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According to the classical pharmacophore fusion strategy, a series of 6-arylureido-4-
anilinoquinazoline derivatives (Compounds 7a–t) were designed, synthesized, and
biologically evaluated by the standard CCK-8 method and enzyme inhibition assay.
Among the title compounds, Compounds 7a, 7c, 7d, 7f, 7i, 7o, 7p, and 7q
exhibited promising anti-proliferative bioactivities, especially Compound 7i, which had
excellent antitumor activity against the A549, HT-29, and MCF-7 cell lines (IC50 � 2.25,
1.72, and 2.81 μM, respectively) compared with gefitinib, erlotinib, and sorafenib. In
addition, the enzyme activity inhibition assay indicated that the synthesized
compounds had sub-micromolar inhibitory levels (IC50, 11.66–867.1 nM), which was
consistent with the results of the tumor cell line growth inhibition tests. By comparing
the binding mechanisms of Compound 7i (17.32 nM), gefitinib (25.42 nM), and erlotinib
(33.25 nM) to the EGFR, it was found that Compound 7i could extend into the effective
region with a similar action conformation to that of gefitinib and interact with residues L85,
D86, and R127, increasing the binding affinity ofCompound 7i to the EGFR. Based on the
molecular hybridization strategy, 14 compounds with EGFR inhibitory activity were
designed and synthesized, and the action mechanism was explored through
computational approaches, providing valuable clues for the research of antitumor
agents based on EGFR inhibitors.

Keywords: EGFR, anti-proliferative bioactivities, enzyme activity inhibition assay, molecular docking, molecular
dynamic simulation

INTRODUCTION

Malignant tumors are an extremely serious public health problem that has aroused worldwide
attention, making the discovery of antitumor drugs a research hotspot (Kim et al., 2016; El-Sayed
et al., 2018; Yang et al., 2019; Zhang et al., 2019). Among the therapeutic targets for cancer, the
abnormal expression of the epidermal growth factor receptor (EGFR) is strongly associated with
various malignancies such as breast, ovarian, non-small-cell lung, prostate, and colon cancers.
The EGFR has been confirmed to be closely related to tumor growth, progression, metastasis,
and the poor prognosis of cancer patients, prompting extensive studies on the EGFR signaling
pathway (Bishayee, 2000; Bridges, 2001; Ogiso et al., 2002; Hirsch et al., 2003; Bazley and Gullick,
2005; Allam et al., 2020; Han et al., 2020). Increasing evidence has shown that EGFR inhibitors
have great potential in the treatment of tumors, especially non-small-cell lung cancer,

Edited by:
Raquel Montenegro,

Federal University of Ceara, Brazil

Reviewed by:
Wen Zhou,

Guangzhou University of Chinese
Medicine, China

Carlos Alberto Manssour Fraga,
Federal University of Rio de Janeiro,

Brazil

*Correspondence:
Kai Zhang

zhk810728@163.com
Yang Zhang

20162901007@cqu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 30 December 2020
Accepted: 06 May 2021
Published: 26 May 2021

Citation:
Li M, Xue N, Liu X, Wang Q, Yan H,

Liu Y, Wang L, Shi X, Cao D, Zhang K
and Zhang Y (2021) Discovery of
Potent EGFR Inhibitors With 6-

Arylureido-4-
anilinoquinazoline Derivatives.
Front. Pharmacol. 12:647591.

doi: 10.3389/fphar.2021.647591

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6475911

ORIGINAL RESEARCH
published: 26 May 2021

doi: 10.3389/fphar.2021.647591

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.647591&domain=pdf&date_stamp=2021-05-26
https://www.frontiersin.org/articles/10.3389/fphar.2021.647591/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.647591/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.647591/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhk810728@163.com
mailto:20162901007@cqu.edu.cn
https://doi.org/10.3389/fphar.2021.647591
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.647591


hepatocellular carcinoma, and pancreatic cancer, which has
inspired a research boom based on the design and synthesis of
EGFR inhibitors (Umekita et al., 2000; Elgazwy et al., 2013;
Mghwary et al., 2019; Sever et al., 2019; Sun et al., 2019; Zhu
et al., 2019; Zhang et al., 2020).

Among the EGFR-based FDA-approved drugs,
quinazoline derivatives have been recognized as selective
and potent inhibitors (Figure 1A), exerting remarkable
antitumor activity (Simon et al., 2003; Smith, 2005). This
quinazoline scaffold can offer hydrogen bond acceptors and
hydrogen bond donors and has a higher probability of
forming hydrogen bonds with the receptor, providing
stronger binding affinity with the target and ensuring
promising enzyme inhibitory activity (Stamos et al., 2002;
Vema et al., 2003; Mowafy et al., 2013; Rao et al., 2013; Yu
et al., 2017; Zhang et al., 2017; Wei et al., 2019; Le et al., 2020).
Moreover, the aryl urea structure with two hydrogen bond
donors has received extensive attention. The compounds
containing such moiety can enhance their interactions with
the targets and have promising target affinity and strong
inhibitory activities against KDR, B-Raf, RAF-1, PDGFR-β,
C-KIT, FIT-3, and other kinases (Wan et al., 2004; Murphy
et al., 2006; Eisen et al., 2011; Garofalo et al., 2012; Dungo and

Keating, 2013; Ravez et al., 2015). Due to economic factors
and effectiveness, molecular hybridization has become one of
the most popular drug design strategies via combining two
different active pharmacophores with or without the help of a
linker, which is conducive to the rapid discovery of target
compounds (Wan et al., 2004; Wilhelm et al., 2004; Wang
et al., 2016; Kumar et al., 2017; Zheng et al., 2017; Ju et al.,
2018; Asquith et al., 2019; Wei et al., 2019; Allam et al., 2020;
Fu et al., 2020; Gontijo et al., 2020; Reddyrajula et al., 2019).
Accordingly, potent EGFR inhibitors were designed and
synthesized by ingeniously combining the above two
advantageous skeletons (Figure 1B).

In this study, 20 6-arylureido-4-anilinoquinazoline
derivatives were synthesized, and the bioactivities of the
target compounds were evaluated by the cell anti-
proliferative assay, EGFR preliminary screening test, EGFR
kinase inhibition assay in vitro, and so on. Furthermore,
comprehensive computational approaches were applied to
compare the inhibitory mechanisms of the most promising
and representative synthesized compound (Compound 7i)
and the two approved drugs (gefitinib and erlotinib) at the
molecular level. Finally, we found that the 4-
anilinoquinazoline scaffold was an indispensable fragment,

FIGURE 1 | (A) Antitumor drugs with 4-anilinoquinazoline and diaryl urea structural fragments; (B) design scheme of 6-ureido-4-anilinoquinazoline derivatives.
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which interacted with most of the identified key residues with
a relatively high energy contribution and guaranteed the basic
binding affinity. In addition, the aryl urea fragment of
Compound 7i could extend into the effective region and
interact with residues L85, D86, and R127, presenting a
similar action conformation to that of gefitinib in the
EGFR. This research reasonably fused the above-
mentioned dominant structures and discovered a series of
inhibitors with enzymatic activity, providing valuable clues
for the design of antitumor drugs based on the EGFR.

EXPERIMENTAL SECTION

Materials and Instruments
A Bruker AV-400 spectrometer was applied to record the 1H
NMR and 13C NMR spectra of the synthesized compounds
dissolved in DMSO-d6 solution, and all chemical shifts were
reported in ppm (δ). Infrared (IR) spectra of the target
compounds were determined with a SHIMADZU FTIR-8400S
spectrometer (KBr disks). Mass spectra were obtained on a 3200
QTRAP and Triple Q-TOF 5600+ high resolution mass
spectrometer (AB/SCIEX). Melting points were measured with
an M-560 MP apparatus (BUCHI) without correction. All
chemical reactions were monitored by thin-layer
chromatography (TLC) on silica gel (purchased from Yantai
Xinnuo Chemical Plant), and the products were visualized
with an ultraviolet lamp (254 and 365 nm).

All reagents and solvents met the criteria of analytical reagents
before use. All cancer cell lines (A549, human non-small-cell lung
cell line; HT-29, human colonic adenocarcinoma cell line; MCF-
7, human breast cancer cell line) were purchased from Stem Cell
Bank, Chinese Academy of Sciences. RPMI 1640 (Roswell Park
Memorial Institute 1640), DMEM (Dulbecco’s modified Eagle’s
medium), and FBS (fetal bovine serum) were obtained from
Corning (Jiangsu, China). ADP-Glo™ kinase assay kits were

provided by Promega (Beijing) Biotech Co., Ltd. (Beijing,
China). All kinase subtypes were supplied by SignalChem (BC,
Canada).

Chemistry
The title compounds were obtained based on the synthetic
route shown in Figure 2. Six aromatic ureido-4-
anilinoquinazoline derivatives were synthesized by methods
reported previously, mainly consisting of six experimental
steps, and the whole synthetic process is described here
represented by Compound 7i. The purity of all the target
compounds was determined by liquid-mass spectrometry.
The synthesis and characterization of the other target
compounds were given in supplementary data.

Synthesis of 6-Nitroquinazolin-4(3H)-one (1)
The mixture of 2-amino-4-nitrobenzoic acid (7.28 g, 40.0 mmol)
and formamide (60 ml) was stirred at 150°C for 16 h, and the
reaction process was monitored by TLC. Then, the mixture was
cooled to room temperature, and the reaction solution was
removed by filtration. After that, the product was purified by
washing with isopropanol and dried to obtain Compound 1.
Yield: 51.6%; m.p. 285.0–286.0 °C; 1H NMR (400 MHz-DMSO-
d6): δ 12.809 (brs, 1H), 8.791–8.784 (d, J � 2.8 Hz, 1H),
8.551–8.529 (dd, J � 2.4 Hz, 8.8 Hz, 1H), 8.314 (s, 1H),
7.866–7.843 (d, J � 9.2 Hz, 1H). MS (ESI−) m/z 190.0 (M-H)−.

Synthesis of 4-Chloro-6-nitroquinazoline (2)
Compound 1 was added to 23 ml of thionyl chloride for the
chlorination reaction with DMF as the catalyst, and it should be
noted that the reaction system was heated to reflux for 2.5 h until
the solution was clear. Afterward, the solution was cooled to room
temperature, and the solvent was vacuum distilled. Then, the
reaction residues were diluted with CH2Cl2 and concentrated into
a yellow solid (Compound 2), which was used directly in the next
step without further purification. m.p. 130°C; 1H NMR

FIGURE 2 | Synthetic route of the target Compounds 7a–t.
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(400 MHz-DMSO-d6): δ 8.78 (d, J � 2 Hz, 1H), 8.555 (dd, J �
6.7 Hz, 2 Hz, 1H), 8.432 (1H, s), 7.833 (d, J � 6.7 Hz, 1H). MS
(ESI−) m/z 208.2 (M-H)−.

Synthesis of
N-(3-Bromophenyl)-6-nitroquinazolin-4-amine (3a)
Compound 2 (2.65 g, 11.8 mmol) was dissolved in isopropanol,
and 3-bromoaniline (2.41 g, 14.1 mmol) was added to the above
solution at room temperature, which was heated to reflux. The
progress of reaction was monitored by TLC until completion, and
then the mixture was cooled to room temperature. Afterward, the
resultant precipitate was collected by filtration and washed with
isopropanol to obtain the yellow solid Compound 3a (2.01 g,
5.8 mmol) after drying. Yield: 85.2%; m.p. 287.8–289.6°C; 1H
NMR (400 MHz-DMSO-d6): δ 12.088–12.067 (brs, 1H),
9.921–9.917 (d, J � 1.6 Hz, 1H), 8.999 (s, 1H), 8.783–8.755
(dd, J � 2.0, 9.2 Hz, 1H), 8.200–8.177 (d, J � 9.2 Hz, 1H),
7.778–7.285 (m, 4H). MS (ESI+) m/z 347.2 (M + H)+.

Synthesis of N4-(3-Bromophenyl)
quinazoline-4,6-diamine (4a)
Compound 3a (1.69 g, 4.9 mmol) and stannous chloride (4.42 g,
19.6 mmol) dissolved in ethyl acetate (49 ml) were stirred and
refluxed for 1 h, and then the reaction system was cooled to room
temperature. The solid precipitate was filtered under vacuum
through Celite and washed with ethyl acetate (100 ml × 3), and
the obtained aqueous layer was neutralized with saturated sodium
carbonate solution (pH � 7). The aqueous phase was extracted
with ethyl acetate (2 × 50 ml), and the resulting ethyl acetate
solution was added to the organic phase previously separated,
which was further concentrated under reduced pressure to obtain
Compound 4a (1.23 g, 79.9%, yellow solid). Yield: 55.1%; m.p.
191.7–193.6°C; 1H NMR (400 MHz-DMSO-d6): δ 9.455 (s, 1H),
8.368 (s, 1H), 7.955–7.810 (m, 2H), 7.707–7.527 (m, 3H),
7.366–7.362 (d, J � 1.6 Hz, 1H), 7.287–7.265 (d, J � 8.8 Hz,
1H), 5.629 (s, 2H). MS (ESI+) m/z 316.3 (M + H)+.

Synthesis of
1-Chloro-4-isocyanato-2-(trifluoromethyl)
benzene (6b)
4-Chloro-3-(trifluoromethyl)aniline (15 g, 76.7 mmol) dissolved
in triethylamine (16.3 g, 161.0 mmol) was added dropwise to the
solution of triphosgene (9.19 g, 30.0 mmol) in dichloromethane
(150 ml). The obtained mixture was stirred at room temperature
for 1 h and then refluxed for 3 h. Then, the reaction system was
cooled to room temperature and concentrated to obtain an oily
substance, which was further purified by vacuum distillation to
obtain Compound 6b (colorless liquid, 6 g, 35.3%).

Synthesis of 1-(4-((3-Bromophenyl)amino)-3,4-
dihydroquinazolin-6-yl)-3-(4-chloro-3-(trifluoromethyl)
phenyl) Urea (7i)
Anhydrous acetonitrile was added to Compound 6b, followed by
the addition ofCompound 4a. The reaction systemwas stirred for
3 h and then filtered to obtain a solid product, which was rinsed
with anhydrous acetonitrile and dried to obtain the final
Compound 7i (1.21 g, 88.9%, 5.8 mmol). m.p. 268.0–268.9°C;

compound purity: 95.413%; aqueous solubility: soluble; IR
(KBr) γ/cm−1: 3,319, 3,065, 3,015, 1,707, 1,614, 1,572, 1,549,
1,483, 1,431, 1,323, 1,252, 1,204, 1,122, 1,030, 833, 773, 742,
679 cm−1; 1H NMR (400 MHz-DMSO-d6): δ 9.883 (s, 1H), 9.396
(s, 1H), 9.169 (s, 1H), 8.578–8.544 (m, 2H), 8.198–8.193 (d, J �
2.0 Hz, 2H), 7.889–7.862 (m, 2H), 7.803–7.781 (d, J � 8.8 Hz, 2H),
7.714–7.708 (d, J � 2.4 Hz, 1H), 7.692–7.636 (m, 2H), 7.377–7.288
(m, 2H); 13C NMR (100 MHz-DMSO-d6): δ 157.06, 152.65,
152.49, 146.00, 141.13, 139.19, 137.16, 132.04, 130.28, 128.46,
126.88, 126.57, 125.84, 124.31, 124.15, 123.17, 122.51, 121.43,
121.09, 120.90, 116.88, 116.82, 115.53, 110.79; HRMS (ESI): m/z
calculated for (C22H14BrClF3N5O + H)+: 536.0100; found:
536.0115.

Biological Assay
Anti-Proliferative Assay
The designed 4-anilinoquinazoline derivatives were evaluated
for their antitumor bioactivities in vitro against three hu-
man tumor cell lines (A549, HT-29, and MCF-7) using
the standard CCK-8 method. The CCK-8 method is based on
WST-8 dye, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-
(2,4-disulfophenyl)-2H-tetrazolium. WST-8 can be bio-reduced
by dehydrogenases in mitochondria into orange water-soluble
formazan products. Briefly, selected cancer cells in the
logarithmic growth phase (1 × 104) were inoculated in 96-well
plates and further cultured in the incubator for 24 h. First, the
target compounds were diluted to different concentrations with
culture medium with each dilution gradually diluted from the
highest concentration solution. Second, the original culture
medium was removed after the cells were completely adherent
to the wall, and the compounds at various concentrations
prepared above were added. In this experiment, a control
group and a blank group were set: the former was treated with
0.1% DMSO solution, and the latter was treated with only the
culture medium. Finally, 10 μl of CCK-8 detection solution was
added to each well followed by culture in an incubator for 1–3 h.
A microplate reader was adopted to record the absorbance at
450 nm, and in this assay, gefitinib, erlotinib, and sorafenib were
used as the reference drugs.

Kinase Inhibition Assay
The EGFR kinase inhibition activities of the target compounds were
evaluated by the ADP-Glo™ assay. The ADP-Glo™ kinase detection
kit is a luminescence kinase detection approach that detects the
amount of ADP produced by the kinase reaction. After ADP is
converted into ATP, ATP can be used as the substrate of the
luciferase-catalyzed reaction to generate an optical signal, which is
positively correlated with kinase activity. An ADP-Glo™ kinase
detection kit can detect the activities of almost all enzymes that
can produce ADP, and the concentration of ATP can be as high as
1mmol. The target compounds were formulated into solutions of
different concentrations (0.46, 1.37, 4.12, 12.35, 37.04, 111.11, 333.33,
and 1,000 nm), and three independent experiments were performed
for each group. The following components were added to the 384-well
plate: 5 μl of kinase buffer containing 20 μmol ATP and 2 μmol PIP2
(25mmol 3-morpholinopropanesulfonic acid, 12.5mmol
β-glycerophosphoric acid, 5mmol EGTA, 2mmol EDTA, and
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0.25mmol DTT); 2 μl (50 ng/ml) of EGFR kinase; and 2.5 μl of
dimethyl sulfoxide solution containing different concentrations of the
test compound. The above-prepared systems were sealed and
incubated at room temperature for 2 h, and 5 μl of ADP-GLO was
added to terminate the kinase reaction. Then, the culture plate was
sealed and incubated in a thermostatic oscillator for 40min to fully
consume the remaining ATP. The luciferase/luciferin reaction was
adopted to determine the newly generated ATP level. The signals of
ADP/ATP varied according to the inhibitory effects of the target
compounds, the luminescence values of eachwell weremeasuredwith
an EnVision 2014 plate counter, and the data were further converted
into IC50 values using GraphPad Prism 5.0 software.

Moreover, to further determine the targets of the synthetic
compounds, Compound 7i was selected as the representative
molecule for evaluation by kinase spectrum assays according
to the above method. In this study, six kinds of promising
protein kinase targets for cancer therapy (including 30
kinases) were applied: 1) tyrosine kinases (TKs) (Pflug
et al., 2001; Steelman et al., 2004; Wilhelm et al., 2006;
Oneyama et al., 2008; Bae and Schlessinger, 2010; Zhao
and Guan, 2011; Sánchez-Bailón et al., 2012; Liu et al.,
2016; Leick and Levis, 2017; Huang et al., 2018; Kassouf
et al., 2019)—Ab1, Csk, FAK, FGFR2, HER4, EGFR, LCK,
SRC, Syk, TRKA, FLT3, KDR, JAK3; 2) STE kinases (Malinin
et al., 1997)—NIK, ASK1; 3) AGC kinases (Leroux et al.,
2018)—PKCa, ROCK1, PDK1, PKACα; 4) CAMK kinases
(Beullens et al., 2005; Kobayashi et al., 2006; David et al.,
2016)—Chk1, MAPKAPK2, MELK, CAMK2α; 5) CMGC
kinases (Kim et al., 2001; Mihara et al., 2001)—CDK2,
CLK3, JNK1, ERK2, GSK3β; and 6) TKL kinases (Schulze

et al., 2001; Srivastava et al., 2012)—IRAK4, B-raf. According
to the results, Compound 7i significantly inhibited the EGFR
significantly (enzyme activity � 10.52%). In addition,
Compound 7i did not show significant inhibitory activity
against other kinases (enzyme activity > 50%).

Molecular Simulation Studies
Molecular Docking
Here, the LibDockmodule in Discovery Studio 2020 (DS 2020)
was adopted to perform molecular docking. First, the docked
ligands were constructed by ChemBioDraw Ultra 14.0 and
saved as an *.sdf file type and were further processed with the
“Prepare Ligands and Minimize Ligands” modules in DS
2020, including changing ionization, generating tautomers,
generating isomers, fixing bad valencies, generating 3D
coordinates, and energy minimization using the CHARMm
force field. Second, the crystal structure of the EGFR was
downloaded from the Protein Data Bank and prepared by the
following two steps: 1) clean protein and 2) prepare protein.
The preprocessed receptor generated the docking site at the
original ligand site for subsequent molecular docking, and the
default parameters were used for docking calculations. Then,
the ligand conformation, interactions between the ligand and
the receptor, and the docking score were used to evaluate the
docking poses, and the appropriate conformations were
selected for molecular dynamics simulations.

Molecular Dynamics Simulations
Before performing MD simulations, three PDB files were
prepared, including the receptor–ligand complex, the receptor,

TABLE 1 | Cellular results for the Compound 7 series.

Compound R1 R2 Proliferative inhibition (IC50, μM)a

A549 HT-29 MCF-7

7a 3-Br H 5.81 ± 0.84 4.66 ± 0.56 15.90 ± 2.28
7b 4-OCH3 H 39.55 ± 0.45 9.13 ± 0.48 12.88 ± 1.31
7c 2-F, 4-Br H 6.16 ± 0.45 5.92 ± 1.04 8.57 ± 0.27
7d 3-Cl, 4-F H 38.65 ± 0.21 39.23 ± 2.01 44.23 ± 0.97
7e 2,4,6-CH3 H 39.12 ± 1.10 9.58 ± 0.21 12.87 ± 0.60
7f 4-F H >50 48.26 ± 0.78 44.27 ± 1.12
7g 4-CH3 H >50 43.14 ± 0.29 42.23 ± 1.32
7h 2,3-CH3 H >50 >50 >50
7i 3-Br 3-CF3, 4-Cl 2.25 ± 0.08 1.72 ± 0.49 2.81 ± 0.09
7j 4-OCH3 3-CF3, 4-Cl 2.55 ± 0.31 3.41 ± 1.27 5.68 ± 0.32
7k 4-Br 3-CF3, 4-Cl 2.79 ± 0.44 2.30 ± 0.50 3.54 ± 0.07
7l 4-F 3-CF3, 4-Cl 3.19 ± 0.28 3.03 ± 1.19 3.95 ± 1.26
7m 4-CH3 3-CF3, 4-Cl 5.60 ± 0.31 2.61 ± 1.25 5.53 ± 0.39
7n 2,3-CH3 3-CF3, 4-Cl 2.67 ± 0.76 2.67 ± 1.02 3.11 ± 0.30
7o 4-CH3 4-F 35.28 ± 0.57 7.83 ± 0.97 33.67 ± 10.08
7p 2,3-CH3 4-OCH3 9.34 ± 0.73 11.14 ± 0.39 40.23 ± 2.13
7q 4-Br 4-OCH3 5.21 ± 0.30 36.96 ± 0.17 17.87 ± 0.89
7r 4-F 4-OCH3 >50 48.21 ± 0.23 46.14 ± 1.98
7s 4-CH3 4-OCH3 >50 46.23 ± 0.57 47.56 ± 0.76
7t 4-OCH3 4-OCH3 >50 48.29 ± 1.90 >50
Gefitinib — — 14.75 ± 2.48 8.06 ± 0.22 15.68 ± 0.25
Erlotinib — — 23.22 ± 0.51 22.75 ± 1.12 11.42 ± 0.43
Sorafenib — — 1.84 ± 0.17 2.27 ± 0.43 3.47 ± 0.39

aThe values are the mean ± SD of at least three independent experiments.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6475915

Li et al. 6-Arylureido-4-anilinoquinazoline Derivatives

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


and the ligand. Gaussian 09 at the HF/6-31G*fnlowast level was
applied to optimize the geometries and calculate the electrostatic
potential of the ligands and generate the *.log files, which were
used to create *.frcmod and mol2 formats via an antechamber
model in AMBERTOOLS16. Then, the coordinate files (.inpcrd)
and topology files (.prmtop) of the receptor–ligand complex,
receptor, and ligand were generated using the LEaPmodule with
the corresponding force field (ff14SB53 for the protein, general
AMBER force field (gaff) for the ligands). Then, MD production
was conducted using GPU-accelerated PMEMD (three pieces of
the NVIDIA Tesla P100 PCIe graphic card), and 100 ns of
production simulations were carried out for the three studied
systems in NPT ensembles at 310 K and 1 atm.

RESULTS AND DISCUSSION

Chemistry
Twenty target compounds were synthesized based on the synthetic
route shown in Figure 2, and the yield of intermediates was relatively
high in each step. Six aromatic ureido-4-anilinoquinazoline
derivatives were synthesized by the methods reported previously,
mainly consisting of six experimental steps: i) Compound 1 was
obtained by cyclization of 2-amino-4-nitrobenzoic acid with
formamide, with the yield of 51.6%. ii) Compound 2 was

obtained by the chlorination reaction of Compound 1 with
thionyl chloride. iii) Compound 2 underwent nucleophilic
substitution reaction with the corresponding aniline without
purification to acquire Compounds 3a–i (yield: 72.0–98.5%). iv)
The intermediate obtained in the above step was reduced under the
action of stannous chloride to giveCompounds 4a–i. v) Aniline with
different substituents reacted with triphosgene to give isocyanates
(Compounds 6a–d). It is worth noting that the synthesis and post-
treatment process of isocyanate were relatively complicated, and the
selected reagent should be anhydrous. In addition, the purity of the
isocyanate directly affected the yield of the target compounds, and in
this study, vacuumdistillationwas used to purify the isocyanate, thus
reducing the generation of impurities and improving the yield of the
final compounds. vi) Compounds 4a–i and 6a–d underwent
nucleophilic addition reaction to generate the title Compounds
7a–t (yield: 45.0–87.6%), and all the target compounds and
important intermediate were structurally characterized by IR,
HRMS, 1H NMR, and 13C NMR. Moreover, the target
compounds had good water solubility and have been tested by
liquid-mass spectrometry.

Anti-Proliferative Assay
The standard CCK-8 method was applied to evaluate the anti-
proliferative activities of the target compounds against A549, HT-
29, and MCF-7 cells with gefitinib, erlotinib, and sorafenib as the

FIGURE 3 | EGFR enzyme activities of the Compound 7 series at 1 μm.

TABLE 2 | Enzymatic results for part of the Compound 7 series

Compound Enzymatic inhibition
IC50 (nM)a

Compound Enzymatic inhibition
IC50 (nM)a

EGFR EGFR

7a 12.01 ± 0.20 7o 123.9 ± 1.09
7c 20.08 ± 2.21 7p 58.12 ± 1.99
7d 11.79 ± 0.36 7q 470.4 ± 1.28
7e 867.1 ± 1.12 7r 59.66 ± 1.31
7f 11.66 ± 0.79 7s 107.70 ± 2.64
7g 72.36 ± 1.05 7t 728.1 ± 1.65
7h 19.73 ± 1.87 Gefitinib 25.42 ± 0.85
7i 17.32 ± 0.54 Erlotinib 33.25 ± 1.02

aThe values are the mean ± SD of at least two independent experiments.
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positive references, and the results are shown inTable 1. As illustrated
in Table 1, the synthesized compounds showed varying degrees of
antitumor activity. Compounds 7a–h with -H as the R2 group had
moderate anti-proliferative effects against all the three tumor cell lines.
Among them, in the compounds with -Br as the R1 group, the
biological activities were relatively good, especially in Compounds 7a
and 7c. When the -CH3 group was introduced into the R1 site, the
inhibitory activities of the corresponding compounds decreased,
especially with the introduction of the 2,3-CH3 group (Compound
7h > 50 μm). When R2 was 3-CF3 and 4-Cl, Compounds 7i–n had
strong antitumor activities (IC50, 1.72–5.68 μm) against the selected
cell lines, especially Compound 7i, which were better than other
derivatives as well as the positive controls (gefitinib, erlotinib, and
sorafenib: 1.84–23.22 μm).When the R1 groupwas substituted by -Br,
the compound exerted promising antitumor activity, and the 3-Br
substituent was superior to the 4-Br substituent. Compounds 7o–t
with 4-F or 4-OCH3 as the R2 group showed no obvious activity
against all the tested cell lines and only showedweak anti-proliferation
effects. Through the comprehensive evaluation of theR1 group and the
R2 group, it can be found that Br on the R1 group and 3-CF3 and 4-Cl
on the R2 groupwere essential formaintaining the activity of the target
compounds.

EGFR Inhibitory Activity
The ADP-Glo™ approach was adopted to further evaluate the kinase
inhibitory activities of the target compounds, and gefitinib and
erlotinib as commonly clinical EGFR inhibitors were also used as
positive controls. First, the EGFR preliminary screening test on
Compounds 7a–t was carried out, and most of the tested
compounds had relatively strong EGFR inhibitory activity (enzyme
activity% ≤ 50%) at the concentration of 1 μm (Figure 3). The IC50

values of the compounds with better preliminary screening
experimental results were further determined, and it was found
that these compounds all showed promising enzyme inhibitory
activities (ranging from 11.66 to 867.1 nm, Table 2). Compared
with classic EGFR inhibitors, the stronger EGFR inhibitory
activities of the designed compounds might be caused by the aryl
urea group introduced by the C-6 position of the quinazoline scaffold.

The introduction of the aryl urea group would enlarge the molecular
framework and increase the possibility of interactions between the key
amino acids in the active pocket and the designed compounds, thereby
improving their binding affinity to the target.

It should be noted that, unlike the results of the cell anti-
proliferation assay, the compounds with H as the R2 group
showed better biological activities, especially Compounds 7a, 7c,
7d, 7f, and 7h (11.66–20.08 nm). In addition, the compounds with
halogen atoms as the R1 group showed better bioactivities, especially
Compounds 7d and 7f. In addition, the compounds showed
moderate inhibitory activities with 4-OCH3 as the R2 group
(58.12–728.10 nm). By comparing the biological evaluations, it
could be concluded that the results of anti-cell proliferation of
Compounds 7a, 7c, and 7i were consistent with those of enzyme
inhibition assays, especially Compound 7i, which was also the main
reason that Compound 7i was selected as the representative
molecule for subsequent molecular simulation. Furthermore, the
inhibitory activities of Compound 7i against six kinds of protein
kinases (including 30 protein kinases) were evaluated at a
concentration of 1.0 μm. As shown in Table 3, Compound 7i
showed excellent activity against EGFR protein kinase (EGFR
enzyme activity � 10.52%) but no significant activity against the
other protein kinases (>50% enzyme activity), indicating good
kinase-targeting properties and the rationality of the design.

Molecular Simulation Studies
In this section, Compound 7i was chosen as the representative
ligand to explore the binding mechanism of such scaffolds
bearing a 4-anilinoquinazoline moiety. First, the initial
conformations of Compound 7i, gefitinib, and erlotinib in the
EGFR were constructed by molecular docking based on the

TABLE 3 | Kinase spectrum test of Compound 7i at 1 μm.

Kinase Enzyme activity %a Kinase Enzyme activity %a

Abl 94.51 ± 0.41 PKCa 77.27 ± 1.18
Csk 93.76 ± 4.09 ROCK1 78.70 ± 4.00
FAK 81.70 ± 2.75 PDK1 74.18 ± 0.62
FGFR2 91.07 ± 8.02 PKACα 86.02 ± 3.75
HER4 76.85 ± 0.33 Chk1 75.98 ± 6.72
EGFR 10.52 ± 0.26 MAPKAPK2 86.46 ± 7.38
LCK 86.84 ± 6.53 MELK 78.83 ± 6.55
SRC 72.10 ± 1.83 CAMK2α 72.67 ± 2.92
Syk 101.13 ± 9.99 CDK2 77.40 ± 6.84
TRKA 83.52 ± 3.13 CLK3 86.80 ± 1.90
FLT3 92.18 ± 15.36 JNK1 89.43 ± 2.48
KDR 79.66 ± 2.00 ERK2 97.31 ± 11.84
JAK3 82.49 ± 1.82 GSK3β 103.71 ± 1.75
NIK 76.97 ± 5.84 IRAK4 86.33 ± 0.56
ASK1 62.27 ± 3.02 B-raf 96.68 ± 4.29

aThe values are the mean ± SD of at least two independent experiments.

FIGURE 4 | Alignment of initial docking poses of the three systems:
erlotinib is marked in pale green, gefitinib is in lemon, and Compound 7i is in
light pink.
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crystal structure provided by the Protein Data Bank (PDB
entry ID: 4WKQ). Second, the binding modes of the three
selected ligands were illustrated through molecular
dynamic simulation. Figure 4 shows that all docking
poses were highly consistent spatially, especially the 4-

anilinoquinazoline fragment surrounded by three β-sheets and
two loop domains.

Subsequently, the initial conformations obtained above were
subjected to 100 ns of MD simulation, and the dynamic stability
was evaluated by the root mean square deviation (RMSD) values.

FIGURE 5 | RMSD values of the protein receptor (yellow), ligand (deep gray), and binding sites (green) of the constructed systems as the function of time of the
second simulation: (A) Compound 7i system; (B) gefitinib system; (C) erlotinib system.

FIGURE 6 | Superimposition of the initial and representative conformations of the three studied systems: (A) erlotinib system (representative conformation is
colored in green; initial conformation is marked in pale green); (B) gefitinib system (representative conformation is colored in yellow; initial conformation is in limon); (C)
Compound 7i system (representative conformation is in magenta; initial conformation is in light-pink).

FIGURE 7 | Per-residue binding free energy decomposition of all the studied systems: the residues with energy contribution (absolute value ≥ 0.1) are selected.
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According to Figures 5A–C, all of the studied systems could
reach dynamic equilibrium after 40 ns, especially the protein
receptor and the residues consisting of the binding sites.
Additionally, it should be noted that gefitinib and erlotinib
had certain fluctuations during the MD process, which might
be related to the saturated alkane in their molecular skeletons.

In order to further assess the binding conformations of the three
systems, the dynamic trajectories of the final 50 ns of the simulations
were applied to calculate the binding free energies of the complexes. The
binding free energies of the studied systems were −58.49, −54.35, and
−53.53 kcal/mol for Compound 7i, gefitinib, and erlotinib, respectively,
which were consistent with their enzyme inhibitory activities (17.32,
25.42, and 33.25 nm, respectively). Then, the initial and representative
conformations’ superposition analyses were carried out, and the results
are shown in Figures 6A–C. In all research systems, the ligand
conformations changed slightly at the binding sites in order to
accommodate the binding of the compounds to the receptor.

Furthermore, the amino acid energy contribution was adopted
to compare the binding modes of the studied systems. Figure 7
shows that the majority of the amino acids had a small difference
in the energy contribution to ligand binding. By mapping these
residues into the three-dimensional space, it was found that such
residues were generally located in the above-mentioned domains:
three β-sheets and two loop domains. Moreover, only three
amino acids showed significant differences in their energy
contributions, namely, L85, D86, and R127, which favored the
binding of gefitinib and Compound 7i.

Finally, the binding modes of three ligands in the EGFR were
determined. According to Figure 8A, residues with significant energy

contributions weremainly located in region A, such as L12, G13, S14,
L74, and T76, which interacted strongly with the 4-
anilinoquinazoline scaffold and played important roles in the
stable binding of the studied ligands to the EGFR and guaranteed
the enzyme inhibitory activities at the nanomolar level. In addition,
from a binding free energy (BFE) perspective, we found that the BFE
of erlotinib was lower than that of gefitinib andCompound 7i, which
may be mainly caused by the differences in the molecular skeletons.
The remaining fragments of gefitinib and Compound 7i were found
to extend into region B and interact with L85, D86, and R127 (Figure
8B), but erlotinib could not interact with this region due to the
flexibility of the methoxy–ethoxy groups, resulting in the relatively
weak enzyme inhibitory activity of erlotinib (33.25 nm).

Therefore, the 4-anilinoquinazoline scaffold was an indispensable
fragment of this series of EGFR inhibitors, ensuring the considerable
binding free energies of their interactions with the receptor, and
should be retained to a greater extent in subsequent molecular design.
Moreover, in the process of designing novel EGFR inhibitors, it was
necessary to pay attention to the interactions between the skeleton and
the residues located in regionB (especially L85,D86, andR127), which
were beneficial to enhance the ligand’s binding affinity. Therefore, the
length and rigidity of themolecular scaffold should also be considered,
allowing extension into the above-mentioned region.

CONCLUSION

In summary, 20 6-ureido-4-anilinoquinazoline derivatives were
designed and synthesized, and their biological activities were

FIGURE 8 | Schematic diagram of three ligands’ bindingmodes in the EGFR - gefitinib is in yellow, erlotinib is in green, andCompound 7i is in magenta: (A)Region
A, the residues interacting with the common fragment; (B) Region B, the residues interacting with the varied fragment.
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evaluated at the cellular and kinase levels. According to the
experimental results, the majority of the synthesized compounds
targeted the EGFR and showed good anti-proliferative activities
against A549, HT-29, and MCF-7 cells, especially Compound 7i.
In addition, the action mechanisms of Compound 7i, gefitinib, and
erlotinib were compared by molecular docking and MD simulations,
and it was found that the 4-anilinoquinazoline scaffold was an
indispensable fragment in this series of EGFR inhibitors,
guaranteeing the considerable binding free energy with the
receptor. Moreover, the introduction of an aryl urea group
appropriately increased the molecular framework and rigidity of
Compound 7i, extending it into region B to interact with L85, D86,
and R127, which improved its binding affinity with the EGFR. The
higher target affinity of Compound 7i was the main reason for the
promising enzyme inhibitory activity. These findings not only
verified the scientific design route but also provided valuable clues
for the discovery of antitumor compounds based on the EGFR.
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