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Populations used to create warfarin dose prediction algorithms largely lacked participants
reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling
improves warfarin dose prediction, this research has mainly focused on populations with
primarily European ancestry. We compare the accuracy of stable warfarin dose prediction
using linear and nonlinear machine learning models in a large cohort enriched for US Latinos
and Latin Americans (ULLA). Each model was tested using the same variables as published
by the International Warfarin Pharmacogenetics Consortium (IWPC) and using an expanded
set of variables including ethnicity and warfarin indication. We utilized a multiple linear
regression model and three nonlinear regression models: Bayesian Additive Regression
Trees, Multivariate Adaptive Regression Splines, and Support Vector Regression. We
compared each model’s ability to predict stable warfarin dose within 20% of actual
stable dose, confirming trained models in a 30% testing dataset with 100 rounds of
resampling. In all patients (n � 7,030), inclusion of additional predictor variables led to a
small but significant improvement in prediction of dose relative to the IWPC algorithm (47.8
versus 46.7% in IWPC, p � 1.43 × 10−15). Nonlinear models using IWPC variables did not
significantly improve prediction of dose over the linear IWPC algorithm. In ULLA patients
alone (n � 1,734), IWPCperformed similarly to all other linear and nonlinear pharmacogenetic
algorithms. Our results reinforce the validity of IWPC in a large, ethnically diverse population
and suggest that additional variables that capture warfarin dose variability may improve
warfarin dose prediction algorithms.
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INTRODUCTION

Despite the availability of direct oral anticoagulants (DOACs),
warfarin remains a commonly prescribed drug in the
United States and Latin America. Although a highly effective
anticoagulant, warfarin’s small therapeutic window and high
inter-patient dose variability make it a leading cause of adverse
drug events. While warfarin use may decline due to the
requirement for regular clinical monitoring, a significant
proportion of the population is likely to continue warfarin
use preferentially over use of DOACs. Clinical concerns with
DOACs continue to limit their use, including fewer
indications than warfarin, concerns about bleeding risk and
renal function, availability and cost of reversal agents, and
contraindication in valvular heart disease (Nielsen et al.,
2015; Verdecchia et al., 2016; Mendoza-Sanchez et al., 2018;
Vinogradova et al., 2018; Zhu et al., 2018). This is especially
true for medically underserved patients, including US Latino
and Latin American (ULLA) patients, who may have access
barriers to newer agents because of high costs and copays(Kirley
et al., 2012; Shahin and Giacomini, 2020). Given the long track
record of warfarin use in clinical practice, its affordable cost, and
limited clinical utility of DOACs in special populations, warfarin
is likely to continue to be preferentially used over DOACs in a
substantial proportion of the population(Shahin et al., 2011;
Barnes et al., 2015; Arwood et al., 2017).

In order to reduce warfarin-associated adverse drug events,
warfarin stable dose prediction algorithms have been developed
that incorporate clinical and genetic factors(Gage et al., 2008;
Botton et al., 2011; Grossi et al., 2014; Alzubiedi and Saleh,
2016). Variables used in dose prediction algorithms account
for approximately 50% of the variability in warfarin dose.
However, these models, such as the International Warfarin
Pharmacogenetics Consortium model (IWPC), were derived
from populations with largely white participants and very
small ULLA populations, including less than 1% ULLA in the
IWPC cohort (International Warfarin Pharmacogenetics
Consortium et al., 2009). Thus, it is possible that variability
in warfarin stable dose requirements in ULLA patients may not
be accurately modelled in commonly-used dose prediction
algorithms, making these models potentially less effective for
these patients(Kimmel et al., 2013; French et al., 2016; Johnson
et al., 2017). This is particularly concerning since medically
underserved patients, including disproportionately high ULLA
patients, are at high risk for poor outcomes during warfarin
treatment (White et al., 2006; Shen et al., 2007; Writing Group
Members et al., 2016). Warfarin dosing in ULLA populations,
which can have a mosaic-like ancestry that is admixed with the
genomes of European, African, and Native American ancestors,
(Wang et al., 2008) may be improved by developing algorithms
trained with data from ULLA patients (Kaye et al., 2017).
Recommended warfarin stable dose algorithms are based on
multiple linear regression models(Johnson et al., 2017). Given
that the relationship between warfarin dose and predictor
variables is complex, nonlinear modeling strategies have been
tested in warfarin dose prediction(Grossi et al., 2014; Liu et al.,

2015; Roche-Lima et al., 2020). Non-parametric machine
learning models are potentially powerful alternatives to linear
parametric models in that they lack many of the assumptions of
linear regression and they are flexible enough to fit virtually any
curve in the data. However, the term machine learning
technically applies to all models used in this analysis. The
main aims of this study were to determine the validity of
IWPC in ULLA patients and to apply machine learning to
assess the accuracy of warfarin dose prediction with the
published IWPC algorithm, a novel linear model, and three
types of nonlinear models.

METHODS

Study Populations
We analyzed publicly available data from IWPC combined
with multiple cohorts of ULLA patients treated with stable
doses of warfarin, creating a large ethnically diverse
population. First, we obtained IWPC open access data from
The Pharmacogenomics Knowledgebase (PharmGKB) website
(https://www.pharmgkb.org/downloads, accessed December
2020), which contains data on 5,700 warfarin users recruited
through 22 collaborative research groups from four continents
(International Warfarin Pharmacogenetics Consortium et al.,
2009). The IWPC cohort has been previously described in
detail (International Warfarin Pharmacogenetics Consortium
et al., 2009). The dataset contains detailed de-identified,
curated data on demographics, clinical features, and
genotypes for single nucleotide polymorphisms (SNPs) in
CYP2C9 and VKORC1.

In this study, all ULLA patients self-reported Hispanic or
Latino ethnicity or were recruited in a Latin American country.
Herein, Hispanic ethnicity is used to refer to an individual with
Spanish-speaking culture or origin and Latino ethnicity is used to
refer to an individual with culture or origin from a Latin
American country. Hispanic and Latino ethnicities are not
mutually exclusive and are self-reported regardless of race. We
chose the termULLA to be inclusive of study participants who are
not currently residing in Latin America (i.e., may not identify as
Latin American), who are not Spanish speaking (i.e., do not
identify as Hispanic), and who do not follow U.S. social
constructs (i.e., may not identify as ethnically Hispanic/
Latino). In addition to patients self-reporting as ULLA,
patients also self-reported Black or White race. Given the
incredible diversity within ULLA patients, statistical methods
described below also included evaluation of the influence of self-
reported race, as well as country of enrollment, within the ULLA
cohort.

The cohort of ULLA patients comprised 1,757 warfarin-
treated patients with Hispanic or Latino ethnicity recruited
through research groups in North and South America. Each
of the cohorts have been previously described (Perini et al., 2008;
Lubitz et al., 2010; Botton et al., 2011; Bress et al., 2012; Santos
et al., 2015; Duconge et al., 2016; Galvez et al., 2018; El Rouby
et al., 2020). Data for a total of 411 self-reported Latinos were
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collected in North America, consisting of participant data from
the University of Arizona (n � 76), University of Illinois at
Chicago (n � 54), University of Puerto Rico (n � 260), and Icahn
School of Medicine at Mount Sinai (n � 21). The South
American cohorts were enrolled in Brazil from the University
of São Paulo (n � 663) and Federal University of Rio Grande do
Sul (n � 533) and in Colombia from the Hospital Universitario
Mayor in Bogotá (n � 150). All participants were recruited while
taking a stable dose of warfarin, defined as taking a consistent
warfarin dose for two or more visits and achieving in target
International Normalized Ratio (INR) range at both visits. DNA
isolation and genotyping, which included VKORC1 c.-1639G>A
(rs9923231), CYP2C9*2 (p.R144C, rs1799853), and CYP2C9*3
(p.I359L, rs1057910), were performed for each cohort
individually as previously described (Galvez et al., 2018; El
Rouby et al., 2020). Patients were ≥18 years of age and
provided written informed consent for collection of their
clinical data and either a venous blood or mouthwash
sample for genetic analysis. The clinical studies associated
with all sites for the ULLA cohort obtained Ethical and
Human Subjects approvals from each organization’s
Institutional Review Board. For ULLA data, please contact
karnes@pharmacy.arizona.edu.

Statistical Analyses
Demographic characteristics were compared between IWPC and
ULLA cohorts using the tableone R package version 0.12.0
(Yoshida and Bartel, 2020). Prior to analysis, we excluded
participants: 1) who did not reach a stable dose, 2) with a
weekly dose of over 175 mg or under 7 mg, 3) those with
missing gender or age data, 4) with height above 200 cm or
under 130 cm, and 5) with weight above 150 kg or under 35 kg, to
account for biologically implausible or unlikely values. In the
IWPC cohort, a target INR range of 2–3 was implemented. We
derived and imputed variables with missing data for each of the
datasets using packages and functions available in tidyverse in R
version 1.3.0 (Wickham et al., 2019). Allele frequencies for the
genetic locations were testing for Hardy-Weinberg Equilibrium
using the HWChisq test in the HardyWeinberg package version
1.7.2 (Graffelman, 2015).

In order to address missing data, we imputed or derived
missing values following the dataset curation steps described
in the Supplementary Materials (Supplementary Methods
and Supplementary Table S1). We curated two additional
Merged datasets for sensitivity analyses to assess any impact
of data curation/imputation on our results. First, we imputed
missing values using Multivariate Imputation by Chained
Equations with default parameters for diabetes status, statin
use, smoking status and aspirin use implemented with the
mice package version 3.13.0 (Mera-Gaona et al., 2021).
MICE imputes missing values with plausible data values
drawn from a distribution specifically designed for each
missing datapoint. Second, we performed a complete-case
analysis, including only participants with all required data
and without imputation. Detailed descriptions of data
curation and imputation are available in the
Supplementary Materials.

Dose Prediction Algorithm Development
Analyses presented in this study are based on the IWPC model, a
novel multiple linear regression model termed the novel linear
model (NLM), and three nonlinear regression models: Bayesian
Additive Regression Trees (BART), Multivariate Adaptive
Regression Splines (MARS), and Support Vector Regression
(SVR). Model descriptions are available in Supplementary
Methods. First, we reproduced the IWPC analysis with a
multiple linear regression model using estimated coefficients
derived from the published IWPC model (Figure 1).
(International Warfarin Pharmacogenetics Consortium et al.,
2009) Second, we predicted dose using the same variables
included in the IWPC model but newly trained in the
respective cohorts (IWPCV). Thus, the only difference
between the IWPC and IWPCV models are the estimated
coefficients. We then predicted dose with IWPC variables
using the nonlinear methods described above with SVR
(IWPC SVR), MARS (IWPC MARS), and BART (IWPC
BART). This set of nonlinear models tested the improvement
of warfarin dose prediction over IWPC by nonlinear modeling
alone. All IWPC models included the variables age, height,
weight, genotypes at CYP2C9 and VKORC1, race, amiodarone
use, and enzyme inducer use. Next, we created the NLM,
including additional predictor variables collected at all study
sites (Supplementary Table S1). Finally, we fit another SVR,
MARS, and BART using all available variables. The NLM and
final three non-linear models (BART, MARS, SVR) included the
IWPC variables and the additional variables gender, warfarin
indication, statin use, aspirin use, smoking status, history of
diabetes, and self-reported ethnicity. In analyses restricted to
the ULLA cohort, country of enrollment was also included. All
models were fit using the functions outlined below under default
parameters using R version 4.0.2 (R Core Team, 2020). We used
the lm function in the stats R package version 4.0.2 (R Core Team,
2020) to fit linear regression models and generate parameter
estimates and standard errors, the bartMachine function in the
bartMachine package version 1.2.5.1 (Kapelner and Bleich, 2016)
for BART models, the train function in the caret package version
6.0-86 (Kuhn, 2020) using the “earth” method of the earth
package version 5.2.0 (Hastie and wrapper, 2020) for MARS
models, and the svm function in the e1071 package version 1.7-3
(Meyer et al., 2019) for SVR models. Finally, we estimated
variable importance with partial R2 values of NLM variables
with the rsq.partial function in the rsq package version
2.1(Zhang, 2020).

Dose Prediction Algorithm Assessment
We applied a square root transformation on weekly warfarin
dose when fitting all the models. The primary outcome used to
assess model performance was the proportion of patients
whose predicted dose was within 20% of their actual stable
dose, which represents a clinically relevant difference of 1 mg
per day (International Warfarin Pharmacogenetics
Consortium et al., 2009). Prior to fitting each replicate
within each model, we assigned individuals in each cohort
to training and testing datasets. We randomly selected, using a
simple random sampling method, 70% among the patients as
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the training cohort to develop dose-prediction algorithms. The
remaining 30% of the patients constituted the testing cohort.
Models fit using the training dataset were used to predict values
in the training and testing datasets. Estimates of mean absolute
error (MAE) and the percentage of individuals predicted
within 20% of their actual dose for each model were
therefore based on both the training and the testing data.
The MAE is the average of the absolute value of predicted
dose minus the actual dose, and models with lower MAE tend
to better predict the warfarin dose (Willmott and Matsuura,
2005). Uncertainty in model performance was derived from a
total of 100 replicates including random resampling of training
and testing datasets. Based on all 100 replicates analyzed within
each of the models, we estimated the mean and corresponding
95% confidence intervals on MAE and the percentage within
20%. We fit a Friedman test to detect differences in median
percentage within 20% across all models using the
friedman_test function in the rstatix R package version 0.6.0
(Kassambara, 2020). Each linear model’s estimates and
standard errors were surveyed from the 50th replicate to
maintain consistency in the training/testing data. Finally, we
used pairwise Wilcoxon signed-rank tests for paired data to
examine whether pairs of models differ in their median
proportions within 20% of actual and MAE. We
implemented Wilcoxon signed-rank tests using the
wilcox_test function again in the rstatix R package. All

pairwise p-values were Bonferroni adjusted to correct for
multiple comparisons. The R code associated with the
project can be found at https://github.com/karneslab/
warfarin-machinelearning.

Subgroup Dose Prediction
We explored differences in model performance between
subgroups based on actual-dose group, race, and country
of enrollment for the ULLA cohort. First, we calculated MAE
and percentage within 20% by actual-dose groups: high
(>49 mg/week), intermediate, and low (≤21 mg/week).
Next, we sought to investigate the validity of utilizing a
clinical algorithm without pharmacogenetic variation as
suggested by the Clinical Pharmacogenetics
Implementation Consortium (CPIC) in patients with self-
reported African ancestry who do not have genetic
information available for CYP2C9*5,*6,*8, and *11
(Johnson et al., 2017). Thus, the IWPC clinical model,
which does not include pharmacogenetic variation, was
also used to predict dose in subgroup analyses by race and
country of enrollment (International Warfarin
Pharmacogenetics Consortium et al., 2009). Next, we
evaluated percentage of participants predicted within 20%
of actual by race groups. Patients self-reported Black or
White race, or were imputed as “Mixed/Missing”. Finally,
we examined differences in percentage within 20% and MAE

FIGURE 1 | Dose Prediction Algorithm Creation and Testing. International Warfarin Pharmacogenetics Consortium (IWPC) data and data from US Latinos
and Latin Americans (ULLA) were used for prediction independently and merged to test a combined sample. Linear and nonlinear models were fit with IWPC
model variables and a set of extended variables in addition to IWPC predictors after a 70/30 training-testing split. All models were assessed for their ability to
predict dose within 20% of actual. 100 replicates were performed from data splitting to model assessment.
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by country/territory of enrollment (i.e. Brazil, Colombia,
Puerto Rico, and continental United States) for each of the
models.

RESULTS

Characteristics of Study Populations
Participants were removed from the PharmGKB IWPC dataset
(n � 651) when they were outside the target INR range, not on a
stable dose of warfarin, missing age and gender data, or were
outside the range of inclusion for warfarin stable dose, weight, or
height, leaving a total of 5,049 participants. In the ULLA cohort,
we excluded 23 patients for a total of 1,734 study participants. To
form the merged cohort we removed target INR restrictions and
thus fewer (n � 404) patients were excluded from IWPC due to
missing data or outlying dose, for a total of 7,030 warfarin users in
the Merged cohort.

The characteristics of the IWPC and ULLA cohorts are
outlined in Table 1. The median (interquartile range [IQR])
weekly warfarin dose (mg) was lower in the IWPC cohort (28.00
[95% Confidence Interval (95%CI) 19.25–38.50] mg/week) than
the ULLA cohort (30.00 [95%CI 22.50–37.50] mg/week,
p <0.001). A small minority (2.4%) of participants in IWPC
were carriers of two variant CYP2C9 alleles. The majority

(73.6%) of the participants had no variation in CYP2C9*2 or
CYP2C9*3. In the ULLA cohort, 2.4% of the population carried
two copies of variant CYP2C9 alleles, while 79.8% had no
variation in CYP2C9*2 or CYP2C9*3. The VKORC1-
1639G>A A allele frequency was 51.4% (AA: 32.5%, GA:
35.8%) in the IWPC cohort and 35.2% (AA: 12.5%, GA:
44.9%) in the ULLA. The IWPC cohort included less than
1% participants reporting Hispanic or Latino ancestry.
Alternatively, the ULLA cohort by design was composed of
100% Hispanic or Latino reporting individuals. Demographic
and genotype characteristics for theMerged cohort can be found
in Supplementary Table S2.

Comparison of Predictive Algorithms
In the IWPC cohort (n � 5,049), the most accurate model in
terms of patients predicted within 20% of actual stable dose in
the testing data was the novel NLM (47.4%) and the least
accurate model was IWPC MARS (45.6%) (Table 2 and
Supplementary Table S3, Supplementary Figure S1 in
Supplementary Materials). All models with additional
variables not contained in the IWPC model increased
accurate dosing prediction by approximately one percent
over the IWPC model (all p < 4.2 × 10−12; Supplementary
Tables S3, S6). MAEs were similar for all nine models and
ranged from 8.25 to 8.45 mg/week.

TABLE 1 | Subject Characteristics in IWPC and ULLA cohorts.

Characteristic IWPC (n = 5,049) ULLA (n = 1,734) P-Valuea

Age, years (mean (SD)) 59.8 (14.5) 59.7 (13.8) 0.917
Height, cm (median [IQR]) 166.88 (160.02–176.02) 166.00 (160.00, 172.72) <0.001
Weight, kg (median [IQR]) 75.40 (62.27–89.70) 75.00 (65.00, 85.00) 0.476
Weekly Warfarin Dose, mg (median [IQR]) 28.00 (19.25–38.50) 30.00 (22.50, 37.50) <0.001
CYP2C9 Diplotype (n, [%])b <0.001

*1/*1 3717 (73.6) 1384 (79.8)
*1/*2 650 (12.9) 198 (11.4)
*1/*3 450 (8.9) 83 (4.8)
*2/*2 46 (0.9) 24 (1.4)
*2/*3 62 (1.2) 13 (0.7)
*3/*3 16 (0.3) 4 (0.2)
Missing 108 (2.1) 28 (1.6)

VKORC1 -1639 G>A Genotype (n [%])c <0.001
GG 1503 (29.8) 729 (42.0)
AG 1806 (35.8) 778 (44.9)
AA 1639 (32.5) 217 (12.5)
Missing 101 (2.0) 10 (0.6)

Race (n [%])d <0.001
White 2794 (55.3) 1153 (66.5)
Asian 1527 (30.2) 0 (0.0)
Black or African American 451 (8.9) 292 (16.8)
Mixed or Missingd 277 (5.5) 289 (16.7)

Ethnicity (n [%]) <0.001
Hispanic or Latino 35 (0.7) 1734 (100.0)
not Hispanic or Latino 4139 (82.0) 0 (0.0)
Unknown 875 (17.3) 0 (0.0)

IWPC indicates International Warfarin Pharmacogenetics Consortium cohort; ULLA, US Latino and Latin American cohort; SD, standard deviation; IQR, interquartile range; cm,
centimeters; kg, kilograms; mg, milligrams.
ap values were calculated using a chi Square test for categorical variables, ANOVA for continuous variables and Wilcoxon rank sum test for non-normal continuous variables.
bCYP2C9 alleles *5, *6, *13, *14 were collapsed into *3 and *11 to *2, consistent with Klein et al.
cVKORC1 1639 G>A (rs9923231) rs2359612, rs9934438, rs8050894 were used as tagSNPs where rs9923231 was missing.
dNative American race was collapsed into “Mixed or Missing.”
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In the ULLA cohort (n � 1,734), all models performed
similarly (Figure 2A, Table 2 and Supplementary Table S4).
IWPC predicted 47.9% of the population within 20% of actual
dose compared to 47.0% for IWPCV (p < 4.28 × 10−6,
Supplementary Tables S4, S6). While the NLM model had
the lowest MAE 8.11 (7.45–8.79), all model MAEs were
similar ranging from 8.11 to 8.25 mg/week. The median
percentage of participants predicted within 20% in all models
fit in the ULLA cohort differed by ∼1%.

In the Merged cohort (n � 7,030), the NLM model was the
most accurate in this population with 47.8% of the population
predicted within 20% of actual dose. All models with
additional variables not contained in the IWPC model
increased accurate dosing prediction by ∼1% (all p < 2.2 ×
10−10) in the testing data (Figure 2B, Table 2, Supplementary
Tables S5, S6). MAEs were similar for all nine models and
ranged from 8.11 to 8.27 mg/week. In sensitivity analyses, our
results were robust to alternative imputation methods and

TABLE 2 | Comparison of Warfarin Dose Prediction Algorithms by Median Percentage Predicted within 20% of Actual and Mean Absolute Error (MAE) in the IWPC, ULLA,
and Merged cohorts.

IWPC (n = 5,049) ULLA (n = 1,734) Merged (n = 7,030)

Model Within 20%a MAE
(95%CI)a

Within 20%a MAE
(95%CI)a

Within 20%a MAE
(95%CI)a

IWPCb 45.84 8.36 (7.89–8.85) 47.88 8.12 (7.44–8.82) 46.66 8.24 (7.89–8.58)
IWPCVb 45.87 8.41 (7.91–8.87) 47.02 8.20 (7.52–8.90) 46.61 8.24 (7.90–8.59)
IWPC SVRb 45.81 8.43 (7.93–8.90) 46.54 8.25 (7.55–8.94) 46.80 8.21 (7.86–8.56)
IWPC MARSb 45.575 8.44 (7.95–8.91) 47.50 8.17 (7.49–8.88) 46.56 8.27 (7.92–8.61)
IWPC BARTb 45.45 8.45 (7.95–8.93) 47.31 8.15 (7.46–8.84) 46.28 8.25 (7.90–8.60)
NLMc 47.43 8.25 (7.77–8.74) 47.79 8.11 (7.45–8.79) 47.78 8.13 (7.78–8.47)
SVRc 47.33 8.29 (7.8–8.785) 47.41 8.22 (7.52–8.93) 47.61 8.11 (7.77–8.46)
MARSc 46.70 8.33 (7.85–8.81) 47.31 8.20 (7.52–8.88) 47.18 8.18 (7.84–8.53)
BARTc 46.90 8.31 (7.84–8.79) 46.92 8.16 (7.47–8.87) 47.46 8.14 (7.79–8.48)

IWPC indicates International Warfarin Pharmacogenetics Consortium cohort, ULLA, US Latino and Latin American cohort, Merged, ULLA plus IWPC, CI, Confidence Interval, IWPCV,
IWPC variables, IWPCMARS, IWPC variables in a Multivariate Adaptive Regression Splines, IWPC SVR, IWPC variables in a Support Vector Regression, IWPC BART, IWPC variables in a
Bayesian Additive Regression Trees, NLM, Novel Linear Model.
aEstimates of mean absolute error (MAE) and the percentage of individuals predicted within 20% of their actual dose for each model were based on 100 replicates of resampling
testing data.
bModels feature the variables age, height, weight, CYP2C9 diplotype, VKORC1 genotype, race, amiodarone use, and enzyme inducer use.
cModels feature the same variables as b in addition to warfarin indication, ethnicity, statin use, aspirin use, history of diabetes.

FIGURE 2 | Comparison of Warfarin Dose Prediction Algorithms in the ULLA and Merged cohorts. Proportion of patients predicted within 20% of their actual
dose is plotted in the (A) US Latinos and Latin Americans (ULLA) cohort and (B)Merged cohort containing both ULLA and IWPC cohorts. The boxplot visualizes five
summary statistics (the median, 25 and 75% quartiles and two whiskers at 1.5* Interquartile Range). The points indicate the proportion of patients predicted within
20% at each of the 100 rounds of resampling. Models feature IWPC variables or IWPC variables in addition to new predictors. IWPC indicates International
Warfarin Pharmacogenetics Consortium model, Merged, IWPC cohort plus ULLA cohort, IWPCV, IWPC variables, IWPC MARS, IWPC variables in a Multivariate
Adaptive Regression Splines, IWPC SVR, IWPC variables in a Support Vector Regression, IWPC BART, IWPC variables in a Bayesian Additive Regression Trees,
NLM, Novel Linear Model. From left to right, the first five models, IWPC, IWPCV, IWPC_SVR, IWPC_MARS, and IWPC_BART feature the clinical variables age,
height, weight, race, enzyme inducer user, amiodarone use and the genetic variables CYP2C9 Diplotype and VKORC1-1639G>A Genotype, the next four models,
NLM, SVR, MARS and BART feature the additional variables gender, ethnicity, statin use, aspirin use, history of diabetes, warfarin indication, the last model features
only the clinical variables from the first set. IWPC indicates International Warfarin Pharmacogenetics Consortium model, IWPCV, IWPC variables, IWPC MARS,
IWPC variables in a Multivariate Adaptive Regression Splines, IWPC SVR, IWPC variables in a Support Vector Regression, IWPC BART, IWPC variables in a
Bayesian Additive Regression Trees, NLM, Novel Linear Model, Clinical, the IWPC Clinical model.
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FIGURE 3 | Subgroup Comparisons of Warfarin Dose Prediction Algorithms in the ULLA cohort. Proportion of patients predicted within 20% of their actual dose in
the US Latinos and Latin Americans (ULLA) cohort by (A) actual-dose group, (B) race group, and (C) country of enrollment. The boxplot visualizes five summary statistics
(the median, 25 and 75% quartiles and two whiskers at 1.5* Interquartile Range). The points indicate the proportion of patients predicted within 20% at each of the 100
rounds of resampling. The horizontal line indicates themedian percentage predicted within 20%across all participants. From left to right, the first fivemodels, IWPC,
IWPCV, IWPC_SVR, IWPC_MARS, and IWPC_BART feature the clinical variables age, height, weight, race, enzyme inducer user, amiodarone use and the genetic
variables CYP2C9 Diplotype and VKORC1-1639G>A Genotype, the next four models, NLM, SVR, MARS and BART feature the additional variables gender, ethnicity,
statin use, aspirin use, history of diabetes, warfarin indication, the last model features only the clinical variables from the first set. IWPC indicates International Warfarin
Pharmacogenetics Consortiummodel, IWPCV, IWPC variables, IWPCMARS, IWPC variables in a Multivariate Adaptive Regression Splines, IWPC SVR, IWPC variables
in a Support Vector Regression, IWPC BART, IWPC variables in a Bayesian Additive Regression Trees, NLM, Novel Linear Model, Clinical, the IWPC Clinical model.
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complete case analysis (Supplementary Results and
Supplementary Tables S7, S8).

Comparison of Predictive Algorithms by Actual-Dose
Groups
We assessed performance in the ULLA cohort by actual-dose
groups using the nine previously tested models. In the high dose
group (weekly warfarin dose >49 mg), both BARTmodels, BART
and IWPC_BART, outperformed IWPC (p < 1.3 × 10−4,
Figure 3A and Supplementary Tables S9, S10), while in the
low dose group (≤21 mg/week), the IWPC model outperformed
all other models (p < 1.5 × 10−15). In the intermediate group, all
models perform similarly and systematically better than in other
dose-groups.

Comparison of Predictive Algorithms by Race
We assessed performance in the ULLA cohort by self-reported
race group using the nine previously tested models alongside the
IWPC clinical model, which excludes pharmacogenetic
variants(International Warfarin Pharmacogenetics Consortium
et al., 2009). In all three race groups, all models outperformed the
clinical algorithm by at least 5% (all p < 0.001; Figure 3B, Table 3,
and Supplementary Table S11). Apart from the clinical model,
all models performed similarly in ULLA White and Black race
groups. The NLM model outperformed IWPC in the Mixed or
Missing race group (p � 3.64 × 10−4, Supplementary Table S11).
The overall mean percentage of patients predicted within 20% of
actual dose was highest in the White ULLA race group (49.1%)
compared with the Mixed or Missing ULLA race group (45.4%)
and the Black ULLA race group (40.0%).

Comparison of Predictive Algorithms by Country of
Enrollment
We assessed performance in the ULLA cohort by country/
territory of enrollment using the nine previously tested models

alongside the IWPC clinical model, which excludes
pharmacogenetic variants (International Warfarin
Pharmacogenetics Consortium et al., 2009). In all four
national groups, all models outperformed the clinical
algorithm by at least 5%, in some cases up to 15% (all p <
0.001; Figure 3C and Supplementary Tables S11, S12). The
overall mean percentage predicted within 20% of actual dose was
highest in the Colombian cohort (51.9%) compared with the
continental United States (48.5%), Puerto Rico (47.4%), and
Brazil (46.0%).

Assessment of Linear Models in the Merged
Cohort
Parameter estimates, standard errors, and R2 values were similar
across IWPC, IWPCV, and NLM models (Table 4). For the
IWPCV and NLM models that included ULLA patients in their
training datasets, we observed similar parameter estimates for
pharmacogenetic variable effects relative to the IWPC model. For
example, the estimates for the CYP2C9 *1/*2 diplotype ranged
from −0.52 ± 0.04 in IWPC to −0.41 ± 0.04 (IWPCV) and to
−0.42 ± 0.04 (NLM). In all instances, differences in betas were not
outside the confidence intervals of each model. Among the
additional variables not contained in the IWPC model, valve
replacement indication (β̂ � 0.34 ± 0.04, p � 7.67 × 10−16), deep
vein thrombosis indication (β̂ � 0.24 ± 0.05, p � 1.50 × 10−7),
history of diabetes (β̂ � 0.18 ± 0.04, p � 0.001), smoking status (β̂
� 0.27 ± 0.04, p � 3.28 × 10−5), gender (β̂ � 0.11 ± 0.03, p �
0.0007), unknown ethnicity (β̂ � −0.18 ± 0.05, p � 0.0001), and
statin use (β̂ � −0.1 ± 0.04, p � 0.007) were associated with
warfarin stable dose in the NLM. Hispanic/Latino ethnicity was
not significantly associated with warfarin dose (β̂ � −0.07 ± 0.04,
p � 0.1). Partial R2 values were consistent for all variables that
were included in all three models. Among the additional variables
not contained in the IWPC model, we observed that warfarin

TABLE 3 | Model comparisons by race data in the ULLA cohort (n � 1,734).

White (n = 1,153) Black (n = 292) Mixed or Missing (n = 289)

Model Within 20%a MAE
(95%CI)a

Within 20%a MAE
(95%CI)a

Within 20%a MAE
(95%CI)a

IWPCb 50.26 7.86 (7.05–8.68) 41.08 8.89 (7.36–10.42) 45.85 8.55 (6.52–10.57)
IWPCVb 49.09 7.93 (7.1–8.76) 41.19 8.86 (7.4–10.32) 46.11 8.60 (6.56–10.64)
IWPC SVRb 48.78 7.93 (7.09–8.76) 39.73 9.07 (7.59–10.55) 45.19 8.65 (6.60–10.69)
IWPC MARSb 49.64 7.88 (7.05–8.71) 40.48 8.99 (7.52–10.46) 45.54 8.60 (6.56–10.64)
IWPC BARTb 49.62 7.80 (6.99–8.62) 39.04 9.10 (7.60–10.60) 45.60 8.67 (6.57–10.77)
NLMc 49.21 7.83 (7.01–8.65) 41.56 8.89 (7.43–10.35) 47.50 8.49 (6.41–10.57)
SVRc 49.08 7.92 (7.09–8.75) 41.37 9.07 (7.62–10.52) 46.66 8.55 (6.47–10.63)
MARSc 49.48 7.87 (7.04–8.71) 40.51 8.97 (7.50–10.44) 45.37 8.66 (6.62–10.70)
BARTc 49.05 7.81 (7.00–8.62) 39.30 9.15 (7.67–10.63) 46.12 8.67 (6.54–10.79)
CLINICALd 39.30 9.74 (8.79–10.7) 33.33 10.00 (8.47–11.52) 35.77 10.39 (8.19–12.6)

ULLA indicates US Latino and Latin American warfarin users cohort; CI, Confidence Interval; IWPC, International Warfarin Pharmacogenetics Consortiummodel; IWPCV, IWPC variables;
IWPC MARS, IWPC variables in a Multivariate Adaptive Regression Splines; IWPC SVR, IWPC variables in a Support Vector Regression; IWPC BART, IWPC variables in a Bayesian
Additive Regression Trees; NLM, Novel Linear Model.
aEstimates of mean absolute error (MAE) and the percentage of individuals predicted within 20% of their actual dose for each model were based on 100 replicates of resampling 30%
testing data.
bModels feature the variables age, height, weight, race, amiodarone use, and enzyme inducer use and genetic variables CYP2C9 diplotype, VKORC1 genotype.
cModels feature the same variables as b in addition to warfarin indication, ethnicity, statin use, aspirin use, history of diabetes.
dModel features the clinical variables only from b.
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indication (R2 � 0.03) had the highest partial R2 value of the
additional variables.

DISCUSSION

This study combined a large US Latino and Latin American
cohort with IWPC data, constituting the largest available cohort
for modelling stable warfarin dose in Hispanic and Latino
patients. We found that IWPC models were accurate when
applied to both our ULLA population and a combined
cohort of ethnically diverse patients. We found limited
evidence that nonlinear models significantly improve
prediction of warfarin dose compared to linear models in any
cohort in this analysis. Inclusion of additional predictor

variables resulted in a small but significant improvement of
prediction of warfarin dose relative to the published IWPC
model. Specifically, the inclusion of warfarin indication,
smoking status, diabetes, statin use, and gender informed
warfarin dose prediction above that of the IWPC and
IWPCV models. These results suggest that several important
variables are not currently being captured by commonly used
warfarin dose prediction algorithms. In care settings where
warfarin dose algorithms are implemented, these data,
which are routinely collected in electronic health record
systems and in clinical assessments of warfarin users, should
be accurate and readily available for improvement of
algorithm accuracy.

In our study, nonlinear models did not out-perform linear
regression models in our Latino/Latin American cohort, an

TABLE 4 | Partial R2 values, parameter estimates with standard errors, and p-values of the 50th replicate of models trained in the Merged cohort (n � 7,030).

IWPC IWPCV NLM

Model
Variable

R2 β̂ ± SE pa R2 β̂ ± SE pa R2 β̂ ± SE pa

Intercept - 5.6 ± 0.27 1.11 × 10−93 - 5.02 ± 0.27 2.87 × 10−76 - 4.12 ± 0.33 4.92 × 10−35

Age 0.12 −0.26 ± 0.01 8.82 × 10−151 0.12 −0.24 ± 0.01 3.24 × 10−133 0.09 −0.21 ± 0.01 6.65 × 10−88

Height 0.02 0.01 ± 0 1.73 × 10−07 0.02 0.01 ± 0 5.17 × 10−12 0.02 0.01 ± 0 1.42 × 10−14

Weight 0.04 0.01 ± 0 1.14 × 10−41 0.04 0.01 ± 0 3.27 × 10−37 0.04 0.01 ± 0 1.71 × 10−38

CYP2C9b 0.11 - - 0.11 - - 0.11 - -
*1/*2 - −0.52 ± 0.04 4.75 × 10−33 - −0.41 ± 0.04 2.5 × 10−21 - −0.42 ± 0.04 9.25 × 10−23

*1/*3 - −0.94 ± 0.05 9.18 × 10−72 - −0.85 ± 0.05 2.02 × 10−59 - −0.86 ± 0.05 1.16 × 10−62

*2/*2 - −1.06 ± 0.14 1.49 × 10−13 - −0.97 ± 0.14 1.53 × 10−11 - −0.96 ± 0.14 1.22 × 10−11

*2/*3 - −1.92 ± 0.13 1.63 × 10−49 - −1.54 ± 0.13 9.94 × 10−33 - −1.56 ± 0.13 2.76 × 10−34

*3/*3 - −2.33 ± 0.29 2.73 × 10−15 - -2.24 ± 0.29 3.46 × 10−14 - -2.24 ± 0.29 1.24 × 10−14

Missing - −0.22 ± 0.1 0.0293 - −0.2 ± 0.1 0.047 - −0.23 ± 0.1 0.0214
VKORC1c 0.23 - - 0.23 - - 0.23 - -
A/G −0.87 ± 0.03 1.77 × 10−139 - −0.8 ± 0.03 1.2 × 10−119 - −0.79 ± 0.03 2.25 × 10−121

A/A −1.7 ± 0.04 2.03 × 10−279 - −1.62 ± 0.04 2.34 × 10−256 - −1.61 ± 0.04 3.87 × 10−260

Missing −0.49 ± 0.12 2.7 × 10−05 - −0.34 ± 0.12 0.00299 - −0.38 ± 0.11 0.00103
Race 0.01 - - 0.01 - - 0.02 - -
Asian −0.11 ± 0.05 0.0231 - −0.1 ± 0.05 0.0423 - −0.16 ± 0.05 0.00263
Black or African American −0.28 ± 0.05 1.75 × 10−08 - −0.16 ± 0.05 0.000908 - −0.21 ± 0.05 2.51 × 10−5

Mixed or Missingd −0.1 ± 0.05 0.0457 - −0.07 ± 0.05 0.152 - 0.02 ± 0.06 0.71
Enzyme Inducer Use 0.02 1.18 ± 0.13 8.37 × 10−21 0.02 0.85 ± 0.13 1.83 × 10−11 0.02 0.78 ± 0.12 2.99 × 10−10

Amiodarone Use 0.04 −0.55 ± 0.04 2.16 × 10−37 0.04 −0.54 ± 0.04 1.42 × 10−36 0.03 −0.45 ± 0.05 2.28 × 10−21

Ethnicity - - - - - - 0.01 - -
Hispanic/Latino - - - - - - - −0.07 ± 0.04 0.117
Unknown - - - - - - - −0.18 ± 0.05 0.000133
Gender (female) - - - - - - 0.01 0.11 ± 0.03 0.000701
Statin Use - - - - - - 0.01 −0.1 ± 0.04 0.00794
Aspirin Use - - - - - - 0.01 −0.07 ± 0.04 0.117
Indication - - - - - - 0.03 - -
DVT/PE - - - - - - 0.24 ± 0.05 1.5 × 10−7

TIA - - - - - - −0.03 ± 0.08 0.689
Valve - - - - - - 0.34 ± 0.04 7.67 × 10−16

Other - - - - - - -0.01 ± 0.04 0.873
Diabetes - - - - - - 0.01 0.18 ± 0.04 3.28 × 10−5

Smoking status - - - - - - 0.01 0.27 ± 0.05 4.24 × 10−7

Total R2 47.03 47.03 48.55

IWPC indicates International Warfarin Pharmacogenetics Consortium model; IWPCV, the same variables as IWPC in a new model; NLM, Novel Linear Model including the additional
predictors: statin use, aspirin use, warfarin indication, ethnicity, history of diabetes; SE, Standard Error; DVT, Deep Vein Thrombosis; PE, Pulmonary Embolism; TIA, Transient Attack; AFIB,
Atrial Fibrillation
ap-values determined by the lm function in R.
bCYP2C9 Diplotypes *5, *6, *13, *14 collapsed into *1/*3 and *11 to *1/*2.
cVKORC1 1639 G>A (rs9923231) rs2359612, rs9934438, rs8050894 were used as proxies where rs9923231 was missing.
dNative American race was collapsed into “Mixed or Missing”.
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observation that is inconsistent with some previous literature in
other populations. One study used the IWPC cohort to model
warfarin dose using nonlinear models, finding increased
prediction accuracy with nonlinear models in under 400
Italian warfarin users (Liu et al., 2015). Another study
investigated machine learning for predicting warfarin dose in a
small Caribbean Hispanic population with similar results (Roche-
Lima et al., 2020). However, neither study compared new models
to the IWPC model. Another study observed improved warfarin
dose prediction over IWPC with a nonlinear model using seven
additional variables as used in our analysis, but no comparisons
were made between linear and nonlinear models in the same
cohort(Grossi et al., 2014). While some previous literature
suggests nonlinear models may outperform multiple linear
regression methods when used to predict warfarin dose, our
observations suggest that linear models perform similarly to
nonlinear models in diverse populations including a high
number of ULLA participants.

Our results also demonstrate the robustness of the IWPC
model in a diverse patient population and in ULLA populations.
Overall, these results suggest the validity of utilizing IWPC
algorithms in patients with Latino/Latin American ethnicity
consistent with CPIC guideline recommendations (Johnson
et al., 2017). Consistent with this observation, Latino/Latin
American ethnicity was not associated with stable warfarin
dose in our novel linear model. The median weekly dose was
higher in the ULLA cohort, which may have been due to
differential allele frequencies in important pharmacogenes
(International Warfarin Pharmacogenetics Consortium et al.,
2009). The VKORC1-1639 A allele frequency was 51.4% in
the IWPC cohort and just 31.3% in the ULLA, and the
percentage of patients carrying a CYP2C9*2 or *3 variant was
lower in ULLA (20.4%) than IWPC (26.4%). These observations
are consistent with previous literature reporting frequency of
these variants in Hispanic and Latino populations (Kaye et al.,
2017).

Subgroup analysis of actual-dose groups in our ULLA cohort
showed a similar story as the overall results: IWPC performs as
well as newly developed and trained models. In the low dose
group, there was a stark decline in model accuracy as compared to
the IWPC model. This result suggests that initial estimation of
dose-groups may facilitate model choice for dose prediction.
Latino individuals requiring low doses may benefit the most
from dose prediction with the IWPC model.

In our ULLA cohort, the IWPC model performed as well
numerous models trained in this cohort. This result may be due to
a high rate of European admixture in our ULLA cohort, which we
were not able to evaluate since sufficient genome-wide data was
not available on all ULLA participants. In subgroup analysis of
country/territory of enrollment, the Colombian cohort showed a
marked advantage in prediction. This improved performance
could be due to a larger proportion of European ancestry in this
cohort relative to, for instance, our Brazilian cohort which had a
higher proportion of self-reported Black participants (Wang
et al., 2008; Salzano and Sans, 2014). It is also probable that
more Latin American participants are included in the publicly
available IWPC dataset than are indicated by the Hispanic/Latino

ethnicity variable. Multiple data contributors in Latin America
were listed in this effort, but only 1 percent of patients were
considered Hispanic/Latino and this small number of
participants were from multiple sites (International Warfarin
Pharmacogenetics Consortium et al., 2009). Our observation
that all models had lower accuracy in ULLA participants who
self-reported Black or African American race reinforces previous
work indicating that IWPC models perform poorly in individuals
with African ancestry, in part due to the disregard for CYP2C9*5,
*6, *8, and *11 alleles(Kimmel et al., 2013; Drozda et al., 2015).

Current CPIC guidelines for pharmacogenetic-guided
warfarin dosing recommend different approaches for patients
reporting African ancestry(Johnson et al., 2017). This is largely
based on observations from the Clarification of Optimal
Anticoagulation through Genetics (COAG) trial, which limited
CYP2C9 genotyping to the *2 and *3 alleles and showed that Black
patients spent less time in the therapeutic range in the
pharmacogenetics-guided group than in the clinically-guided
group(Kimmel et al., 2013; French et al., 2016). Subsequent
analysis showed that not accounting for CYP2C9 variants
common in people with African ancestry lead to significant
over-dosing in Black patients. While our analyses suggest that
increasing African ancestry leads to poor algorithm performance,
our results also suggests that the IWPC clinical model
underperforms for ULLA patients with self-reported black
race. ULLA patients who report black race might be at risk of
overdosing by disregarding genetic information in warfarin
dosing, regardless of the presence of CYP variants of high
predictive value in individuals of African ancestry. This
observation may be due to a lower proportion of African
ancestry in Black ULLA participants relative to African
Americans from the COAG trial. Our observations in specific
race and country/territory groups should be interpreted with
caution as sample sizes are small after implementing a 70/
30 training-testing split.

There are several limitations that are worthy of mention in this
study. We were limited by the use of retrospective data to the
variables that were included in the publicly available IWPC
dataset. Since the publication of IWPC, a number of studies
have reported additional warfarin dose predictor variables that
might be included in future studies (Asiimwe et al., 2020; Roche-
Lima et al., 2020). While we chose to focus on IWPC, other
algorithms such as the Gage et al. algorithm might also have been
tested. However, the dataset used to derive the Gage et al.
algorithm was included in the IWPC dataset and both IWPC
and Gage et al. algorithms have been shown to perform similarly
across populations (Shin and Cao, 2011). Pharmacogenetic
information used in this analysis was also limited to
CYP2C9*2,*3 and VKORC1-1639G>A, which are variants
identified in studies of primarily White populations. CYP2C9
*5,*6, *8, and *11 are important in the prediction of warfarin dose
in Black or African patients and additional variants in CALU, the
CYP2C cluster (e.g. rs12777823), and GGCX have been shown to
affect warfarin dose (Wadelius et al., 2005; Voora et al., 2010).
Furthermore, studies have identified the NQ O 1*2 (p. P187S;
rs1800566) variant as a contributor to warfarin dose variation in
Hispanic and Latino patients, and this genotype information was
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not available in the IWPC dataset (Bress et al., 2012; El Rouby
et al., 2020). Data from a pharmacogenomic or genome-wide SNP
platform would likely provide additional information useful in
warfarin dose prediction, including additional CYP variants that
are not biased by low MAFs in the discovery population and
admixture proportions, both of which have been identified as
important warfarin dose prediction variables(Hernandez et al.,
2020). Apart from genetic variation, other potential sources of
warfarin dose variability, including medication adherence data
and environmental exposures such as vitamin K intake, were not
available for this analysis.

CONCLUSION

In this systematic comparison of nine models, classic linear
regression models remained advantageous compared to
nonlinear models with respect to prediction accuracy of
therapeutic warfarin dose in a large diverse cohort as well as a
Hispanic/Latino cohort alone. Our results suggest that the
inclusion of additional predictor variables, beyond those used
in the IWPCmodel but often collected during warfarin treatment,
may improve accuracy of warfarin stable dose algorithms. Our
results also suggest that the IWPC model is accurate for stable
dose prediction in populations with Hispanic/Latino ethnicity,
with the possible exception of Afro-Latino warfarin users. This
result warrants further exploration in additional Hispanic/Latino
cohorts with careful consideration for race. Furthermore, our
results indicate that the IWPC clinical model performs poorly
relative to all other algorithms tested for US Latino and Latin
American patients, regardless of whether they report African
ancestry.
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