNU MCSim language
(version 6.1.0.)2 and run under Windows 7 using RStudio
(RStudio Team, 2016). Files for running MCSim under
windows, tools and instructions for installation are available
from Github3.

In order to perform probabilistic simulations the model code
was further modified to ensure that logical constraints on mass
balance and blood flow to the tissues were met by adopting the re-
parameterizations described by Gelman et al. (1996).

1Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30,341
2https://www.gnu.org/software/mcsim/
3https://github.com/GMPtk/MCSimViaRtools
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The PBK model was evaluated using RVis, an open access PBK
modeling platform4 which provides an intuitive user-friendly
interface with which to interact with MCSim and the R
platform5. The model equations were solved using MCSim
which writes an output file in tab separated values (TSV) format
which is then input into the R environment and read by the R
packages required for the various analyses. Global sensitivity
analysis (GSA) of model outputs (Morris screening test and
extended Fourier Amplitude Sensitivity Test (eFAST) were
conducted using the Sensitivity package of R. Reshaping of data
and plotting was done using the reshape and ggplot2 packages,
respectively (Wickham, 2007; Pouillot and Delignette-Muller, 2010;
Soetaert et al., 2010; Pujol and Iooss, 2015). The main effects and
total effects (McNally et al., 2011) were computed at each time
point, and parameter sensitivities were studied over this period
using Lowry plots generated as described in McNally et al. (2011).

Benchmark dose values (BMDs) were calculated using
PROASTweb version 67.06 and R version 3.4.37. All plots were
created using R and ggplot2 (R Development Core Team, 2008;
Wickham, 2016).

Hardware
The computer used in this study was a Dell Optiplex 9,020 with
an Intel(R) Core™ i5-4590 CPU@3.30 GHz with 8.00 GB RAM
running Windows 7 Enterprise Service Pack 1. To run the
computationally intensive simulations for QIVIVE, work was
transferred to specially provisioned cloud infrastructure.
Specifically, hardware was allocated using Microsoft Azure
IaaS (infrastructure as a service). The specification was the
F-series (F8s_V2), which is compute-optimized and suitable
for running applications. The Fs v2 series is hyper-threaded
and based on the 2.7 GHz Intel Xeon® Platinum 8,168
(SkyLake) processor. Onto this hardware were installed
Ubuntu Server 18, GNOME desktop, R, required R packages,
and RStudio. Remote access was enabled using xrdp8.

Workflow
In vivo serum concentrations (CA) at steady state were simulated in
order to calibrate and evaluatemodel performance against the human
biological monitoring data used by Worley et al. (2017). In vivo
hepatic tissue PFOA concentrations (CL) were predicted during
QIVIVE because HepG2 cells are derived from the human liver
and are considered to be an in vitro surrogate for the liver in vivo.

The key to the approach described below is the recognition
that the PBK model is an imperfect approximation to reality.
Exact matching of the chosen PBK model response to an in vitro
concentration suggests a higher degree of belief in the model than
is warranted and is thus not desirable. By accepting a discrepancy
between the two, within a specified threshold, model uncertainty
is thus accommodated and an error term is created that can be

exploited by efficient sampling techniques. The workflow
described in McNally et al. (2018) was thus followed.

The modeling framework comprised five steps as described in
McNally et al. (2018):

1. Probability distributions for model parameters were
specified (see Table 1 for list of model parameters). In
addition to the parameter distributions used by Worley
et al. (2017) (shown in italics) in Table 2, distributions
for the remaining parameters were derived from various
sources. Distributions for VKC, QCC, QLC, and QKC were
obtained from PopGen by generating a virtual healthy
cohort of 50% male, 50% female Caucasian, black and
nonblack Hispanic people (McNally et al., 2014); VplasC
and Htc were derived from Crews et al. (2009) and ICRP
(2002), whereas for the remaining parameters for which no
information was readily available, uniform distributions
were ascribed based on physiologically feasible estimates.
These were VPTCC, PK, PR, Vmax_baso_intro, KM_baso,
kdiff, kabsc, kunabsc, GEC, K0C, and kefflux.

2. Morris screening and eFAST of PFOA CA and CL were
conducted at steady state. This required simulation of an
exposure period of 120,100 h (13.71 years) in order to
encompass the target time interval once steady state
was achieved. The target time interval is a period of
exposure over which the average of the dose metric was
estimated in order to account for the variations caused by
four, 15 min drinking events per day. The area under the
curve (AUC) for CA and CL concentrations over a target
time interval from 100,000 to 120,000 h was simulated.

3. The top ranked parameters from the Morris screening
were further examined using a variance-based sensitivity
analysis using eFAST–the insensitive parameters
determined by the Morris test were held fixed at default
values in this second phase of sensitivity analysis.

4. Refinement of the parameter ranges through calibration
using the blood biomonitoring data of (ATSDR, 2016) and
(Bartell et al., 2010). A statistical model was specified to
link predicted concentrations in serum to biomonitoring
data. A log-normal error model was assumed with
calibration achieved using Markov Chain Monte Carlo
implemented in GNU MCSim.

5. Estimation of a distribution of the daily drinking water
concentration (Intake) and drinking water exposure
concentrations (ExposedDW), corresponding to each of
seven or four experimental in vitro concentrations (see
Supplementary Table S1) while accounting for model
and parameter value uncertainty. This was achieved
using a two-step approximate Bayesian computation
(ABC) approach. In the first phase, 500 parameter sets
were drawn for sensitive parameters from uniform
distributions based upon the refined limits resulting from
calibration. These were paired with samples drawn for
Intake and ExposedDW. The PBK model was run for
each of these 500 parameter sets. The parameter sets that
corresponded to predictions of CL or CA within ±7.5% of
the target in vitro concentration were retained and the

4http://cefic-lri.org/toolbox/r-vis-open-access-pbpk-modelling-platform/
5https://github.com/GMPtk/RVis/releases
6https://proastweb.rivm.nl/
7https://cran.r-project.org/bin/windows/base/old/3.4.3/
8https://linuxize.com/post/how-to-install-xrdp-on-ubuntu-18-04/
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covariance matrix of the parameters calculated. In the
second phase, a more efficient parameter space search
was conducted using ABC MCMC. A proposed move
was accepted if within ±5% of the target concentration.
Four chains were run, each for 2,500 iterations. The above
approach was repeated for each of the seven or four dose
concentrations.

Finally, a PoD, taken to be the benchmark dose (BMDL5)
lower bound in the in vivo dose response relationship, was
estimated.

In vitro Data
In vitro concentration–response data were obtained from the
ToxCast/Tox21 database available from the Bioactivity section of
the United States Environmental Protection Agency Chemistry
Dashboard9. ToxCast was created as a screening program which
is reflected in the assay design. The purpose was to maximize
throughput, minimize false negatives, and facilitate data
processing for computational exercises and modeling to
identify patterns10. ToxCast was not designed for the
identification of molecular initiating events (MIEs) in the

development of adverse outcome pathways (AOPs).
Appropriate datasets were obtained by first filtering to retain
only those that were active (positive hit-call), that is, had an AC50

(concentration at which 50% maximum activity was observed)
derived from the Hill or Gain-Loss model where both the
modeled and observed maximum responses met or exceeded
an efficacy cutoff (Filer et al., 2017) and had no warning signs
(flags). However, two datasets with flags indicating possible
unwanted influence were retained because the shape of the
response curve was similar to the curves for the other assays.
All datasets were conducted using a human cell line. Datasets
with an associated AOP and with the lowest AC50 value were
selected. The rationale adopted was analogous to the process
followed by regulatory agencies where generally, a NOAEL or
BMD value is identified and used for the safety assessment of any
given chemical. However, very few datasets had an associated
AOP. Two of the four selected datasets had AOPs:

1. Estrogen receptor binding (assay name:
ATG_ERE_CIS_up, AC50 � 33.82 µM). No flags. AOP
estrogen receptor activation associated with breast
cancer11

2. Pregnane X receptor binding (assay name:
ATG_PXRE_CIS_up, AC50 � 35.28 µM). No flags. AOP

TABLE 1 | Model parameters.

Physiological parameter Abbreviation Kidney transport parameters (contd) Abbreviation

Body weight BW Basolateral transporter relative activity factor RAFbaso
Glomerular filtration rate GFRC

Tissue volumes (fraction of BW) Proximal tubule cell protein content Protein
Liver VLC
Kidney filtrate VfilC Rate constants
Kidney VKC Biliary elimination KbileC
Plasma VplasC Urinary elimination KurineC
Proximal tubule cells VPTCC

Diffusion from proximal tubule cells kdif
Cardiac output (CO) QCC Small intestine to liver absorption kabsc
Blood flows (fraction CO) Fecal elimination kunabsc
Liver QLC Gastric emptying GEC
Kidney QKC Stomach to liver absorption K0C
Hematocrit Htc keffluxc

Daily urine volume production Kvoid
Chemical-specific parameters Exposure parameters
Plasma unbound fraction Free Drinking water concentration backgrounddw
Tissue: blood partition coefficients Contaminated drinking water concentration ExposedDW
Liver PL Daily drinking water consumption DWtotal
Kidney PK Past nondrinking water ingestion rate Ingest_past
Rest of body PR Current nondrinking water ingestion rate Ingest_current

Total number of drinks per day Drinks
Kidney transport parameters Drinking event time Tlendw
In vitro apical transporter maximum velocity uptake rate Vmax_apical_in vitro Duration of exposure tbackground
In vitro apical transporter Michaelis–Menten constant KM_apical
Apical transporter relative activity factor RAFapi
In vitro basolateral transporter maximum velocity uptake rate Vmax_baso_in vitro
In vitro basolateral transporter Michaelis–Menten constant KM_baso

9https://comptox.epa.gov/dashboard/
10https://lri.americanchemistry.com/Users-Guide-for-Accessing-and-
Interpreting-ToxCast-Data.pdf 11Aopwiki.org/aops/200
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inhibition, mitochondrial fatty acid ß-oxidation associated
with hepatic steatosis12

3. Thyroid hormone receptor binding (assay name:
ATG_THRa1_TRANS_dn, AC50 � 22.33 µM). Flag: hit-
call potentially confounded by overfitting.

4. Plasminogen activation, urokinase receptor protein (assay
name: BSK_3C_uPAR_down, AC50 � 1.63 µM). Flag:
<50% efficacy, hit-call potentially confounded by
overfitting.

Assays 1–3 were conducted in 24-well plates using human
liver HepG2 cells and dimethyl sulfoxide as dilution solvent.
Assays 1 and 2 generate a profile of transcription factors (TFs) in

eukaryotic cell activities that represent a stable and sustained
cell signature that clearly distinguishes different cell types,
subcellular biochemical perturbations reflected in specific
gene regulatory network alterations, and ultimately
pathological conditions (Romanov et al., 2008; Martin et al.,
2010). For example, endocrine disrupting chemicals (EDCs),
particularly estrogen receptor (ER) agonists, are thought to
contribute to birth defects and the incidence of breast cancer
(Judson et al., 2015; Judson et al., 2017). Assay 3 measures
inducible changes in human thyroid hormone receptor alpha
(GAL4-THRa). Assay 4 is an immunotoxicity endpoint
conducted on umbilical vein endothelium human vascular
primary cells in 96-well plates and measured urokinase
receptor protein, where changes in protein expression were
conditioned to simulate pro-inflammation from cytokines
(Houck et al., 2009; Kleinstreuer et al., 2014).

TABLE 2 | Parameter distributions used in Morris screening, global sensitivity analysis, approximate Bayesian computation, and Markov Chain Monte Carlo simulation.

Parameter Unit Mean SD Lower bound Upper bound Distribution

Physiological
BWa Kg 4.36 0.313 3.747 4.973 Lognormal
GFRC L/h/Kg kidney 3.14 0.294 2.564 3.716 Lognormal
Protein mg protein/proximal tubule cell 2 × 10–6 6 × 10–7 8.24 × 10–7 3.18 × 10–6 Normal
Tissue volumes
VLC L/Kg BW 0.026 0.0078 0.0107 0.0413 Normal
VfilC L/Kg BW 0.0004 0.00012 0.000165 0.000635 Normal
VKC L/Kg BW 0.004 0.0008 0.0024 0.0056 Normal
VplasC L/Kg BW 0.0428 0.009 0.025 0.061 Normal
VPTCC L/g kidney 1.35 × 10–4 - 7.7 × 10–5 1.9 × 10–4 Uniform
Cardiac output (CO)
QCC L/h/kg BW0.75 12.5 2 8.5 16 Normal
Blood flows (fraction CO)
QLC Unit less 0.25 0.05 0.15 0.35 Normal
QKC Unit less 0.175 0.03 0.12 0.24 Normal
Htc Unit less 0.44 0.09 0.26 0.62 Normal
Chemical-specific parameters
PL Unit less 0.01 0.198 −0.378 0.398 Lognormal
PK Unit less 1.17 0.2 0.77 1.6 Normal
PR Unit less 0.11 0.02 0.07 0.15 Normal
Vmax_apical_invitro pmol/mg protein/min 10.48 0.325 9.843 11.117 Lognormal
KM_apical µg/L 11.25 0.161 10.929 11.561 Lognormal
RAFapi Unit less −7.31 0.294 −7.886 −6.734 Lognormal
KbileC /h/Kg−0.25 −9.25 0.294 −9.826 −8.674 Lognormal
KurineC /h/Kg−0.25 −2.81 0.294 −3.386 −2.243 Lognormal
Free Unit less −3.96 0.294 −4.536 −3.384 Lognormal
Vmax_baso_in vitro pmol/mg protein/min 439.2 90 259.2 619.2 Normal
KM_baso µg/L 20,100.0 4,000 12,100 28,100 Normal
RAFbaso Unit less 1.0 0.2 0.6 1.4 Normal
Rate constants
Kdif L/h 0.001 0.0002 0.0006 0.0014 Normal
Kabsc 1/(h×BW−0.25) 2.12 0.04 1.3 2.9 Normal
Kunabsc 1/(h×BW−0.25) 7.06 × 10–5 1.0 × 10–5 5.1 × 10–5 9.1 × 10–5 Normal
GEC 1/(h×BW−0.25) 3.5 0.7 2.1 4.9 Normal
K0C 1/(h×BW−0.25) 1.0 0.2 0.6 1.4 Normal
Keffluxc 1/(h×BW−0.25) 0.1 0.02 0.06 0.14 Normal
Exposure parameters
ExposedDW µg/L 1.22 0.294 0.648 1.800 Lognormal
DWtotal L/day 0.181 0.503 -0.805 1.167 Lognormal
Ingest_past µg/h −3.69 0.294 −5.570 −3.270 Lognormal
Ingest_current µg/h −4.65 0.294 −5.226 −4.074 Lognormal

aItalicized parameter distributionswere taken directly fromWorley et al. (2017). For the remaining parameter distributionswhere only point values were reported (in supplementarymaterials
of Worley et al. 2017), best estimate standard deviations and normal distributions were ascribed.

12Aopwiki.org/events/451
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The original in vitro concentrations downloaded from the
Chemistry Dashboard were expressed as Log10 μM and the
corresponding responses as Log2 fold induction
(Supplementary Table S1). The concentration and response
data were converted to the natural scale in order to be used in
the ABC algorithm. Also, concentrations were expressed in µg/
L or ng/ml for direct comparison with the biological
monitoring data from individuals whose primary drinking
water source was the West Morgan East Lawrence Water
Authority in North Alabama (ATSDR, 2016), the Little
Hocking Water Association in the Mid-Ohio River Valley,
and the Lubeck Public Service District in West Virginia
(Bartell et al., 2010).

The original in vitro concentrations were considered to be
nominal (applied) concentrations. Therefore, in order to
estimate, to some extent, the bioavailable (free)
concentration of PFOA in the in vitro assays assuming
differential partitioning (to protein, lipid, and plastic) a
simple approach using the Log10 of the octanol/water
partition coefficient (Log Po:w) for PFOA was applied.
According to Proença et al. (2019), pyrene (Log Po:w
4.88–4.93) was predicted to have 2.3% of unbound
(bioavailable) chemical relative to the nominal amount.
Therefore, PFOA (Log Po:w � 4.8–4.9) was predicted to have
a similar in vitro bioavailability. The final in vitro
concentrations input into the ABC algorithm were 2.3% of
the nominal concentrations (Supplementary Table S1).
However, a further caveat is that this is an estimate which
ignores the effect of water solubility and pKa on the differential
partitioning of PFOA.

Calculation of In Vivo Benchmark Dose
The dose–response curves were predicted by simulating four,
15 min drinking events per day, over a target time interval of
100,000–120,000 h (a period over which steady state was reached)
(Figure 1). The mode 2.5 and 97.5% of the credible interval values
were calculated for the most sensitive parameters identified by
GSA. BMD values were determined for ExposedDW, the
contaminated drinking water concentration, and Intake the
daily drinking water concentration, estimated for each in vitro
concentration. Intake, with units of ng/kg BW/day, was derived in
order to make direct comparisons with BMD values used in risk
assessments. Intake was calculated as follows:

Intake � ExposedDW × DWtotal
BW

, (1)

where ExposedDW, (µg/L), DWtotal, the daily drinking water
consumption (L) and BW, is body weight (kg).

Each dataset of seven in vivo CL or four CA mode
concentrations and corresponding fold inductions was
uploaded to PROASTWeb which fitted six candidate models
that were suitable for continuous (value for each individual)
response data. The benchmark dose 5% lower bound
corresponding to the most conservative model that provided
an adequate fit (as assessed by the software) to the data was
determined. A benchmark response of 0.05 (5%) was specified.

RESULTS

Morris Screening
Due to the stochastic nature of the Morris test parameter, rankings
were derived by identifying the mode for each parameter over six
simulations. From the entire set of 33 parameters studied using the
Morris test, themodel output (CL andCA)was judged to be insensitive
to 20 parameters; these were held fixed at default values in the second
phase of sensitivity analysis. Thirteen parameters (ExposeDW,
DWtotal, BW, Vmax_apical_in vitro, RAFapi, Free, GFRC, kurinec,
protein, VfilC, kbilec, PL, andVLC) were further studied in a variance-
based sensitivity analysis using the eFAST technique.

eFAST
All 13 parameters accounted for 100% variance in CL and CA
(Figure 2). However, VLC, PL, kbilec, and VfilC made a total
contribution of 10–11% to the overall variance over the target time
interval. Therefore, in order to reduce computational overhead, they
were held fixed at default values in onward analysis. The following
parameters were included for model calibration and parameter
estimation by the algorithm; ExposedDW, DWtotal, BW, Free,
GFRC, kurinec, protein, RAFapi, and Vmax_apical_in vitro.

Refinement of Exposure Assessment and
Derivation of Chemical-SpecificAdjustment
Factor for Perfluorooctanoic Acid
The PBK model for PFOA was evaluated by reproducing Figures
2–4 from Worley et al. (2017). Sensitive parameters were

FIGURE 1 | PBK model for PFOA was evaluated by reproducing
Figures 2–4 from Worley et al. (2017). The solid, colored lines represent
simulations of ExposedDW (drinking water PFOA concentrations) which were
set to the highest concentration reported for each water authority; these
were 0.04 μg/L (red), 1.0 μg/L (green), and 4.9 μg/L (blue) for North Alabama,
Lubeck Public Service District, and Little Hocking Water Association,
respectively. The simulations were for 30 years with a further 10-year
postexposure period. The corresponding serum PFOA concentrations are
shown as solid colored symbols. The vertical gray shaded band between
100,000 and 120,000 h (11.4–13.7 years) highlights the point where steady
state was judged to have been achieved; the model predictions from this
period were used for QIVIVE calculations.
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subsequently calibrated, as described in methods, based upon
ExposedDW set to the highest concentration reported for each
water authority, these were 0.04, 1.0, and 4.9 μg/L for North
Alabama (ATSDR, 2016), Lubeck Public Service District, and
Little Hocking Water Association (Bartell et al., 2010),
respectively.

Summary statistics (median and a 95% credible interval)
computed from the retained sample from the posterior
distribution are given for each of the sensitive parameters in
Table 3. To allow for a direct comparison with the prior, similar
summary statistics based upon a sample drawn from the prior
distribution are also given in Table 3.

A comparison of the two sets of summary statistics illustrates a
broad consistency. The medians changed little following
calibration; however, there was a consistent narrowing of
credible intervals following calibration. The correlations
between parameters in the posterior distribution were
generally weak, the most notable being those between kurinec
and Vmax apical in vitro (0.373), protein (0.413), and RAFapi
(0.35), respectively.

The fit of the calibrated model to data is shown in Figure 1was
conducted using the same data used in Figures 2–4 in Worley
et al. (2017). In the plot, the fit to the three different
concentrations is shown and distinguished by color. The solid

lines represent the posterior mode fit—this corresponds to the
same parameter set for each concentration, with these three
simulations only differing in the fixed drinking water
concentration. The shaded bands surrounding the posterior
modes at each concentration correspond to a numerically
derived 95% credible interval: at each time point, the
predictions from the retained sample were ordered, and the
2.5 and 97.5 percentiles were read off. This process was
repeated for each concentration. The measurements from
North Alabama, Lubeck Public Service District, and Little
Hocking Water Association, respectively, are shown for
comparison and indicate a good overall agreement between
the model predictions and measurements. The vertical gray
shaded band between 100,000 and 120,000 h, also shown in
Figure 1, highlights the point where steady state was judged
to have been achieved; the model predictions from this period
were used for QIVIVE calculations.

Chemical-specific adjustment factors (CSAFs) of 1.099, 1.098,
and 1.096 for the lowest to highest dose curves were calculated
from the quotients of the 95th/50th percentiles of the credible
intervals shown in Figure 1.

Another potential CSAF would be the quotient of the 95th/
50th percentile of the posterior distribution for the organic anion
transporters (OATs) in the proximal tubule cells of the kidney.

FIGURE 2 | Lowry plots of the eFAST quantitative measure of the most sensitive parameters identified by Morris screening following oral (drinking water) exposure.
The total effect of a parameter STi comprised the main effect Si (black bar) and any interactions with other parameters (gray bar) given as a proportion of variance. The
ribbon, representing variance due to parameter interactions, is bounded by the cumulative sum of the main effects (lower bound of ribbon) and the minimum of the
cumulative sum of the total effects (upper bound of ribbon). (A) For CL, liver cell concentrations (upper panel) and (B) for CA, serum concentrations (lower panel).

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6304578

Loizou et al. Application of QIVIVE to PFOA

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The OATs are thought to be the major determinants of species-
dependent differences in biological half-life of PFOA (Nakagawa
et al., 2008; Nakagawa et al., 2009). In this study, Vmax apical
in vitro, the limiting rate of the OAT4 transporter, was identified
as one of the tenmost sensitive parameters that determine CL and
CA. Therefore, a CSAF of 1.4 was calculated by taking the
quotient of the 95th/50th percentile of the posterior
distribution of Vmax apical in vitro.

Quantitative In Vitro In Vivo Extrapolation
As described in methods, a two-stage approach was used to
sample ExposedDW and DWtotal that were consistent with
in vitro experimental data and a modest degree of model
uncertainty, accounted for through accepting simulations
within 5% of the target concentration. Results from the
first phase (rejection sampling) of the approach are
illustrated in Figure 3. Panel A of Figure 3 illustrates
concentration response profiles from 500 simulations,
whereas panel B shows just the concentration response
profiles from the retained simulations that were within
7.5% of the target concentration (of 1,035.175 (µg/L) in
this example. In the second phase of analysis an ABC
MCMC algorithm was utilized to allow more efficient
sampling of the parameter space consistent with a given
in vitro target concentration. A tighter threshold of 5%
was stipulated for the ABC MCMC sampling. This two-
stage process was repeated for each in vitro concentration.
Acceptance rates of between 5 and 20% (median 10%) were
achieved for the ABC MCMC simulations. Onward analysis
was based upon results from the retained samples and pooled
over the four chains run for QIVIVE for each in vitro
concentration.

The in vivo dose responses, Intake (ng/kg BW/day), and
ExposedDW (ng/L) estimated from the four in vitro
concentration–response datasets; estrogen receptor binding
(ATG_ERE_CIS_up), pregnane X receptor binding
(ATG_PXRE_CIS_up), thyroid hormone receptor binding
(ATG_THRa1_TRANS_dn), and plasminogen activator,
urokinase receptor protein (BSK_3C_uPAR_down) are provided
in Table 4. Posterior distributions for the most sensitive parameters
identified by GSA were estimated by updating the prior
distributions. So Intake was calculated from ExposedDW,

DWtotal, and BW (see Eq. 1), and Table 4 shows results as
posterior distributions for the estimates of exposure; Intake and
ExposedDW and the parameters; DWtotal and BW required to
derive them.

TABLE 3 | Posterior medians and 95% credible intervals for calibrated parameters.

Parameter Median (95% credible interval)

Prior Posterior

BW 78.5 (46.63, 131.3) 82.19 (56.56, 124.1)
Vmax apical in vitro 35,603 (20,793, 61,074) 37,526 (21,393, 54,918)
VfilC 0.0004 (0.0002, 0.0006) 0.00034 (0.00018, 0.00052)
Free 0.0188 (0.0106, 0.031) 0.017 (0.0099, 0.026)
PR 0.11 (0.076, 0.143) 0.121 (0.088, 0.147)
Protein 0.000002 (0.000001, 0.000003) 0.0000021 (0.0000011, 0.0000029)
RAFapi 0.00067 (0.00041, 0.0012) 0.00073 (0.00051, 0.00011)
GFRC 23.10 (14.20, 37.64) 20.73 (13.54, 31.50)
Kurinec 0.06 (0.037, 0.098) 0.0562 (0.0357, 0.088)
PL 1.01 (0.728, 1.40) 1.11 (0.771, 1.42)

FIGURE 3 | Comparisons of concentration response profiles simulated
in the rejection phase were run for each dose concentration. A typical example
is shown for a target concentration of 1,035.175 μg/L. (A) 500 concentration
response profiles following 120,000 h exposure (upper panel) and (B)
retained samples within a relative error of 7.5% (lower panel).
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Benchmark Dose Analysis
The in vivo dose responses provided in Table 4 were used to derive
four BMDL5 (lower limit of the 95% confidence interval on the
benchmark response equivalent to a 5% effect size) for each in vitro
assay. The mode 2.5 and 97.5% percentile BMDL5 values were
derived for ExposedDW and Intake by using the mode and upper
and lower limits of the credible ranges for each concentration listed
inTable 4. The predicted mode for the in vivo dose–response curves
for each of the in vitro datasets for Intake (upper panel) and
ExposedDW (lower panel) is shown in Figure 4. The BMDL5
values are listed in Table 5 along with the Intake values for
serum cholesterol and antibody titer calculated by EFSA.

The Intake BMDL5 mode of 0.82 ng/kg BW/day for pregnane
X receptor binding (ATG_PXRE_CIS_up), which may be
associated with the perturbation of mitochondrial fatty acid
β-oxidation leading to altered serum cholesterol levels, was
similar to the BMDL5 of 0.86 ng/kg BW/day (6 ng/kg BW/
week) for serum cholesterol derived by the EFSA scientific
panel on contaminants in the food chain (EFSA Contam Panel
et al., 2018). In order to derive a tolerable daily intake for PFOA,
the CONTAM panel of EFSA concluded that the application of
any additional UFs was not needed because the biological
monitoring was based on large epidemiological studies from
the general population and performed on risk factors for
disease rather than disease endpoints, including potentially
sensitive subgroups. Therefore, the BMDL5 value as a PoD
corresponds to the tolerable daily intake (TDI) for PFOA.

The Intake BMDL5 mode of 6.88 ng/kg BW/day for
plasminogen activator, urokinase receptor protein
(BSK_3C_uPAR_down) which may be associated with pro-
inflammation from cytokines and possible altered antibody
titer was six-fold higher than the value of 1.14 ng/kg BW/day
derived by the EFSA (EFSA Contam Panel, 2020).

Application of the default UF of 10 allowing for inter-
individual differences in kinetics and dynamics would reduce
the mode to 0.082 for serum cholesterol which is ten-fold lower
and 0.69 ng/kg BW/day for antibody titer which is similar to
those derived by the EFSA (Table 5).

CSAFs of 1.4 for PFOA allowing for inter-individual
variability in kinetics, based on biological half-life which was
greater than the CSAF of 1.1 based on AUC (at steady state
kinetics) was applied to give an Intake BMDL5 of 0.59 for serum
cholesterol and 4.91 (ng/kg BW/day) for decreased antibody titer,
which were 0.69 and 4.31, respectively, than the EFSA derived
values (Table 5).

The BMDL5 values of 6.46 and 3.27 ng/kg BW/day for
ATG_ERE_CIS_up and ATG_THRa1_TRANS were similar in
magnitude to the other datasets although could not be compared
with BMDLs used by a regulatory agency in a risk assessment
(Table 5).

The corresponding BMDL5 modes for ExposedDW, the
drinking water concentrations, for ATG_ERE_CIS_up,
ATG_PXRE_CIS_up, ATG_THRa1_TRANS, and
BSK_3C_uPAR_down were 0.883, 0.139, 0.086, and 0.295 ng/

TABLE 4 | Posterior modes and 97.5% credible ranges for Intake and varying model parameters for target AUC concentrations in liver and serum.

ATG_ERE_CIS_up

In vitro concentration (µg/L) Intake (ng/kg BW/Day) ExposedDW (ng/L) DWtotal (L) BW (kg)

1.035 0.19 (0.05, 0.39) 8.79 (4.32, 9.57) 2.96 (1.17, 3.28) 55.72 (42.11, 135.40)
4.141 0.71 (0.21, 1.74) 33.04 (16.66, 34.80) 3.03 (1.31, 3.28)) 52.69 (42.10, 134.91)
10.352 1.79 (0.69, 4.32) 78.82 (40.86, 95.24) 2.97 (1.31, 3.29 51.66 (42.14, 135.26)
41.407 4.43 (1.79, 15.21) 322.1 (162.24, 349.83) 2.47 (1.17, 3.27) 60.22 (42.56, 135.60)
103.518 17.0 (4.25, 42.2) 812.16 (430.00, 972.20) 2.71 (1.12, 3.28) 53.09 (43.13, 137.30)
310.553 48.88 (10.67, 123.88) 2,637.03 (1,144.80, 3,001.40) 2.53 (1.08, 3.20) 53.91 (44.15, 134.92)
1,035.175 194.56 (48.00, 409.26) 8,778.20 (4,436.31, 9,708.72) 2.97 (1.24, 3.29) 56.04 (44.13, 138.18)

ATG_PXRE_CIS_up
1.035 0.15 (0.06, 0.43) 8.87 (4.63, 9.81) 2.60 (1.36, 3.28) 66.61 (43.76, 138.62)
4.141 0.68 (0.30, 1.39) 28.53 (18.46, 36.25) 3.03 (1.40, 3.29) 69.15 (45.57, 142.00)
10.352 1.79 (0.48, 3.87) 77.25 (43.13, 95.67) 2.13 (1.36, 3.28) 63.46 (42.30, 135.74)
41.407 6.06 (2.22, 16.01) 361.50 (199.74, 384.22) 1.76 (1.03, 3.14) 78.17 (42.26, 134.92)
103.518 18.56 (4.30, 42.02) 914.66 (435.73, 985.64) 3.00 (1.23, 3.29) 106.08 (
310.553 57.87 (16.98, 132.37) 2,426.21 (1,272.98, 3,062.36) 2.42 (1.28, 3.27) 54.64 (42.07, 134.30)
1,035.175 181.56 (59.54, 406.70 7,957.00 (4,699.83, 10,119.74) 2.28 (1.27, 3.28) 54.34 (44.85, 140.33)

ATG_THRa1_TRANS
1.035 0.17 (0.06, 0.36) 6.24 (4.04, 9.54) 3.08 (1.20, 3.29) 56.39 (42.03, 139.84)
4.141 0.56 (0.16, 1.53) 32.51 (16.83, 34.44) 2.77 (1.26, 3.29) 126.29
10.352 7.45 (2.56, 15.89) 85.25 (46.91, 102.19) 2.85 (1.25, 3.29) 76.59 (45.55, 141.37)
41.407 15.76 (5.82, 38.61) 338.90 (181.90, 362.60) 2.94 (1.28, 3.29) 53.82 (42.35, 138.77)
103.518 34.32 (11.02, 116.89) 719.40 (382.52, 932.39) 2.87 (1.50, 3.29) 56.56 (46.75, 142.82)
310.553 1.63 (0.46, 3.88) 2,526.87 (1,052.32, 2,853.18) 2.64 (1.20, 3.29) 135.05 (46.14, 143.13)
1,035.175 144.82 (47.35, 402.22) 8,954.99 (4,266.71, 9,664.36) 2.87 (1.27, 3.29) 125.41 (43.69, 138.62)

BSK_3C_uPAR_down
9.524 1.73 (0.48, 4.21) 86.35 (35.76, 92.23) 2.58 (1.26, 3.28) 53.95 (42.00, 135.89)
38.094 5.87 (1.93, 13.39) 261.76 2.53 (1.22, 3.29) 56.38 (42.67, 136.80)
95.236 20.73 (5.08, 42.63) 877.62 2.08 (1.33, 3.28) 61.79 (43.28, 136.97)
380.944 59.46 (18.58, 134.05) 2,826.00 (1751.56, 3,592.88) 2.21 (1.25, 3.29) 131.92 (48.43, 143.94)
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FIGURE 4 | Typical predicted in vivo dose–response curves for Intake (upper panels) and ExposedDW (lower panels) for each of the in vitro datasets. These
were for estrogen receptor binding activation leading to breast cancer (A) and (E), pregnane X receptor binding leading to hepatic steatosis (B) and (F), thyroid hormone
receptor a binding leading to thyroid disease (C) and (G), and immunotoxicity (pro-inflammation from cytokines) (D) and (H). The curves for the modes only are shown.
Benchmark dose values were calculated from such curves for the mode, lower and upper bounds (2.5 and 97.5%) of the credible intervals (Table 5).

TABLE 5 | BMDL5 mode and 95% credible intervals for drinking water exposure concentration and Intake and chemical specific adjustment factors.

ExposedDW (ng/L) Intake (ng/kg BW/day) CSAF (T½

Vmax apical
in vitro)

Intake
CSAF

Intake
Default

ATG_ERE_CIS_up 88.3 (163, 304) 6.46 (1.69, 13.8) 1.4 4.61 (0.09–11.1) 0.65
(0.17–1.38)

ATG_PXRE_CIS_up 139 (129, 323) 0.82 (0.12, 15.6) 1.4 0.59 (0.09–11.1) 0.08
(0.01–1.11)

ATG_THRa1_TRANS 85.5 (62.5, 107) 3.27 (1.65, 4.82) 1.4 2.34 (1.18–3.44) 0.33
(0.17–0.48)

BSK_3C_uPAR_down 295 (158, 353) 6.88 (1.98, 14.7) 1.4 4.91 (1.14–10.5) 0.69
(0.20–1.10)

EFSA
Intake (ng/kg BW/day)

vitroBMDL5
EFSABMDL5

Mean
Serum cholesterol (ATG_PXRE_CIS_up) 0.857 0.69 0.09
Decreased antibody titer (BSK_3C_uPAR_down) 1.140 4.31 0.61
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ml, respectively. These concentrations are 5.7-, 36-, 58.5-, and
16.9-fold lower than the measured median level for the general
United States population which was reported to be approximately
5 ng/ml (5 μg/L) (Emmett et al., 2006; Steenland et al., 2010).

DISCUSSION

In this work, we applied the workflow of McNally et al. (2018) in
order to account for parameter and model uncertainty within a
computationally efficient framework. This the first time the
workflow has been applied to a human PBK model and
human in vitro cell line data. A technical discussion of the
framework and in particular a justification for the inclusion of
model uncertainty are covered in detail in McNally et al. (2018)
and therefore is not repeated here. However, a thorough
comparison between the “reverse dosimetry” approach
adopted in the workflow and the iterative forward dosimetry
“dose matching” approach to QIVIVE that is frequently adopted
in the literature is of merit. In our approach, the uncertainties and
variabilities in model parameters have been specified through
probability distributions, the sensitivity of model output to
uncertainties in model inputs has been tested through
sensitivity analysis, uncertainty has been refined (although not
completely eliminated) through calibration, and finally parameter
uncertainties and model uncertainty have been accounted for
during QIVIVE. In contrast, the “dose matching” approach does
not account for uncertainty at any stage of the modeling process.
Results are inevitably sensitive to the default parameters assumed
by researchers, but there is currently no mechanism for
quantifying this sensitivity.

The PBK model for PFOA was written in MCSim syntax,
compiled and subsequently run using the generated
executable. MCSim was an appropriate platform given the
long simulation period (up to 350,000 h which took around
10 h on the Microsoft Azure IaaS) and the requirement for
hundreds of thousands of model evaluations (covering the
processes of development and testing, GSA, calibration, and
QIVIVE). However, while MCSim is particularly well suited to
computationally intensive computations such as MCMC
which can be executed at the command line, the command
line interface was not well suited to the overall workflow
adopted for this work. Interaction with the model
executable was undertaken in three distinct ways. RVis was
used for development and testing of the model and for GSA.
RVis acts as a user-friendly front end to an MCSim executable
and supplies input, runs, processes and reports model outputs
from the executable. In addition to providing a user-friendly
front end for interacting with the model, RVis parallelizes the
runs in batch-run operations over the available cores on a
personal computer, such that the run time for a
computationally expensive technique such as eFAST (GSA),
which requires tens of thousands of runs, may be substantially
reduced. Calibration was performed using MCMC (a
technique for which MCSim is particularly well suited and
run through the command line). Model output from MCMC
was subsequently processed using R scripts. QIVIVE was also

performed using R scripts which supplied inputs to, ran, and
processed outputs from the executable. The computation for
this process was exported to Azure as described in Methods. At
present the full workflow requires significant expertise in PBK
modeling, statistics, and programing and is not widely
accessible. A focus of current work is to develop a user-
friendly module within RVis for QIVIVE, which would
substantially reduce the entry barrier to the technique.

This study has demonstrated that the availability of freely
accessible in vitro concentration–response data for
environmental pollutants from the Tox21 and ToxCast high-
throughput in vitro screening programs could be valuable and
effective in chemical risk assessment. The credible intervals for
the in vivo BMDL values for Intake for serum cholesterol
(ATG_PXRE_CIS_up) with and without the application of a
CSAF or default UF encompass the BMDL for Intake derived
by the EFSA. However, only the in vivo BMD values for Intake for
decreased antibody titer (BSK_3C_uPAR_down) with
application of the CSAF encompassed the value derived and
used by the EFSA. These results suggest that the in vitro
concentration–response data could be used to predict in vivo
dose response successfully.

At present we address each in vitro concentration in turn
and estimate corresponding in vivo concentrations, accounting
for model and parameter value uncertainty with a distribution
of in vivo concentrations resulting from each in vitro
concentration. From this data, we derive a dose–response
curve from central estimates and calculate a BMD. This
BMD can be used in the risk assessment process, with
standard uncertainty factors applied as necessary. With a
minor change to methodology, our approach could be used
to derive CSAFs. The principle change would be to derive the
full sequence of in vivo concentrations, corresponding to a
given set of uncertain parameters and the full sequence of
in vitro target concentrations, within a single step. The
dose–response data could be interpreted as corresponding
to a given individual in a population, and a BMD estimated
from the data. Through repeating and generating a sample of
BMDs, uncertainty factors may be derived. In application,
there are considerable technical challenges in achieving a
reasonable acceptance rate for proposals and computational
efficiency. This is a priority area of research going forward.

However, there are a number of caveats that must be
considered. For example, we applied a simple approach to
mitigate the use of nominal, applied concentrations.
Estimation of the available free concentration of the test
compound is a function of serum protein and lipid
composition of the media, and it is foreseen that more
accurate estimates of bio-actively available in vitro
concentrations will lead to different and more accurate
extrapolated in vivo concentrations. In addition, the majority
of assay protocols appear to be standardized where the in vitro
concentrations and spacing are identical for all datasets, spanning
three orders of magnitude, ranging from 41.41 to 41,407 μg/L.
This may not be ideal for the derivation of a BMDL for which the
concentration spacing might need to be altered to more faithfully
capture the changes in response. More generally, the assays used
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in this study involved binding of unmetabolized chemical to a
receptor which would initiate a cascade of interactions assumed
to cause the perturbation of various biochemical pathways that
precede overt toxicity. Therefore, these assays are limited to
reactions that do not require metabolism of chemical to an
active moiety. Indeed, the challenge of predicting a priori the
rate at which a potential toxicant is metabolized in vivo still
remains unsolved (Wetmore et al., 2012).

It is also important to document known limitations of the
assays. For instance, assays using fluorescent readouts can give
unreliable results for compounds that are themselves fluorescent
(e.g., azo dyes). With cell-based assays, simultaneous cytotoxicity
measurements are usually needed because cytotoxicity can
confound the target-specific readout. Despite the known
limitations of in vitro assays, there are plenty of examples of
increased utility when combined with PBK models. For example,
if in vivo clearance is included, approximately two orders of
magnitude variation in biological potency could be captured
when predicted directly using HTS in vitro measurements
(Knudsen et al., 2015).

While our ABC algorithm is more appropriate for
prioritized chemicals for which a thorough risk assessment
is justified, the ability to quantify model parameter, structure,
and data uncertainty is of paramount importance for the
development of confidence in model use. The ability to do
this within an intuitive, freely available software tool would
make this approach accessible to a wider user base. This is an
important step forward to implement the use of NAMs in
chemical risk assessment since QIVIVE and reverse dosimetry
have been described as the critical “endgame” in the workflow
of predictive toxicology (Knudsen et al., 2015). QIVIVE is
essential in order to transition away from animal model–based
toxicology to entirely in vitro/in silico-based toxicological
science (Knudsen et al., 2015). It is recommended to further
test the current probabilistic workflow allowing the derivation
of BMDL from the integration of data from in vitro assays, PBK
modeling, and QIVIVE approaches, through relevant case
studies for chemicals of relevance to the food safety area
and chemical risk assessment in general.
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