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The protein Klotho can significantly delay aging, so it has attracted widespread attention.
Abnormal downregulation of Klotho has been detected in several aging-related diseases,
such as Alzheimer’s disease, kidney injury, cancer, chronic obstructive pulmonary disease
(COPD), vascular disease, muscular dystrophy and diabetes. Conversely, many
exogenous and endogenous factors, several drugs, lifestyle changes and genetic
manipulations were reported to exert therapeutic effects through increasing Klotho
expression. In recent years, Klotho has been identified as a potential autophagy
regulator. How Klotho may contribute to reversing the effects of aging and disease
became clearer when it was linked to autophagy, the process in which eukaryotic cells
clear away dysfunctional proteins and damaged organelles: the abovementioned diseases
involve abnormal autophagy. Interestingly, growing evidence indicates that Klotho plays a
dual role as inducer or inhibitor of autophagy in different physiological or pathological
conditions through its influence on IGF-1/PI3K/Akt/mTOR signaling pathway, Beclin 1
expression and activity, as well as aldosterone level, which can help restore autophagy to
beneficial levels. The present review examines the role of Klotho in regulating autophagy in
Alzheimer’s disease, kidney injury, cancer, COPD, vascular disease, muscular dystrophy
and diabetes. Targeting Klotho may provide a new perspective for preventing and treating
aging-related diseases.
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INTRODUCTION

In 1997, Kuro-o and colleagues discovered a gene whose deletion shortened the mouse lifespan to
8–9 weeks and led to multiple complications of premature aging, such as gonadal dysplasia, skin
atrophy, osteoporosis, atherosclerosis, hypoglycemia, and emphysema (Kuro-o et al., 1997).
Overexpressing the gene in mice significantly extended their lifespan (Kurosu et al., 2005). The
researchers named the gene and its encoded protein “Klotho”, and some later studies referred to it as
α-Klotho, after the isolation of other Klotho proteins, including β-Klotho (Ito et al., 2000), KLPH (Ito
et al., 2002) and Klotho-related protein (Klrp) (Hayashi and Ito 2016). α-Klotho and β-Klotho have
high homology, but their distribution and functions are very different. α-Klotho is expressed
abundantly in choroid plexus epithelial cells of the brain and distal convoluted tubules of the kidney,
and at low levels in the pituitary, skeletal muscle, pancreas, aorta, testis, ovary, placenta and thyroid
gland (Kuro-o et al., 1997; Li et al., 2004; Lim et al., 2015). It participates in Ca2+ and phosphate
homeostasis, inhibits oxidative damage and inflammation, promotes myelination and long-term
enhancement in neurons, and protects stem cells (Liu et al., 2007; Martin et al., 2012; Chen et al.,
2013; Xu and Sun 2015; Zhou et al., 2017; Zhou et al., 2018). β-Klotho, in contrast, is expressed
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mainly in the yolk sac, gut, brown and white adipose tissues, liver
and pancreas. It participates in metabolic regulation, glucose
uptake, bile acid synthesis and fatty acid metabolism (Ito
et al., 2000). Klrp was identified as a cytosolic neutral beta-
glucosylceramidase, and it plays a role in glycosphingolipid
metabolism and function (Hayashi and Ito 2016). KLPH is a
novel mammalian family 1 glycosidase-like protein, expressed
predominantly in the kidney and skin (Ito et al., 2002). The
present review focuses on α-Klotho, hereafter referred to simply
as Klotho.

As an anti-aging protein, Klotho expression decreases with age,
and its underexpression has been reported in many aging-related
diseases such as Alzheimer’s disease, kidney disease, chronic
obstructive pulmonary disease (COPD), certain cancers,
cardiovascular and cerebrovascular diseases, as well as diabetes
and its complications (Duce et al., 2008; Kuro-o 2012; Semba
et al., 2014; Akasaka-Manya et al., 2016; Zhou et al., 2018; Lim
et al., 2019). Progression of these diseases and poor outcomes of
patients are associated with downregulation of Klotho expression.
Conversely, its overexpression can exert therapeutic effects, such as
mitigating the deposition of amyloid-β and other pathological
changes related to Alzheimer’s disease, delaying progression
from acute kidney injury to chronic kidney disease, as well as
inhibiting tumor proliferation and drug resistance. Interestingly,
recent work has shown a correlation betweenKlotho expression and
changes in autophagy activity in some diseases (Table 1). Studies
have linked Klotho’s protective effects to regulation of autophagy:
higher expression is associated with improvement of abnormal
autophagy, while lower expression is associated with aggravation of
abnormal autophagy (Table 2).

Autophagy, a programmed process of self-digestion that
degrades misfolded and aging proteins, damaged organelles, and
other abnormal cell components, is crucial for maintaining cell
homeostasis. However, abnormal autophagy, which can be
excessive or insufficient, contributes to various diseases,
especially those related to aging, including cancer (Akkoc
and Gozuacik 2018), cardiovascular disease (Shirakabe
et al., 2016), COPD (Racanelli et al., 2018) and
neurodegeneration (Yang et al., 2011; Wolfe et al., 2013).

The present review summarizes the state of knowledge about
the potential role of Klotho in regulating autophagy in
Alzheimer’s disease, kidney injury, cancer, COPD, vascular

disease, muscular dystrophy and diabetes. These
considerations may lead to strategies for targeting Klotho in
aging-related diseases.

Klotho and Regulation of Its Expression
The Klotho gene is about 50 kb long, and two mRNA transcripts
can arise through alternative splicing: one generates the type I
transmembrane protein (130 kDa), the other is assumed to
generate a secreted protein (70 kDa) (Shiraki-Iida et al., 1998).
Although the concept of “secreted Klotho protein” was first
proposed in 1998, the existence of this protein remains
controversial based on current researches (Masso et al., 2015;
Mencke et al., 2017a; Jadhav et al., 2021; Li et al., 2021).
Transmembrane Klotho protein is expressed mainly in choroid
plexus epithelial cells of the brain and the distal convoluted
tubules of the kidney. The extracellular region of
transmembrane Klotho protein can be cleaved by α- and
β-secretases, and eventually finds its way into blood, urine and
cerebrospinal fluid (Chen et al., 2007; Bloch et al., 2009). This
cleaved Klotho protein is commonly known as the soluble Klotho.

Klotho expression is influenced by many physiological and
pathological conditions. Expression of Klotho in the brain,
kidney, heart sinoatrial node, liver and serum decrease
substantially with age in animals and humans (Nabeshima
2002; Xiao et al., 2004; Shih and Yen 2007; Duce et al., 2008;
Yamazaki et al., 2010; Semba et al., 2014; Akasaka-Manya et al.,
2016; Behringer et al., 2018; Zhou et al., 2018). In addition,
oxidative stress, inflammation, angiotensin II, aldosterone, and
albuminuria suppress Klotho expression (Kanbay et al., 2021).
The protein is also underexpressed in many diseases, including
Alzheimer’s disease (Kuang et al., 2017; Zeng et al., 2019), acute
and chronic kidney diseases (Koh et al., 2001; Zuo et al., 2011; Hu
et al., 2013; Kitagawa et al., 2013), COPD (Gao et al., 2015),
diabetes (Takenaka et al., 2019; Typiak and Piwkowska 2021),
some cancers (Xie et al., 2013a) and a variety of vascular
pathologies including arterial stiffness, atherosclerosis and
stroke (Lim et al., 2019; Memmos et al., 2019).

Interestingly, increasing or restoring expression of Klotho
slows down aging and mitigates the pathology of the
abovementioned diseases, making Klotho a potential
therapeutic target. Indeed, numerous strategies for
upregulating or restoring Klotho expression have been

TABLE 1 | Correlation between Klotho expression and autophagy activity in certain diseases, as reported in observational studies.

Diseases Klotho
expression

Changes in autophagy
indicators

Autophagy
activity

Alzheimer’s disease Zeng et al. (2019) ↓ LC3II/LC3I ↑, p62 ↑, autophagosomes ↑,
autolysosomes ↓

dysfunction

Ischemia-reperfusion induced acute kidney injury Shi et al. (2016); Chen
et al. (2017); Li et al. (2020)

↓ RFP-LC3 ↑, GFP-LC3 ↑, LC3II ↑, LC3II/LC3I ↑,
Beclin 1↑, p62 ↓

↑

Sepsis-induced acute kidney injury Chen et al. (2018a) ↓ LC3II/LC3I ↑, p62 ↓ ↑
Head and neck squamous cell carcinoma Zhu et al. (2019) ↑ LC3 ↑ ↑

↓ LC3 ↓ ↓
Drug-resistant lung cancer Chen et al. (2016) ↓ Beclin1 ↑, LC3II ↑ ↑
Chronic obstructive pulmonary disease Monick et al. (2010) ↓ LC3II/LC3I ↑, p62 ↑, autophagosomes ↑ dysfuction
Type 2 diabetes mellitus Lin and Sun (2015) ↓ LC3 ↓ ↓
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reported. Many exogenous and endogenous factors have been
shown to upregulate it, including ligustilide, oleanolic acid,
acetyl-11-keto-β-boswelic acid, alginate oligosaccharide,
baicalin, daidzein, curcumin, Necrostatin-1, ginsenoside-Rg1,
salvianolic acid A, ursolic acid, rhein, the circular RNA
“ITCH”, and vitamin D (Kuang et al., 2017; Long et al., 2018;
He et al., 2018; Liu et al., 2018; Pan et al., 2021; Zhang et al., 2020;
Zivanovic et al., 2019; Mansoor et al., 2018; Ning et al., 2018; Li
et al., 2018; Zhang S. et al., 2018; Gharibi et al., 2018; Zhang et al.,
2016). Several drugs also upregulate Klotho, such as infliximab
(Younis et al., 2021), pioglitazone (Maquigussa et al., 2018; Shen
et al., 2018), empagliflozin (Abbas et al., 2018), sulodexide (Liu
et al., 2017), and simvastatin (Adeli et al., 2017). Lifestyle changes
such as aerobic exercise (Ji et al., 2018) and intermittent fasting
(Dias et al., 2021), can also increase Klotho expression. Various
genetic approaches can be used to express the protein in tissues,

including CRISPR and recombinant adeno- and lentiviruses
(Chen X. et al., 2018; Masso et al., 2018; Zhao et al., 2020).

Autophagy
Recent studies have suggested that Klotho may regulate
autophagy in various tissues. This review focuses on Klotho’s
role in macroautophagy, which delivers degradation substrates to
lysosomes, forming an intermediate structure called the
autophagosome. Macroautophagy occurs in three steps: 1)
encapsulation of abnormal proteins and damaged organelles
into autophagosomes, 2) fusion of autophagosomes with
lysosomes to form autolysosomes, and 3) degradation of the
contents within autolysosomes (Parzych and Klionsky 2014).

Several autophagy proteins, such as LC3 and SQSTM1/p62,
are commonly used as markers to track the process. LC3 plays a
key role in autophagosome maturation. Precursor forms of LC3

TABLE 2 | Regulatory effects of Klotho on autophagy in various diseases, as reported in interventional studies that manipulating Klotho expression.

Organ
or
tissue

Disease or
disease models

Klotho
intervention

Intervention
strategy

Changes in
autophagy indicators

Autophagy
activity

Disease
outcome

Brain Alzheimer’s disease Zeng et al.
(2019)

↑ Overexpression LC3II/LC3I ↑, p62 ↓, autolysosome↑ ↑ good

Amyloid-β1-42 fibril-treated BV2
cells Zeng et al., 2019

↑ Overexpression and
Recombinant Klotho
protein

LC3II/LC3I ↑, p62 ↓ ↑ good

Kidney Basic state of Klotho mutant mice
and transgenic mice Shi et al.
(2016)

↓ Klotho gene mutant LC3II/LC3 ↓, p62 ↑ ↓ —

↑ Transgenic mice line LC3II/LC3I ↑, p62 ↓ ↑ —

Ischemia/reperfusion induced
acute kidney injury Shi et al. (2016);
Chen et al. (2017)

↓ Klotho gene mutant LC3II/LC3I ↓, p62 ↑, RFP-LC3 ↓,
autolysosome ↓, autophagosomes ↓

↓ poor

↑ Transgenic mouse line LC3II/LC3I ↑, p62 ↓, RFP-LC3 ↑, Beclin1/
Bcl2 complex ↓, autolysosome↑,
autophagosomes ↑

↑ good

↑ Decrease the methylation
of Klotho

Beclin1 ↑, LC3 ↑ ↑ good

Collagen I accumulation in
opossum kidney cell Shi et al.
(2016)

↑ Recombinant Klotho
protein

LC3II/LC3I ↑, p62 ↓ ↑ good

Cecal ligation and puncture-
induced acute kidney injury (Chen
et al., 2018b)

↑ Recombinant Klotho
protein

LC3II/LC3I unchanged, p62 unchanged unchanged —

LPS-treated HK-2 cells Chen et al.
(2018b)

↑ Recombinant Klotho
protein

LC3II/LC3I unchanged, p62 unchanged unchanged —

Tumor Hepatoma Shu et al. (2013) ↑ Overexpression LC3II ↑, LC3I ↑ ↑ good
Gastric cancer Xie et al. (2013b) ↑ DNA demethylating agent LC3II/LC3I ↑ ↑ good
Drug-resistant lung cancer cells
Chen et al. (2016)

↑ Overexpression Beclin1 ↓, LC3II ↓ ↓ good

Lung Cigarette smoke extract-treated
murine alveolar macrophage cell
line Li et al. (2017b)

↑ Recombinant Klotho
protein

LC3II/LC3I ↓ ↓ NR

↓ Klotho-siRNA LC3II/LC3I ↑ ↑ NR
Artery Hypertension (arterial stiffness)

Chen et al. (2015); Chen and Sun
(2019)

↓ Klotho gene mutant LC3II ↑, LC3II/LC3I ↑, Beclin 1 ↑, p62 ↓ ↑ poor

Basic state of mouse vascular
aortic smooth muscle cells Chen
and Sun (2019)

↑ Recombinant secreted
Klotho protein

LC3II/LC3I ↓, Beclin 1 ↓, p62 ↑ ↓ —

↓ Klotho-deficient medium LC3II ↑, Beclin 1↑, p62 ↓ ↑ —

Muscle Muscular dystrophy (masseter and
tongue) Iida et al. (2011)

↓ Klotho gene mutant LC3II/LC3I ↑, p62 ↓, Gabrap ↑ ↑ poor

Islet T2DM in db/db mice Lin and Sun
(2015)

↑ Overexpression LC3 ↑ ↑ good

NR, not reported.
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are specifically cleaved by ATG4 family proteins to form LC3-I,
which has an exposed carboxyl terminal glycine that is conjugated
to phosphatidylethanolamine to form LC3-II. LC3-II is bound
tightly to both the inner and outer surfaces of the
autophagosomal membrane, and it participates in
autophagosome formation (Kabeya et al., 2000). Thus, an
increase in the conversion of LC3-I to LC3-II is generally
considered to reflect activation of autophagy. However, an
accumulation of LC3-II can also occur when downstream
steps are blocked, reflecting ineffective autophagy. p62 is one
of the autophagy-specific substrates, so its level negatively
correlate with the activity of autophagy (Bjorkoy et al., 2005;
Pankiv et al., 2007).

The body regulates autophagy primarily through signaling via
type I phosphoinositide 3-kinase (PI3K) and Akt. Akt
phosphorylates mTOR, a serine/threonine protein kinase that
is highly conserved in eukaryotic cells, which in turn inhibits
autophagy (Jung et al., 2009; Jung et al., 2010). This signaling
pathway can be induced by IGF-1 (Troncoso et al., 2013).
Conversely, inhibition of PI3K/Akt signaling inhibits the
phosphorylation of mTOR, thereby enhancing autophagy
(Wang et al., 2015). Besides, autophagy can also be induced by
RAS/RAF/MEK/ERK signaling pathway (Zhang et al., 2017;
Sooro et al., 2018) and aldosterone (Yang et al., 2016; Luo
et al., 2017).

Klotho and Autophagy
Klotho and Autophagy in Alzheimer’s Disease
Autophagy is the main way for the central nervous system to
clear away abnormal proteins such as amyloid-β and damaged
organelles (Wolfe et al., 2013; Plaza-Zabala et al., 2017).
Autophagy is impaired in the brains of patients and animal
models with Alzheimer’s disease (Yang et al., 2011; Castellazzi
et al., 2019; Pomilio et al., 2020), and this defect is associated
with low Klotho expression and may be related to amyloid-β
deposition (Zeng et al., 2019). The APPswe/PS1dE9 transgenic
mouse (hereafter referred to as the “APP/PS1 mouse”)
harbors mutant mouse/human APP (Swedish K595N/
M596L) and PS1 genes (PS1-dE9) and is commonly used as
an animal model of Alzheimer’s disease. These mice show
abundant abnormal deposition of amyloid-β in the brain.
They also show lower Klotho expression and greater
autophagy in the brain than wild-type animals of the same
age (Zeng et al., 2019). The increased autophagy seems to be
ineffective, as reflected in the simultaneous increase in the
LC3-II/LC3-I ratio, the number of autophagosomes, and the
level of p62 (Zeng et al., 2019).

Upregulating Klotho can rescue “healthy” autophagy,
reflected in an increase in the LC3-II/LC3-I ratio and
number of autolysosomes with concomitant decrease in p62
levels (Zeng et al., 2019). These changes are associated with
milder Alzheimer’s neuropathology and less amyloid-β
deposition. These changes also involve inhibition of PI3K/
Akt/mTOR signaling (Zeng et al., 2019), suggesting that
Klotho restores normal autophagy in the central nervous
system by regulating PI3K/Akt/mTOR signaling, which helps
clear away amyloid-β.

A recombinant form of mouse Klotho protein containing the
ectodomain promotes phagocytosis and the subsequent
lysosomal degradation of amyloid-β1-42 fibrils (fAβ) in cultures
of BV2 mouse microglia (Zeng et al., 2019). Overexpression of
Klotho in fAβ-treated BV2 cells induces substantial autophagy, as
reflected in an elevated LC3-II/LC3-I ratio and reduced p62
levels, through a mechanism that may involve inhibition of
Akt/mTOR (Zeng et al., 2019).

The other important pathological change typical of
Alzheimer’s disease is intracellular neurofibrillary tangles
(NFTs), which are induced by hyperphosphorylation of the
tau protein (Gao et al., 2018). Hyperphosphosyrlated tau is
removed in part through autophagy (Xin et al., 2018; Bao
et al., 2020), and levels of this protein reduced by
overexpressing Klotho (Zeng et al., 2019).

Lipofuscin, an electron-dense substance that is thought to
consist of oxidized proteins and lipids, is deposited in senescent
cells and cannot be further degraded by lysosomes (Terman and
Brunk 1998; Double et al., 2008). The accumulation of lipofuscin
in the central nervous system is associated with neuronal loss,
glial proliferation and activation (Moreno-Garcia et al., 2018).
Macroautophagy may participate in the formation of lipofuscin
or may be responsible for the uptake of lipofuscin into lysosomes
(Hohn and Grune 2013). APP/PS1 mice show abnormal
accumulation of lipofuscin in the brain, which overexpression
of Klotho alleviates (Zeng et al., 2019).

Abnormal autophagy seems to be involved in the occurrence
and development of a variety of neuropathological changes
including deposition of amyloid-β, formation of NFTs and
abnormal accumulation of lipofuscin. Klotho expression seems
to mitigate these processes by restoring or increasing autophagy
activity. At the same time, Klotho overexpression may also
increase the clearance of amyloid-β by affecting the expression
of amyloid-β transporters including LRP1, P-gp, ABCA1 and
RAGE (Zhao et al., 2020). Therefore, more studies are needed to
explore how precisely Klotho may alleviate AD pathology.

Klotho and Autophagy in Kidney Injury
Klotho expression in the kidney decreases not only during aging
(Manya et al., 2010) but also in acute kidney injury (Panesso et al.,
2014) and chronic kidney disease (Hu et al., 2011). One study
showed that giving hydrogen-rich saline to a mouse model of
acute kidney injury upregulated Klotho expression and protected
the kidney from further damage (Chen et al., 2017). These
changes were associated with increases in LC3 and Beclin1,
implying an increase of autophagy in the kidneys, though that
study did not explore this possibility further (Chen et al., 2017).

Consistent with the idea that Klotho helps drive autophagy,
another study showed that autophagy can be induced by Klotho
at the baseline unperturbed state in the kidney of Tg-Kl
(transgenic mice expressing 150% the normal level of Klotho),
while inhibited by Klotho deficiency in the kidney of kl/+ (Klotho
gene mutant mice expressing 50% the normal level of Klotho)
(Shi et al., 2016). Further study showed that acute kidney injury in
mice activated autophagy in the kidneys, and that this activation
was greater in Tg-Kl (Shi et al., 2016). The greater activation of
autophagy induced by Klotho was associated with greater
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mitigation of ischemia/reperfusion-induced acute kidney injury,
and may delay progression from acute kidney injury to chronic
kidney disease through clearance of type I collagen (Shi et al.,
2016).

These findings in animals were corroborated and extended in
culture studies. Adding Klotho to the culture medium of a
proximal tubular cell line from opossum kidney increased the
LC3-II/LC3-I ratio and the number of autophagosomes while
reducing the p62 level, indicating higher baseline autophagic flux
(Shi et al., 2016). This Klotho-induced elevation of autophagy flux
was blunted by bafilomycin A1, an autophagy inhibitor that
inhibits the fusion of autophagosomes and lysosomes (Shi
et al., 2016). In addition, bafilomycin A1 and 3-methyladenine,
which inhibit the formation of autophagosomes, blunted the
protective effect of Klotho in hydrogen peroxide-induced
injury and reduced the accumulation of collagen I by reducing
autophagy activity (Shi et al., 2016).

These results suggest that insufficient Klotho expression can
lead to inadequate autophagy in the kidney, which Klotho
upregulation can improve to a certain extent. These effects
may involve Beclin 1-dependent renal protection by Klotho.
Beclin1, which is negatively regulated by binging to Bcl2, acts
as a central regulator of autophagy in mammalian cells (Qu et al.,
2003; Pattingre et al., 2005). Disruption of the Beclin 1/Bcl-2
autophagy regulatory complex promotes longevity in mice
(Fernandez et al., 2018). Tg-Kl mice showed a decrease in
Beclin 1/Bcl2 complex in the kidney (Li et al., 2020). A
recombinant form of mouse Klotho containing the
ectodomain also downregulated the Beclin 1/Bcl2 complex in
the kidney (Li et al., 2020). Surprisingly, low Beclin1 activity in
mice was associated with weaker ability of exogenous Klotho
protein or high Klotho expression to protect kidneys against
ischemia-reperfusion injury, suggesting that Beclin1 may help
mediate Klotho’s autophagy-dependent effects. (Li et al., 2020).
These effects of Klotho may also involve the IGF-1R/Akt/mTOR
signaling pathway, since siRNA-mediated knockdown of Klotho
significantly activated such signaling in HEK293T cells (Kuang
et al., 2017).

These findings suggest that Klotho protects kidneys from
disease in part by enhancing autophagy activity. However, not
all of the protective effects of Klotho in kidney involve regulation
of autophagy: one study showed that Klotho can mitigate sepsis-
induced acute kidney injury without affecting levels of autophagy
in the kidney. Therefore, more studies are needed to explore how
Klotho regulates autophagy as well as potentially other processes
in the kidney.

Klotho and Autophagy in Cancer
Abnormal autophagy has been detected in various types of
tumors, and the dysregulation of this process may promote
tumor occurrence and development, as well as the emergence
of drug resistance (Rebecca and Amaravadi 2016; Li L. et al., 2017;
Kimmelman and White 2017).

Studies in various types of cancer suggest that Klotho acts as a
tumor suppressor (Xie et al., 2013a). The abnormal autophagy in
tumors may be associated with Klotho underexpression, which
has been documented in hepatocellular carcinoma (Shu et al.,

2013), head and neck squamous cell carcinoma (HNSCC) (Zhu
et al., 2019), gastric cancer (Xie et al., 2013b), as well as lung
cancer (Chen et al., 2016). For example, in cultures of the human
hepatoma cell lines HepG2 and MHCC-97-H, restoration of
Klotho significantly inhibited their cell proliferation (Shu et al.,
2013). Such restoration also increased levels of LC3-II and LC3-I,
which was reversed by autophagy inhibitors (Shu et al., 2013). As
another example, Klotho levels correlate positively with levels of
LC3 in patients with HNSCC, and low Klotho expression may
predict worse prognosis in that disease (Zhu et al., 2019).

Klotho downregulation in cancer seems to be the result of
promoter methylation and histone modification (Pan et al., 2011;
Wang et al., 2011; Rubinek et al., 2012). There is an obvious
negative correlation between Klotho expression and its DNA
methylation in HNSCC, suggesting that Klotho DNA
methylation leads to silencing of its expression (Zhu et al.,
2019). High Klotho gene methylation is negatively associated
with LC3 expression, making it a potential biomarker for worse
prognosis in HNSCC (Zhu et al., 2019). Treating gastric cancer
cells with the demethylating reagent 5-Aza restored Klotho
expression, increasing the ratio of LC3-II/LC3-I, indicating
activation of autophagy (Xie et al., 2013b). These effects of 5-
Aza were partially reversed by the autophagy inhibitor 3-
methyladenine (Xie et al., 2013b).

Based on these studies, the link between Klotho upregulation
and activation of autophagy appears to depend on the
downregulation of the IGF-1R/PI3K/Akt/mTOR signaling
pathway (Xie et al., 2013b; Shu et al., 2013). However, the
downregulation of the ERK signaling pathway have also been
detected in Klotho-induced autophagy (Shu et al., 2013). This
effect is inconsistent with the later studies: autophagy can be
induced by RAS/RAF/MEK/ERK signaling pathway (Zhang et al.,
2017; Sooro et al., 2018). The regulation of Klotho on ERK
signaling pathway does not seem to affect the results of Klotho
on autophagy, suggesting that multiple signaling pathways exist,
and which signaling pathway is predominate may depend on the
favorable outcome. Therefore, the molecular mechanisms of
Klotho-induced autophagy in cancer need to be further
researched.

By regulating autophagy, Klotho may also influence the
emergence of cancer drug resistance (Chen et al., 2016). In
lung cancer, drug-resistant tumor cells express significantly
less Klotho than drug-sensitive lines and show greater
autophagy, reflected in upregulation of Beclin1 and LC3-II
(Chen et al., 2016). Overexpressing Klotho in drug-resistant
cells inhibited autophagy to a similar extent as 3-
methyladenine, partially restoring drug sensitivity (Chen et al.,
2016).

These findings suggest that restoration of Klotho expresssion
suppresses tumor growth by increasing autophagy activity. On
the other hand, the ability of Klotho to restore drug sensitivity
appears to involve downregulation of autophagy activity in some
cases, highlighting the dual role of Klotho in regulating autophagy
in tumor cells. Autophagy is a “double-edged sword” for tumors,
so depending on the circumstances, stimulating or inhibiting it
may be an effective therapy. The choice of whether to stimulate or
inhibit autophagy is important: some autophagy modulators,
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such as chloroquine, can trigger serious autophagy-related side
effects when used as anticancer drugs (Kimura et al., 2013). Thus,
the dual role of Klotho in regulating autophagy, which can restore
autophagy to beneficial levels, makes it a highly attractive target in
anti-tumor therapy, not to mention that Klotho can also exert
inhibitory effects on tumors through other biological activity,
such as inhibition of Wnt and TGF-β1 signaling pathways
(Rubinek and Wolf 2016).

Klotho and Autophagy in Chronic Obstructive
Pulmonary Disease
COPD is one of the most frequent causes of morbidity and
mortality in the world, and one of the major risk factors for the
disease is exposure to cigarette smoke (Eisner et al., 2010; van
Koeverden et al., 2015). Such exposure has been linked to Klotho
underexpression, which has been reported in lung macrophages
of smokers with or without COPD, in mouse alveolar
macrophages, as well as in bronchial epithelial cells from
individuals with COPD (Li et al., 2015; Krick et al., 2018).
Klotho overexpression decreased sensitivity to cigarette smoke-
induced cell death in vitro (Blake et al., 2015). At the same time,
such exposure to cigarette smoke appears to activate autophagy
(Li YJ. et al., 2017). For example, exposing primary cultures of
human bronchial epithelial cells to cigarette smoke extract
transiently activated autophagy, leading to cell senescence
(Fujii et al., 2012). Exposing mouse alveolar macrophages to
cigarette smoke extract significantly increased the LC3-II/LC3-I
ratio (Monick et al., 2010). The resulting autophagy appears to be
abnormal: alveolar macrophages from smokers show
autophagosome and p62 accumulation due to blocked fusion
of autophagosomes and lysosomes, as well as decreased clearance
of long lived proteins (Monick et al., 2010). These studies link the
pathogenesis of COPD to abnormal autophagy due to
downregulation of Klotho.

Consistent with this idea, pretreating mouse alveolar
macrophages with recombinant Klotho blocked the exposure-
induced increase in LC3-II/LC3-I ratio, while pretreating them
with siRNA to knock down Klotho exacerbated the exposure-
induced increase (Li YJ. et al., 2017). Researchers attributed these
effects to inhibition of IGF-1 and its downstream Akt and ERK
phosphorylation (Li YJ. et al., 2017), which was inconsistent with
other studies: autophagy can be negatively regulated by IGF-1
signaling pathway (Jia et al., 2006; Bitto et al., 2010; Troncoso
et al., 2012). The possible reason for this is that other molecular
mechanisms exist. Besides, those studies measured only LC3-II/
LC3-I ratio, which is not enough to assess autophagy activity.
These studies identify Klotho as a therapeutic target for inhibiting
abnormal activation of autophagy in lung disease. However, more
studies are needed to verify the effects of Klotho by measuring
autophagy flux and to explore the underlying molecular
mechanisms.

Despite the better clinical condition associated with higher
Klotho expression, plasma levels of the protein may not be useful
as a biomarker for stable COPD because the levels do not vary
during rehabilitation, nor do they correlate with clinical
parameters (Pako et al., 2017). Thus, future studies may wish
to focus more on the role of Klotho in lung tissue, such as lung

macrophages, alveolar macrophages and bronchial
epithelial cells.

Klotho and Autophagy in Vascular Disease
Vascular aging and dysfunction are key characteristics of
cardiovascular and cerebrovascular diseases such as hypertension,
atherosclerosis and stroke (Gimbrone and Garcia-Cardena 2016; Hu
et al., 2017; Petrie et al., 2018). Abnormal autophagy may impair
vessel wall function and initiate or aggravate vascular diseases.
Interestingly, Klotho deficiency is associated with medial
calcification, intima hyperplasia, endothelial dysfunction, arterial
stiffening, hypertension, and impaired vasculogenesis (Mencke
et al., 2017b). Thus, researchers have begun to explore the
association between Klotho and autophagy in vascular diseases.

Arterial stiffness, one of the earliest detectable manifestations
of adverse structural and functional changes within the vessel
wall, was reported to be a major risk factor for hypertension,
stroke and ischemic heart disease (Safar 2001; Cavalcante et al.,
2011; Sun 2015). Enhanced autophagic activity contributes to
arterial stiffening by altering the activity of MMP-9 as well as
expression of TGF-β1 and the transcription factors RUNX2 and
scleraxis, ultimately inducing elastin degradation and increasing
the accumulation of collagen (Chen et al., 2015; Chen and Sun
2019; Kanbay et al., 2021).

Serum levels of Klotho are significantly decreased in patients
with arterial stiffness and hypertension (Kitagawa et al., 2013),
and Klotho deficiency has been shown to induce autophagy,
which injures vasculature and causes arterial stiffening and
hypertension (Chen et al., 2015; Chen and Sun 2019). In
cultures of continuous mouse vascular aortic smooth muscle
cells, recombinant secreted Klotho protein decreased LC3-II
expression and increased p62 expression, suggesting inhibited
autophagy. Conversely, Klotho-deficient medium increased LC3-
II expression and decreased p62 expression. (Chen and Sun
2019). Klotho ability to regulate autophagy in such cells may
involve Beclin1 (Chen and Sun 2019). In mice heterozygous for
mutant Klotho [KL (+/-)], autophagy activation was enhanced, as
evidenced by increased expression of LC3-II and decreased p62
level in the aorta. This was associated with arterial remodeling:
upregulation of collagen I, downregulation of elastin and a
decrease in the ratio of elastin to collagen (Chen and Sun
2019). These effects of Klotho deficiency were abolished by the
autophagy inhibitors chloroquine, which blocks the last step in
autophagy and thereby leads to the accumulation of ineffective
autophagosomes; and eplerenone, which blocks aldosterone
receptors. (Chen et al., 2015; Chen and Sun 2019).
Aldosterone may induce autophagy to cause an aggravation of
diseases (Yang et al., 2016; Luo et al., 2017), and KL (+/-) mice
showed elevated serum levels of aldosterone. These results suggest
that Klotho deficiency may decrease elastin levels in smooth
muscle cells by upregulating aldosterone and thereby inducing
autophagy (Chen et al., 2015). Other mediators likely also exist,
since the changes associated with Klotho deficiency were blocked
by the specific SIRT1 activator SRT1720l (Gao et al., 2016). These
findings suggest that exogenous Klotho inhibits autophagy in
aorta, while Klotho deficiency induces it, but the underlying
molecular mechanisms need to be further studied.
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Atherosclerosis is one of the main mechanisms of
cardiovascular disease. Basal autophagy is atheroprotective
during early atherosclerosis, but it becomes dysfunctional in
advanced atherosclerotic plaques (De Meyer et al., 2015).
Circulating Klotho levels and Klotho expression in peripheral
mononuclear blood cells were significantly lower in individuals
with atherosclerosis than in those without it (Yu et al., 2018;
Kazemi Fard et al., 2021). It would be interesting to further
explore whether Klotho plays a role in dysfunctional autophagy in
Atherosclerosis.

Accumulating evidence shows that autophagy is activated in
brain microvascular cells, following ischemic stroke (Zhang Z.
et al., 2018; Yang et al., 2020). Besides, autophagy alleviates
hypoxia-induced blood-brain barrier injury (Yang et al., 2020).
Interestingly, in patients and animal models of acute ischemic
stroke, higher Klotho levels are associated with good functional
outcome, while lower Klotho levels are associated with poor
outcome (Zhou et al., 2017; Lee et al., 2019). Further studies
are needed to explore potential associations between Klotho and
autophagy in stroke.

Klotho and Autophagy in Muscular Dystrophy
Klotho plays an important role in maintaining normal muscle
function. Klotho-deficient mice show a marked decline in muscle
strength and running endurance, as well as severely impaired
regeneration of skeletal muscle (Phelps et al., 2013; Ahrens et al.,
2018). Klotho gene silencing promoted pathology in the mdx
mouse model of Duchenne muscular dystrophy (Wehling-
Henricks et al., 2016). Conversely, recombinant Klotho protein
stimulated muscle regeneration in the animals, partly by
rejuvenating aged muscle stem cells (Ahrens et al., 2018). In
fact, skeletal muscle activity may modulate Klotho expression:
acute exercise sessions increased levels of circulating Klotho in
young and aged mice as well as humans (Avin et al., 2014). These
findings make Klotho a potential target for the prevention and
treatment of skeletal muscle-related diseases.

Autophagy is necessary to maintain normal muscle function:
excessive autophagy leads to loss of muscle mass (Sandri 2010).
However, little is known about how Klotho regulates autophagy
in muscle tissue. In mice homozygous for a mutated form of the
Klotho gene that substantially shortened their lifespan and causes
skeletal muscle atrophy, the autophagic-lysosomal pathway was
activated in muscles of the masseter and tongue (Iida et al., 2011).
Such activation of the autophagic-lysosomal pathway was
associated with significantly lower levels of phosphorylation of
signaling effectors that act downstream of mTOR, such as 4E-BP1
and p70 S6K (Iida et al., 2011). Interestingly, similar activation
was not detected in the gastrocnemius (Iida et al., 2011). Those
researchers speculated that the masseter and tongue move more
actively than limb muscles, and that amino acid deficiency in
those more active tissues downregulates the mTOR signalling
pathway, stimulating the autophagic-lysosomal pathway. These
findings suggest that Klotho may regulate autophagy differently
in different types of muscle, which future studies should explore.

Further study is even more necessary in light of reports that
under some circumstances, Klotho has no significant effect on
muscle tissue. For example, recombinant Klotho protein failed to

directly influence the proliferation or differentiation of C2C12

myoblasts in culture (Avin et al., 2018). A cross-sectional study of
hemodialysis patients showed that plasma concentration of
soluble (free) Klotho did not significantly correlated with these
muscle mass (Fukasawa et al., 2014). Thus, much remains to be
clarified about the role of Klotho in muscle function and whether
autophagy regulation is involved.

Klotho and Autophagy in Diabetes
Autophagy plays a key role in diabetes and its complications
(Bhattacharya et al., 2018). Both LC3 and Klotho are
underexpressed in pancreatic islet β-cells of diabetic patients
and in a mouse model of diabetes (db/db mice), and such
downregulation of Klotho is associated with a decrease in
insulin storage in pancreatic β-cells (Lin and Sun 2015).
Restoring full-length Klotho expression in db/db mice
attenuated the development of diabetes, enhanced glucose
tolerance, and restored LC3 expression in islet β-cells (Lin and
Sun 2015). These findings identify Klotho and autophagy as
therapeutic targets in type 2 diabetes mellitus.

Researchers have attributed Klotho’s ability to activate
autophagy partially to its antioxidant property, although
oxidative stress has also been reported to activate autophagy
(Lin and Kuang 2014; Filomeni et al., 2015). However, since
autophagy activity cannot be assessed solely based on LC3
expression, more studies are needed to verify the ability of
Klotho to regulate autophagy in islet cells as well as to clarify
the mechanisms involved.

FIGURE 1 | Klotho as potential autophagy regulator and therapeutic
target. The expression of Klotho can be upregulated by many exogenous and
endogenous factors, some drugs, lifestyle changes and gene technology.
Klotho plays a dual role in regulating autophagy (induction or inhibition)
through its influence on the IGF-1/PI3K/AKT/mTOR signaling pathway, Beclin
1 expression and activity, and aldosterone level. Klotho exhibits protective
effects in many diseases, making it a potential therapeutic target.
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CONCLUSION

Normal autophagy is crucial for homeostasis. When autophagy is
insufficient or excessive, it can lead to the occurrence and
development of disease. Therefore, restoring normal autophagy
is a potential treatment for several diseases. An increasing
number of reports have shown that the components required
to induce autophagy depend on the nature of the induction signal
and the type of cell, and they do not always involve canonical
members of the autophagy signaling pathway (Corona Velazquez
and Jackson 2018). This may be the reason why Klotho influences
autophagy in different ways depending on the tissue and the
physiological or pathological conditions. Although its regulatory
effects may differ with the situation, Klotho always seems to serve
to restore normal autophagy activity, and it therefore shows
potential to treat various disorders (Figure 1). This potential
has been demonstrated in preclinical studies and some studies of
clinical samples involving neurodegenerative disease, kidney
disease, cancer, lung disease, vascular diseases and diabetes.

On the other hand, most studies of Klotho and autophagy have
assessed the latter by measuring LC3, p62, Beclin1 as well as the
number of autophagosomes and autophagolysosomes at a steady
state. In fact, some studies have assessed autophagy based on only
one or two markers. These approaches give an incomplete
picture, since autophagy, a dynamic cellular process, involves
several steps: initiation, phagophore, expansion,
autophagosome maturation, fusion with the lysosome, cargo
degradation in the lysosome and efflux (Kuma et al., 2017).

Therefore, it is important to assess autophagic activity at each
step or to monitor autophagy flux, which bring us a more
objective and comprehensive understanding of the role of
Klotho in regulating autophagy.

Future work should further develop the potential of Klotho in
prevention and treatment of diseases. It should also explore the
effects of Klotho throughout the complete pathway of autophagy
and elucidate the molecular mechanisms involved. Studies should
investigate whether Klotho-regulated autophagy also plays a role
in other aging-related diseases such as osteoporosis,
atherosclerosis, heart disease and stroke.
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