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Previous studies have shown that long-term exposure to fine particulate matter (PM, 5)
increases the morbidity and mortality of pulmonary diseases such as asthma, chronic
obstructive pulmonary disease and pulmonary emphysema. Oxidative stress and
inflammation play key roles in pulmonary damage caused by PM, 5. Nuclear factor
erythroid 2-related factor 2 (Nrf2) could regulate the expression of antioxidant and anti-
inflammatory genes and is pivotal for protection against PM, s-induced oxidative stress. In
this study, a real-ambient exposure system was constructed with the outdoor ambient air
in north China. Wild-type (WT) and Nrf2~~ (KO) mice were exposed to the real-ambient
system for six weeks. After PM, s exposure, our data showed that the levels of
inflammatory factors and malondialdehyde were significantly increased in WT and KO
mice. Moreover, the lung function and pathological phenotype of the WT mice were altered
but there was no obvious change in the Nrf2~~ mice. To further explore the potential
molecular mechanisms, we performed RNA-sequencing. The RNA-sequence analysis
results showed that the CYP450 pathway in the first ten pathways of KEGG was related to
the metabolism of PM, 5. In WT and KO mice, the expression of CYP2E1 in the CYP450
pathway showed opposite trends after PM, s exposure. The data showed that the
expression of the CYP2E1 gene in WT-PM mice increased while it decreased in KO-
PM; the expression of the CYP2E1 protein showed a similar trend. CYP2E1 is primarily
distributed in the endoplasmic reticulum (ER) where it could metabolize various exogenous
substances attached to PM, 5 and produce highly toxic oxidation products closely related
to ER stress. Consistently, the expression level of GRP94, a biomarker of ER stress, was
increased in WT mice and reduced in KO mice under PM, 5 exposure. Persistent ER stress
is a mechanism that causes lung damage under PM, 5 exposure. Nrf2 facilitates lung injury
during PM, 5 exposure and CYP2E1 metabolism is involved in this process.
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INTRODUCTION

PM, 5 is fine ambient particulate matter with aerodynamics
diameter <2.5um. Due to its small particle size and large
specific surface area, a large number of toxic substances such
as heavy metals and microorganisms are adsorbed on its surface;
they can reach the deep parts of the human respiratory tract and
deposit in the alveoli through respiration (Kirrane et al., 2019).
PM,s exposure can induce or aggravate diseases such as
pulmonary inflammation (Sint et al, 2008), asthma, and
atherosclerosis (Yang et al., 2019). Accumulating evidence has
confirmed that inflammatory responses and oxidative stress are
involved in PM, s-induced pulmonary disease, including chronic
obstructive pulmonary disease and pulmonary emphysema (Gu
et al., 2017; Wang et al., 2019).

Nuclear factor E2-related factor 2 (Nrf2) is an important
transcription regulator that belongs to the family of bZIP and
is a key antioxidant response gene that could regulate the
expression of many antioxidant genes (Buendia et al, 2016;
Ahmed et al,, 2017). Previous studies have demonstrated in
both in vivo and vitro experiments that PM, 5 could activate
the expression of Nrf2, which could then regulate oxidative stress
and inflammation (Jin et al., 2019; Sun et al., 2020). Nrf2 has a
wide range of biological functions, including the ability to affect
the metabolism of CYP450 enzymes (Abu-Bakar et al., 2007; Shen
and Kong, 2009; Ashino et al., 2014).

Cytochrome P450 (CYP450) is a general term for a series of
heme-thiolate proteins that play an important role in the
metabolic process. CYP450 could metabolize the polycyclic
aromatic hydrocarbons attached to PM,s and produce ROS
during their metabolism, which can cause oxidative stress and
lung damage. As a member of the phase I detoxification enzyme
system, CYP2E1 is primarily distributed in the endoplasmic
reticulum (ER) and mitochondrial membrane and can
metabolize various endogenous and exogenous substances
(Son et al, 2017). A recent study showed that the liver
damage in CYP2E1-knockout mice was significantly less than
in WT mice after exposure to N, N-dimethylformamide (DMF).
These results suggest that ER stress is decreased in the KO mice
because the toxic metabolites of DMF are reduced by the loss of
CYP2E1 (Wu et al., 2019b).

Traditional animal models of PM exposure typically use
intratracheal instillation or concentrated ambient particles
(CAPs) systems to introduce the pollutants (Su et al., 2017;
Lin et al, 2018). Intratracheal instillation will change the
physical and chemical properties of particulate matter, and the
CAPs exposure system transforms the size of the particles and
increases the negative pressure in cages. To represent real-
ambient exposure, this study used an individually ventilated
cage (IVC) system that almost completely simulates the real-
ambient exposure of PM, 5 under outdoor atmospheric PM, 5
pollution (Li et al., 2019a; Li et al., 2019b; Chu et al., 2019; Li et al.,
2020a; Cui et al., 2020). The composition and exposure dose of
PM is also accurately recorded. Therefore, this real-ambient
exposure system made up for the shortcomings of unclear
exposure dose and the concentration of PM, s in traditional
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epidemiological studies and could better explain the results
and provide valuable clues for disease prevention.

In the present study, we investigated the role of Nrf2 in PM, s-
induced lung damage by applying a real-ambient exposure
system. These findings provide new evidence about the role of
Nrf2 in lung injury caused by PM, 5 exposure.

MATERIALS AND METHODS

Animal

Our experiment used Nrf2-knockout and wild-type mice bred
from C57BL/6] mice as animal models. The Nrf2™”'~ mice were
developed by Prof. Masayuki Yamamoto of Tohoku University
and offered by the lab of Jingbo Pi, China Medical University. We
used the female and male Nrf2 heterozygous (Nrf2*") mice to
breed the Nrf2~'~ (KO) mice. And the wild-type (WT) mice were
littermate Nrf2*"* mice in the experiments. We used PCR to
characterize the offspring of mice according to previous protocol
(Jiang et al., 2020a). The expression of Nrf2 protein in different
groups was showed in the Supplemental Material. The
procedures for care and use of animals were approved by the
Ethics Committee of the Qingdao University and all applicable
institutional and governmental regulations concerning the ethical
use of animals were followed.

Real-Ambient Exposure System

This study used a real-ambient exposure system; the exposure
device is located in Shijiazhuang. The PM, 5 concentration in this
city far exceeds the mean daily recommended dose limit in China.
In winter, the main pollution source in this city is burning coal.
The installation of exposure was described in a previous study (Li
et al., 2019a; Jiang et al, 2020b). In brief, the unique system
consists of control and exposure chambers. And the control
chambers were connected to high efficiency particulate air
(HEPA)-filtered air (FA), while the exposure chambers were
ventilated with unfiltered outdoor air (PM). The factors in all
chambers were identical, including temperature, humidity,
pressure, ventilation frequency, and noise. The WT and KO
mice were exposed to FA or PM chambers (sixteen in each
chamber), respectively. The mice could access to standard
food and water freely in the chambers with a 12h light/dark
cycle. The time of mice exposure to PM, s or FA was 24 h/day and
7 days/week for 6 weeks. PM concentration in FA and PM
chambers was monitored daily using the Aerosol Detector
DUSTTRAKTM 1I and analyzed the size of particle with an
Aerodynamic  Particle Sizer Spectrometer 3321 (TSI
Incorporated, Shoreview, MN, United States). During the 6-
week exposure period, there are 12 days when the exposure
concentration exceeds 150 pg/m’ in the exposure chamber (Li
et al., 2019a). Our previous study showed the average daily PM, 5
concentration in the air around the study site was 151.40 pg/m”’,
while the average PM concentration in the exposure chamber was
89.95 ug/m’ (Jiang et al, 2020a). According to our previous
method, the cumulative amount of PM,s inhaled into
pulmonary was calculated. The cumulative amount of PM, 5
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inhaled into pulmonary was 87.04 pg after exposed for 6 weeks
(Jiang et al., 2020b).

Histopathological Analysis

The lung tissues were extracted from the mice and washed with
phosphate buffered saline (PBS). After fixed in 4% formaldehyde
for 24 h at the room temperature, dewatered by graded ethanol,
implanted in paraffin, and sectioned transversely. Tissue sections
were deparaffinized and stained with hematoxylin and eosin
(H&E). The histological assessment was achieved under the
light microscope. The histopathological analysis of acute lung
injury were quantified using a scoring system described in a
previous study (Matute-Bello et al., 2011). Five regions were
randomly selected from each pathological section, and the
inflammatory cells in each region were quantified with Image]J
(NIH, United States) software.

RNA-Seq Assay

Three lung tissue samples were randomly selected from per group
(WT-FA, WT-PM, KO-FA, and KO-PM) and carried on RNA-
sequencing test. The assay was performed by BioMiao Biological
Technology (Beijing, China). A total amount of 3 ug RNA per
sample was used as input material for the RNA sample
preparations. Sequencing libraries were generated using
NEBNext®Ultra™ RNA Library Prep Kit for Illumina® (NEB,
United States) following manufacturer’s recommendations and
index codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly-T oligo-
attached magnetic beads. Fragmentation was carried out using
divalent cations under elevated temperature in NEBNext First
Strand Synthesis Reaction Buffer (5X). First strand cDNA was
synthesized using random hexamer primer and M-MuLV
Reverse Transcriptase (RNaseH-). Second strand cDNA
synthesis was subsequently performed using DNA Polymerase
I and RNase H. Remaining overhangs were converted into blunt
ends via exonuclease/polymerase activities. After adenylation of
3’ ends of DNA fragments, NEBNext Adaptor with hairpin loop
structurewere ligated to prepare for hybridization. To select
cDNA fragments of preferentially 150-200 bp in length, the
library fragments were purified with AMPure XP system
(Beckman Coulter, Beverly, United States). Then 3 ul USER
Enzyme (NEB, United States) was used with size-selected,
adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at
95 C before PCR. Then PCR was performed with Phusion High-
Fidelity DNA polymerase, Universal PCR primers andIndex (X)
Primer. At last, PCR products were purified (AMPure XP system)
and library quality was assessed on the Agilent Bioanalyzer 2100
system. The clustering of the index-coded samples was performed
on a cBot Cluster Generation System using TruSeq SR Cluster Kit
v3-cBot-HS  (Illumia) according to the manufacturer’s
instructions. After cluster generation, the library preparations
were sequenced on an Illumina Hiseq 2000/2500 platform and
150 bp/100 bp/50 bp paired/single-end reads were generated. A
differential expression analysis of two groups was achieved by the
DESeq2 R package. KEGG enrichment pathways over the
differential expression genes were performed by the Cluster
Profiler R package.
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RT-PCR

Total mRNA was extracted from 50 mg lung tissues of mice with
the Trizol agent (Thermo Scientific, Waltham, United States)
according to the instructions of manufacturer-provided. cDNA
was synthesized using the reverse transcription kit (Takara,
Kyoto, Japan). And performed quantitative real time PCR
(qRT-PCR) using a SYBR Green PCR Master Mix (Thermo
Fisher Scientific, Waltham, United States) with QuantStudio
seven Real-Time PCR Systems (Thermo Scientific, Waltham,
United States). The level of each gene expression was adjusted
to the B-actin. The method of calculate relative expression of
genes was 2“*" The primers used are described in the
Supplemental Material.

Western Blotting

The lung samples of mice were homogenized in a RIPA buffer
(Solarbio, Beijing, China) with phenylmethylsulfonyl fluoride
(PMSF) and alkaline phosphatase inhibitor cocktail (Solarbio,
Beijing, China). The protein concentration was determined using
the Bicinchonic acid (BCA) protein analysis kit (Epizyme,
Shanghai, China) according to its protocol. Then, 40-60 pg
protein from lungs were separated using 10% SDS-
Polyacrylamide-Gel-Electrophoresis (SDS-PAGE) followed by
transfer to polyvinylidene fluoride (PVDF) membranes
(Millipore, Billerica, MA, United States). The PVDEF
membranes were blocked with defatted milk for 3h at room
temperature, then incubated with specific primary antibodies
including CYP2E1 (Affinit, Beijing, 1:1,000), Nrf2 (Cell
Signaling Technology, Boston, 1:1,000), GRP9%4 (Affinit,
Beijing, 1:1,000), CHOP (Affinit, Beijing, 1:1,000), GAPDH
(Bioss, Beijing, 1:3,000) overnight at 4°C. After washing four
times with TBST (15 min per time), the goat anti-rabbit IgG
secondary antibody (Epizyme, Shanghai, China) were incubated
for 1h at room temperature. Followed by additional three times
washing, the membranes were detected using automatic
chemiluminescence image analysis system (Millipore, Billerica,
MA, United States) and quantified with Image] (NIH,
United States) software.

Immunohistochemistry and TUNEL Assay
The expression levels of GRP94 and CHOP were evaluated with
immunohistochemical staining of the aortic tissue. Sections of
lung tissue were incubated with GRP94 (Affinit, Beijing, 1:1,000)
or CHOP (Affinit, Beijing, 1:1,000) antibodies at 37°C for 1h,
washed with PBS (pH 7.4) and then incubated with secondary
antibody for 20 min. Sections were treated with Biotin-labeled
Goat Anti-Rabbit IgG, developed with freshly prepared DAB
solution, and counterstained with hematoxylin. Pictures were
taken with a microscope (Changfang, Shanghai, China), and
quantified using a scoring system described in a previous
study (Li et al,, 2019b). Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay kit was used to detect
apoptotic cells in lung tissue sections following manufacturers’
instructions. Sections were counter stained with DAPIL Five
regions were randomly selected from each section, and the
TUNEL positive cells in each region were quantified with
Image] (NIH, United States) software.
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FIGURE 1 | Effects of Nrf2 knockout on pulmonary function and pathology in PM, s-exposed mice. (A) The lung weight and ratio of lung to body weight of four

groups mice after the treatment. n = 4 per each group. (B) The tracheas of mice were connected to the instrument measuring pulmonary function under anaesthesia (n =
6), and the indicators of lung function were monitored by instrument. Lung function parameters: FVC, forced vital capacity; FEVO.1, forced expiratory volume in the first
0.1%s; FEVO.2, forced expiratory volume in the first 0.2°s. (C) Lung was isolated, fixed, sectioned, and observed microscopically after hematoxylin and eosin (H&E)

staining (representative of four mice, magnification x200). The lung injury scores and inflammatory cells counts were calculated in different groups of mice. (D) Lung
tissue sections from four groups mice were isolated and test the apoptosis cells by TUNEL assay kit. The TUNEL positive cells were quantified with Imaged (NIH,
United States) software. FA, filtered air; PM, fine particulate matter. WT, wild type mice; KO, Nrf2~~ mice. Scale bars are 50°um, and magnification is x200. Data are

Malondialdehyde and Superoxide
Dismutase Assay

The MDA and SOD concentration of lung tissue samples was
determined using a special kit (Solarbio, Beijing, China). Briefly,
100 mg homogenate of lung tissues were mixed with 200 ul MDA

detection solution and 600ul MDA working solution.
Subsequently, the mixture was incubated at 100°C for 1h
according to the instructions of the kit. The mixture was
centrifuged at 15,000 r for 15min using centrifuge. Then,
200°ul of the supernatant was moved to a 96-well plate to read
absorbance at 450, 532, and 600 nm using a microplate reader.
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And the concentration of MDA in lung was calculated by the
absorbance according to the instructions of kit. SOD assays were
performed using assay Kkits, according to manufacturers’
instructions.

Statistical Analysis

Statistical analysis was performed with GraphPad Prism (8.0)
software. Data were presented as mean + SEM. A factorial design
two-way analysis of variance (TWO WAY-ANOVA) was used to
assess differences among groups. Results were considered
statistically significant when p < 0.05.

RESULT

Effects of Nuclear Factor Erythroid
2-Related Factor 2 on Pulmonary Function
and Pathology In PM, s-Exposed Mice

To study the effects of PM, 5 on the lung, mice were exposed
to the real-ambient system. During PM exposure, no significant
changes were observed in the body weight of the four
groups mice (Jiang et al., 2020a). After PM, s exposure, no
remarkable difference was observed in the lung weight or
the ratio of the lung-to-body weight between the WT-FA
and WT-PM groups or the KO-FA and KO-PM groups
(Figures 1A,B).

To assess the effects of PM exposure on the lung, we conducted
lung function tests on the mice. The forced vital capacity (FVC)
and forced expiratory volume in the first 0.2 s (FEV0.2) were
significantly decreased in the WT-PM group relative to the WT-
FA group, while no remarkable difference was detected between
the KO-FA and KO-PM groups (Figure 1B). However, the forced
expiratory volume in the first 0.1s (FEV0.1) displayed no
statistically significant between groups difference (Figure 1B).
Taken together, these results suggest that PM,s leading to
pulmonary injure in WT mice and Nrf2 loss ameliorated lung
damage under PM, s exposure. To appraise the effects of PM, 5-
induced lung injury, we conducted histopathological assessments.
In wild-type mice, the pathological tests suggested serious
alveolar congestion and alveolar wall thickening after PM
exposure. The typical manifestations of lung damage were
alveolar congestion and alveolar wall thickening. Interestingly,
there was no significant pathological change between the KO-FA
and KO-PM groups (Figure 1C). To better characterize the
degree of lung injury in the course of PM exposure, we
quantified lung injury based on the histopathological features
as described previously (Matute-Bello et al., 2011). And the
inflammatory cell counts data in different groups were
presented. To evaluate whether PM2.5 could induce apoptosis
in the lung tissue of WT and KO mice, we decided to observe the
apoptotic cells using TUNEL assay (Figure 1D). Consistent with
pathological test results, PM, 5 exposure significantly increased
apoptotic cells in WT mice; however, there was no difference
between the KO-FA and KO-PM mice. Collectively, the results
suggested that PM, 5 exposure led to lung damage of WT mice
rather than KO mice.

Effects of PM2.5 on Lung Modulated by Nrf2

PM, 5 Exposure Enhanced the Inflammation
and Oxidative Stress of the Lung in the

Wild-Type and KO Mice

The Keap1-Nrf2 signaling pathway plays a vital role in protecting
cells from inflammation and oxidative stress (Ruiz et al., 2013). In
hence, we determined the inflammation and oxidative stress
levels in the lungs of WT and KO mice after exposure to
PM, s for 6 weeks. The mRNA levels of IL-6 and IL-1f in the
WT and KO mice were all obviously increased after PM exposure
compared to the FA group (Figure 2A). Although the changes in
the mRNA expression levels of IL-la and IL-5 were not
statistically different, they showed the same trend as IL-6 and
IL-1p. Subsequently, we assessed the effects of Nrf2 knockout on
the oxidative stress response upon PM exposure. Treatment with
PM, 5 for six weeks increased the levels of MDA and SOD in the
lungs of WT and KO mice (Figures 2B,C). Nrf2 can regulate the
expression of many antioxidant genes, including HO-1, NQO1
and GCLC. Our study tested the expression of HO-1, NQOI and
GCLC (Supplemental Material), and there was a significant
down-regulation in the Nrf2 knockout mice, while the PM, 5
exposure seemed to effectively increase the expression levels in
WT-PM mice. These results showed that PM, 5 exposure could
promote inflammation and oxidative stress in the lung in both
WT and KO mice.

The CYP450 Pathway is Involved in Lung
Damage in KO Mice After Exposure to PM, 5

To further explore the mechanism of lung damage induced by
Nrf2 knockout after exposure to PM, 5, we used the lung tissue
of the mice for RNA-seq analysis. The RNA-seq results
suggested that thousands of genes had been changed by Nrf2
knockout or PM exposure. The selection criteria of differentially
expressed genes (DEGs) were fold-change greater than twofold
and p-value <0.05 in different groups. The numbers of DEGs
among the different groups are shown in Figure 3A. The initial
analysis screened out 4,908 and 5,289 DEGs based on the
comparison between WT-FA and WT-PM and between KO-
FA and KO-PM. Of these, 1,618 genes were confirmed as shared
by the two parts. To determine the influence of Nrf2 loss, we
removed 1,618 of the 5,289 genes and studied the remaining
3,671 genes. These 3,671 genes were subjected to top-10 KEGG
pathway enrichment analysis (Figure 3B). Major KEGG
signaling pathways observed with significant changes
included vascular smooth muscle contraction, osteoclast
differentiation,  hypertrophic  cardiomyopathy, dilated
cardiomyopathy pathways, and metabolism of xenobiotics by
cytochrome P450 (CYP450). In those pathways, major pathways
associated with cardiovascular disease, osteoclast
differentiation and CYP450 enzyme; Plenty studies showed
that the expression of CYP450 was related to the metabolism
of various exogenous compounds has an impact on the lung
damage caused by PM, 5 (Saint-Georges et al., 2008; Abbas et al.,
2009; Oesch et al, 2019), we chose to further explore the
“Metabolism of xenobiotics by cytochrome P450” pathway.
This pathway enrichment contains 18 genes and their p-value

were
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FIGURE 2 | Nrf2 knockout exacerbates PM, s-induced inflammation and oxidative stress in lung. (A) The expression level of inflammatory factors in four groups (n = 3).
(B) MDA contents in four groups. n = 3 per group. (C) SOD contents in four groups. n = 3 per group. FA, filtered air; PM, fine particulate matter. WT, wild type mice; KO,
Nrf2~ mice. Data are expressed as the mean + SEM, *p < 0.05.

was 0.01. The heatmaps of all samples in this pathway are shown
in Figure 3C. Meanwhile, 2,302 DEGs were identified in KO-
PM mice relative to WT-PM mice and the 2,302 genes were
subjected to top-10 KEGG pathway enrichment analysis
(Figures 3D,E). The top 10 KEGG pathways are mainly
related to metabolism, including metabolism of xenobiotics
by cytochrome P450. The metabolism of xenobiotics by the
cytochrome P450 signaling pathway mainly involves the genes
encoding the phases I (CYP2E1, CYP2F2, CYP2S2, ALDH3Al,
ALDH3B1, ADH7, and CBR1) and II (GSTA2, GSTA4, GSTP2,
GSTT3, and MGST1) metabolic enzymes among these 3,671
genes. The expression of phase I metabolic enzyme-related
genes was down-regulated in the WT and KO mice following
exposure to PM, 5. Phase I metabolic enzymes could metabolize
organic components in PM,s such as polycyclic aromatic

hydrocarbons (PAHs) and release more toxic oxidation
products that impact lung function.

Expression of CYP450 Pathway-Related

Genes in the Four Groups of Mice

CYP450 expression can be generally regulated by many factors
including xenobiotics such as acetaminophen, PAHs, and drugs
(Guengerich et al.,, 2016; Yao et al., 2019) and it could metabolize
the polycyclic aromatic hydrocarbons attached to PM, 5 and
produce ROS during this metabolism, which can cause
oxidative stress and lung damage. Under exposure to PM,5,
the mRNA expression levels of CYP2E1l, HPGDS, and
UGT1A7C in the WT mice were increased. However, the
mRNA expression levels of CYP2E1, CYP2S1, GSTA4, and
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MGST1 in the Nrf2-knockout mice were down-regulated after
PM,s exposure (Figure 4A). Moreover, we observed a
remarkable decrease in the protein levels of CYP2El
expression in the PM, s-treated lungs of Nrf2-knockout mice,
but not in WT mice (Figure 4B). CYP450 enzymes participate in
the phase I metabolism of chemical toxins and poisons in the
body and could produce highly toxic oxidation products (Saint-
Georges et al., 2008). Our results showed that the CYP2EI was
decreased in KO mice after exposure to PM,s. Based on this
result, we speculate fewer toxic products were produced in the
KO-PM mice, which led to less damage to the lung. In addition,
the decreased expression of CYP2E1 may lead to lower ER stress
levels (Torres et al., 2019).

Expression Level of Glucose-Regulated
Protein 94 and C/EBP Homologous Protein,
Biomarkers of Endoplasmic Reticulum

Stress
The CYP450 enzyme is rich in the ER, which is an important
organelle involved in detoxification, protein synthesis,

modification, and folding (Brignac-Huber et al., 2016). The
metabolic activation of toxins by CYP2El can cause an
imbalance in the homeostasis of the ER, leading to unfolded
and misfolded proteins aggregating in the reticulum cavity to
induce ER stress (Lewis and Roberts, 2005). ER stress participates
in the toxic effects of various environmental and occupational
toxicants on cells (Wang and Tang, 2020). When the ER stress
response is too forceful or the stimulation time too long, it will
induce cell apoptosis and cause body damage (Fernandez et al.,
2015; Xie et al., 2019). ER stress was shown to be activated in
PM,s-induced lung and liver injury and is an important
mechanism by which PM, 5 causes lung damage (Laing et al,
2010).

GRP94 and CHOP play pivotal roles in maintaining protein
homeostasis, participating in the ER unfolded protein response,
and is involved in ER-related protein degradation. Therefore,
GRP94 and CHOP were used as biomarkers of ER stress. To
explore whether ER stress contributes to PM, s-induced lung
toxicity, GRP94 and CHOP was measured in the lungs of the four
different groups of mice (Figures 5A-F). Compared with the
WT-FA group mice, the expression levels of GRP94 and CHOP
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were high in the wild-type mice after exposure to PM, 5, while a
significant decrease of GRP94 and CHOP expression was
observed in the KO-PM mice compared to the KO-FA mice,
suggesting that Nrf2 knockout leads to ER stress reduction
following exposure to PM, s.

DISCUSSION

Shijiazhuang, located in the north of China, is one of five cities
with the highest PM, 5 concentration in China. The air pollution
there mainly comes from the burning of coal, industrial
emissions, and vehicle exhaust (Yang et al,, 2013). Therefore,
we built a real-ambient exposure system in Shijiazhuang city.
Traditional animal models of PM exposure typically use
intratracheal instillation, which changes both the physical and
chemical properties of particulate matter. To represent real-
ambient exposure, our study used a real-ambient exposure
system that almost completely simulates the real-ambient

exposure to PM, 5 under outdoor atmospheric PM, 5 pollution
(Jiang et al., 2020a; Su et al., 2020).

Our research team used the real-ambient exposure system to
find that PM, 5 can cause multiple organ impairment, among
which the lung damage was the most serious (Li et al., 2019a).
Many studies have shown that PM, s contains complex toxic
chemical components (Li et al, 2019a; Zhou et al., 2019).
Pollutants in the air can be released into the lung surfactants
and adhere to lung epithelial cells, causing lung injury. Previous
studies have confirmed that PM, 5 exposure is highly associated
with lung diseases such as pulmonary fibrosis, pneumonia, and
chronic obstructive pulmonary disease, and the mechanism of
lung damage by PM, s is mainly mediated by inflammation and
oxidative stress (Guo et al., 2019).

Nrf2 is a vital transcription factor that regulates inflammation
and antioxidant defense. Activation of the Nrf2/ARE signaling
pathway can induce the expression of endogenous antioxidant
enzymes and antioxidant proteins under normal conditions or
under the stimulation of subtoxic doses (Ma, 2013). When the
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body is stimulated by PM, 5 exposure, Nrf2 can transfer from the
cytoplasm to the nucleus and induce the transcription of
antioxidant and anti-inflammation enzymes by binding to
antioxidant response elements (AREs) (Suzuki and Yamamoto,
2015; Bellezza et al., 2018). Consequently, Nrf2 can protect the
body against excessive oxidative stress damage. Several studies
have reported that Nrf2-deficiency increases the effect of
oxidative stress after exposure to PM,s, causing cytotoxicity
and inflammation in mice (Chen et al., 2018; Ge et al., 2020).
However, another study confirmed that Nrf2 deficiency alleviates
high-fat diet-induced liver damage by reducing PPARy
expression (Li et al., 2020b). Recent studies have also shown
that Nrf2-knockout did not aggravate the harm caused by PM, 5
(Jiang et al., 2020b; Cui et al., 2020).

In this study, inflammatory and oxidative stress was increased
in WT mice after exposure to PM, s and the lung function of WT-

PM groups was decreased compared to WT-FA groups, and these
results are consistent with other studies (Yue et al, 2019).
However, there was no significant change in lung function or
pathology. The level of inflammatory and oxidative stress was up-
regulated between the KO-FA and KO-PM groups following PM
exposure; this result may be related to the different roles played by
Nrf2 in different situations. It is well-known that Nrf2 is a double-
edged sword (Tebay et al., 2015; Wu et al,, 2019a). In general,
Nrf2 has a positive effect on body health. However, the target
genes of Nrf2 might contribute to cell damage by promoting the
metabolism of exogenous compounds, which suggests that the
cytoprotective effect changes to promoting damage in certain
contexts (Tebay et al., 2015). After short-term or sub-toxic dose
stimulation, Nrf2 can regulate the expression of phase-Il
metabolic enzymes and protect cells from oxidative damage.
However, the expression of phase-ll metabolic enzymes is not
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sustained under long-term stimulation, which changes the
cytoprotective effect of Nrf2 (Wu et al,, 2019a).

To explore the lung damage effect of PM, 5 exposure in Nrf2-
knockout mice, the RNA of all genes expressed in lung tissue was
sequenced. RNA sequencing is characterized by the high-
throughput screening for DEGs and it can uncover many
DEGs after exposure to various toxicants (Shukla et al., 2017).
In wild-type mice, PM, 5 exposure resulted in 4,908 DEGs in lung
tissue relative to the FA control, which suggests that PM, s
exposure induces a series of effects. As mentioned in the
results, we studied 3,671 genes to determine the influence of
Nrf2 loss and the top-10 KEGG signaling pathways were selected
by RNA sequencing. One major mechanism of PM,;
cardiotoxicity is mediated via oxidative stress. Previous studies
have demonstrated that PM, 5 exposure has toxic effects on the
heart such as cardiomyopathy and coronary disease (Pope et al.,
2016; Qi et al.,, 2020). Nrf2 deletion was found to be related to
cardiac injury but there was no connection between the pathways
affected in cardiac damage and pulmonary injury. Among the
various signaling pathways, the CYP450 signaling pathway was
found to be closely related to lung injury in a previous study
(Stading et al., 2021), and so the genes in the signaling pathway
were selected and explored further. CYP450 participates in the
metabolism of exogenous substances, including drugs and
environmental compounds. It could metabolize PAHs attached
to PM, s, which can produce more toxic oxidation metabolites,
leading to lung damage (Oesch et al, 2019). The mRNA
expression levels of CYP2El in WT mice showed an

increasing trend after PM, 5 exposure. However, the levels of
CYP2E1 were down-regulated in the KO-PM group relative to the
KO-FA group, suggesting that fewer toxic metabolites appeared
in KO mice following exposure to PM, 5 and thus caused less
damage to lung tissue.

CYP2E1 is a membrane protein expressed at a high level that is
primarily distributed in the ER and mitochondrial membrane
(Bieche et al., 2007; Hartman et al., 2017). It is closely related to
ER stress, which may be why lung injury in KO mice is not
obvious after PM exposure. Increasing amounts of evidence have
indicated that CYP2El-dependent ER stress contributes
substantially to the pathogenesis of radiation-induced
pulmonary fibrosis (Son et al, 2017) and environmental
toxicant-induced liver toxicity (Wu et al., 2019b). In addition,
the ER is a key organelle that causes dysfunction and affects the
response of other cell structures such as the mitochondria,
cytoplasm, and the nucleus (Lin et al, 2019). If ER stress
continues, it will lead to apoptosis and necrotic cell death (Wu
etal., 2019b). Many studies have shown that ER stress is involved
in body damage caused by PM, s (Zhou et al., 2017; Familari et al.,
2019). As markers protein of ER stress and the most abundant ER
glycoprotein, GRP94 and CHOP play pivotal roles in the
maintenance of protein homeostasis and participate in the ER
unfolded protein response (Ghiasi et al., 2019; Klymenko et al.,
2019).

Our results indicate an increased expression level of GRP94
and CHOP in WT mice after exposure to PM, 5, suggesting that
ER stress induced by PM, s metabolites may take part in the
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pathogenesis of lung damage. However, the decreased expression
of GRP94 and CHOP in PM-treated Nrf2-knockout mice
suggests that the decreased expression of CYP2E1 in KO mice
means that they have a weakened metabolic activation capacity of
exogenous compounds, which reduces their production of toxic
metabolites. As a result, the ER stress was decreased in KO-PM
group. According to previous study, persistent inflammation and
oxidative stress caused by PM,s exposure can lead to lung
damage in mice (Cantin et al., 2015). In our study, the level of
inflammation and oxidative stress were up-regulated in WT mice
after exposure to PM, 5. And the ER stress was also increased in
WT-PM mice compared with WT-FA mice. Previous study has
shown that ER stress is involved in ventilator-induced lung injury
in mice via the IRE1a-TRAF2-NF-kB pathway (Ye et al., 2020).
Therefore, the lung function and pathology showed significant
changes in WT mice after exposure to PM, 5. In the KO mice, the
level of inflammation and oxidative stress were increased under
PM,s exposure. However, the ER stress was decreased
significantly in KO-PM mice compared with KO-FA mice.
According to our study, the decrease of ER stress in KO-PM
mice may be due to the down-regulated of CYP2EI expression by
Nrf2. This may explain the lack of changes in lung function and
pathology in the KO-FA group.

In the present study, we established a novel exposure model
named the “real-ambient exposure” system. This inhalational model
completely simulates the whole-body inhalation of outdoor PM, s.
Our study indicated an adverse effect on lung function under PM, 5
exposure and revealed the underlying mechanism of CYP2E1
metabolism in Nrf2-deficient mice (Figure 6). Our results
further broaden our recognition of the harmful impact of PM, 5
and provide a new mechanism for the process.
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