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Editorial on the Research Topic

Novel Therapeutic Target and Drug Development in Neurovascular Retinal Diseases

Pathological ocular angiogenesis leads to blindness in retinopathy of prematurity (ROP), diabetic
retinopathy (DR), and age-related macular degeneration (AMD). Clinically approved anti-VEGF
therapy has limited effectiveness and side effect profile unfit for some patients (Bressler et al., 2012;
Jalali et al., 2013; Klufas and Chan, 2015; Zhao and Singh, 2018; Bakri et al., 2019). Therefore, further
understanding of the disease pathogenesis and exploration of new therapeutics are required. In this
research topic, we highlighted new drug targets, therapeutic approaches, and technologies for
treatment of ocular neovascularization.

METABOLISM AND CELL-CELL INTERACTION

Understanding the interaction of endothelial cells with the surrounding cells is essential for the
development of effective and safe therapeutics (Wilson and Sapieha, 2016; Binet et al., 2020; Fu
et al., 2020). Neuronal metabolism regulates retinal vascular function (Joyal et al., 2018; Fu et al.,
2019). In this research topic, Fouda et al. provided a systematic overview of the arginase
pathway in acute retina and brain injury, and discussed the possibility of modulating this
pathway to treat ischemia-induced neurodegeneration. Shetty and Corson summarized the
vulnerability of endothelial cells to mitochondrial heme loss, and proposed that targeting
intracellular heme via inhibiting heme synthesis or blocking heme transport may be a novel
strategy to decrease retinal neovascularization. Further exploration of neural-vascular
metabolism and interaction is needed. Endothelial cells utilize glucose, fatty acid and
glutamine as substrates for energy and biomass for cell homeostasis and growth (Falkenberg
et al., 2019). On the other hand, photoreceptors require glucose and fatty acids for energy
production and function (Joyal et al., 2016). Therefore, when considering interventions for
metabolic modulation, it is necessary to take into account the overall impact on various
retinal cell types.

In addition, the interaction of metabolic pathways in retinopathies also requires further
investigation. Recently, low serine with increase in deoxysphingolipids is reported to correlate
with macular disease (Gantner et al., 2019). Wang et al. revealed significant metabolic disturbances
(such as amino acids and ketone bodies) in aqueous humor of patients with Posner-Schlossman
syndrome that were identified with metabolomics. Further exploration of retinal metabolic
interactions between amino acid, lipid pathways, and others would definitely attract great interests.
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Inflammation and autophagy are induced in response to
stressed conditions such as in retinal metabolic disorders
(Tang and Kern, 2011; Mitter et al., 2012; Kauppinen et al.,
2016). Wang et al. discussed that persistent neuroinflammation
exacerbates ocular neovascularization. They further explored the
potential involvement of SOCS3 and c-Fos in the disease
pathogenesis of retinopathies. Zhu et al. demonstrated that
rapamycin induced autophagy and preserved trabecular
meshwork cells in glucocorticoid-induced glaucoma mice can
be a potential therapeutic approach to glaucoma.

GENOMICS, TRANSCRIPTOME, AND
PROTEOMICS FOR DRUG TARGET
IDENTIFICATION
Recently, genomic analysis, transcriptome profiling, and proteomics
have been used as a hypothesis free approach to identify drug targets
in retinal neovascular diseases (Vahatupa et al., 2018; Desjarlais et al.,
2019). Desjarlais et al. reported the discovery of down regulation of
MicroRNA-96 in oxygen induced retinopathy (OIR) rats through
next generation sequencing (NGS) screening. In vitro study
demonstrated that overexpression of MicroRNA-96 stimulated
tubulogenesis and migration against hyperoxia-induced endothelial
dysfunction, while antagonizing microRNA-96 led to angiogenic
impairment. Intravitreally supplementing microRNA-96 mimic
preserved retinal/choroidal microvessels in the hyperoxic state of
rat OIR model. Cheng et al. analyzed and compared transcriptome
profiles in retinal-choroid tissues derived from donor patients with
AMD and healthy controls. They identified that EFEMP1 gene was
upregulated in the AMD, especially wet-AMD patients. Elevation of
EFEMP1 product, fibulin-3, was confirmed in the serum of wet-AMD
patients. In vitro overexpression and knockdown of EFEMP1 in
human umbilical vein endothelial cells (HUVECs) confirmed the
proangiogenic effect of this gene. Vähätupa et al. reviewed the
elevation of crystallins, small heat shock proteins, during early
hypoxic state of OIR as well as an increase of actomyosin complex
and Filamin A-R-Ras axis at the peak of neovascularization that were
discovered through proteomic analysis using sequential window
acquisition of all theoretical mass spectra (SWATH-MS). Some
crystallins are neuroprotective while others play a prominent role
in the pathology of neovascularization. The actomyosin complex and
FilaminA-R-Ras axis regulates vascular permeability of the angiogenic
blood vessels. These proteomic changes were also confirmed patients
with proliferative diabetic retinopathy (PDR) and retinal vein
occlusion (RVO).

RNA AND PEPTIDE BASED THERAPEUTIC
APPROACHES

RNA based therapeutic approaches against retinal neovascular
disease have gained significant interest in recent years. Ma et al.
found that silencing Trpc6 with RNA interference (RNAi)
abolished high glucose-induced decreases in glutamate uptake
andMüller glial cell death in vitro, suggesting that TRPC6 may be
a promising target that deserves further investigation in animal

models. Protection of neurovascular supporting cells Müller glia
and regulation of Müller gliosis may protect against diabetic
retinopathy (Coughlin et al., 2017; Le, 2017). Additionally, Guan
et al. reported that MicroRNA-18a-5p is increased during
neovascularization of OIR mice retina, adding to the list of
miRNAs that is involved in this process (Zhou et al., 2016;
Xia et al., 2018). Antagonizing MicroRNA-18a-5p using
agomiR-18a-5p suppressed neovascularization in OIR mice
and Human Retinal Microvascular Endothelial Cell (HRMEC)
proliferation, migration, and tube formation. miRNA mimics or
inhibitors have been tested in clinical trials for treatment of viral
infection (Janssen et al., 2013) and malignancy (Van Zandwijk
et al., 2017). Moreover, long none coding RNAs (lncRNAs) have
been shown to participate in transcription, post-transcription,
translation, epigenetic regulation, splicing, and intracellular/
extracellular trafficking (Wilusz et al., 2009). Gong et al.
characterized the role of lncRNA human testis
development–related gene 1 (TDRG1) in proliferative DR
through modulation of VEGF. LncRNA TDRG1 was elevated
in fibrovascular membranes (FVMs) from DR patients and
hyperglycemic treated HRMECs. Knockdown of lncRNA
TDRG1 reduced the VEGF level in HRMECs and protect
against high-glucose-stimulated HRMEC migration.

In the area of peptide-based therapies, Sun et al. tested a small
peptide derived from human tissue-type plasminogen kringle 2
(t-PA kringle 2) in HRMEC and mice model of OIR. Their study
demonstrated that this peptide effectively inhibits HRMEC
proliferation, migration and tube formation. It also inhibited
retinal neovascularization in OIR mice retina. Compared to
proteins, small peptides present the advantage of easier and
relatively inexpensive synthesis, higher consistency between
batches, lower immunogenicity, higher solubility in water, and
better penetrating abilities. On the other hand, Ibuki et al. focused
on Lactoferrin, a type of glycoprotein that is naturally present in
body fluids. In this study, oral administration of Lactoferrin was
shown to reduce laser-induced CNV in mice through inhibition
of Hypoxia Induced Factor (HIF). Similarly, lactoferrin was
shown to inhibit HIF in the 661W cone photoreceptor cell line.

ADVANCED TECHNOLOGIES

2D cell culture model has been widely used for mechanistic
investigations and drug tests. However, this approach is
limited by altered extracellular microenvironment, cell
morphology and polarity, as well as nutrition depletion and
waste product accumulation in media (Kapalczynska et al.,
2018). Bai and Wang summarized 3D organoid and
microfluidic system as tools for the study of organ function
and ophthalmic drug delivery. Bai et al. also reported the
detailed methodology on the development of cornea-on-a-chip
using primary murine corneal epithelial and endothelial cells.
Taking the advantage of better modeling in vivo conditions, 3D
culture is believed to improve the disease pathogenesis study and
drug testing process.

In conclusion, this research topic includes original studies and
reviews regarding novel therapeutic approaches to neurovascular
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retinopathies. Improved understanding of the metabolic and
inflammatory aspects of cell-cell interaction expands potential
drug target for retinal neovascularization. Novel therapeutic
approaches using RNA and peptide-based molecules diversifies
the therapeutic approaches to these blinding diseases, where
newly developed models such as 3D culture holds the
promises of expediting and reducing the cost of drug
discovery process. As Topic Editors of this special issue, we

sincerely thank all the authors and reviewers for their valuable
contributions to this research topic.
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