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Drug repositioning or repurposing is the process of discovering leading-edge

indications for authorized or declined/abandoned molecules for use in different

diseases. This approach revitalizes the traditional drug discovery method by

revealing new therapeutic applications for existing drugs. There are numerous

studies available that highlight the triumph of several drugs as repurposed

therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and

so on. Millions of people worldwide are affected by neurodegenerative diseases.

According to a 2021 report, the Alzheimer’s disease Association estimates that

6.2 million Americans are detected with Alzheimer’s disease. By 2030,

approximately 1.2 million people in the United States possibly acquire

Parkinson’s disease. Drugs that act on a single molecular target benefit people

suffering from neurodegenerative diseases. Current pharmacological approaches,

on the other hand, are constrained in their capacity to unquestionably alter the

course of the disease and provide patients with inadequate and momentary

benefits. Drug repositioning–based approaches appear to be very pertinent,

expense- and time-reducing strategies for the enhancement of medicinal

opportunities for such diseases in the current era. Kinase inhibitors, for example,

which were developed for various oncology indications, demonstrated significant

neuroprotective effects in neurodegenerative diseases. This review expounds on

the classical and recent examples of drug repositioning at various stages of drug

development, with a special focus on neurodegenerative disorders and the aspects

of threats and issues viz. the regulatory, scientific, and economic aspects.
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1 Introduction

There has been a relentless search for the discovery of drugs

in various therapeutic segments. Of late repurposing also referred

to as drug repositioning has gained interest in recent years. As per

the reports, various discoveries have taken place in the finding of

new molecules and the development of alternative strategies

using repurposing strategies. In comparison to the classical

drug discovery process, the new approach of Drug

repurposing (DR) has various advantages and has opened new

vistas in the field of Pharmacology and Medicinal chemistry.

Treatment of rare and intractable diseases, minimizing attrition

rates, reducing the cost of therapy, etc. are some of the advantages

of drug repurposing. Essentially it is a new way of approaching

drug compounds and targets that have been abandoned during

the development stages either to their risks or other issues. This

review shed light on the classical and recent examples of DR at

various stages of drug development, with a special focus on

neurodegenerative diseases (NDs) and the aspects of threats and

issues viz. the regulatory, scientific, and economic aspects.

2 Drug repurposing approaches

As stated by the U.S. Census Bureau, the world’s population

on 1st January 2022 was estimated to be 7.8 billion. This depicts

that there is an expansion of 74 million people or a 0.9% growth

rate (The Economic Times, 2021). Furthermore, there has been

an escalation in the figure of geriatric people that is

supplementing the world population growth. The dwellers of

each country in the world are enduring build-up in both the

proportion and size of elderly persons. It is envisioned that 1 in

every 6 people in the globe will be in the age group of 60 years or

beyond by 2030. In developed countries, life expectancy is

ascending in small doses above 80 years. While there is a

deviation in the assortment of a country’s population towards

older ages, the frequency of incidence and progression of

incurable ND has heightened. Aging is the leading risk factor

for nearly all ND including Alzheimer’s disease (AD) and

Parkinson’s disease (PD) (Hou et al., 2019). The number of

people being afflicted by AD is anticipated to surge up to

135 million by 2050 because AD alone can affect between

one-third and one-half of people above the age of 85 years.

NDs are expected to have disastrous repercussions on

individuals, families, and societies unless efficient aids are

discovered to minimize the progression of these diseases.

Over the past century, NDs have generated distinctive and

convincing challenges to effective drug discovery. In America,

AD and PD are the two uttermost prevalent NDs with 5 million

Americans existing with AD as well as more than 500,000 people

diagnosed with PD (Karlawish et al., 2017). Yet another group of

people comprising millions more are affected with rare NDs,

such as amyotrophic lateral sclerosis (ALS), multiple sclerosis

(MS), Huntington’s disease (HD), frontotemporal dementia

(FTD), and spinal muscular atrophy (Katsnelson et al., 2016;

Correale et al., 2017). The healthcare cost of contrasting

dementias and AD scores for over US$200 billion, an amount

presumably to escalate by 2050 if these disorders persist to be

unrecoverable (Barnes, 2021). It has been unveiled that there is

no cure for MS even though as many as 9 immunomodulatory

compositions have reached FDA approval for MS since 2000.

This is shockingly diverse from the instance that even though the

number of AD patients is pondered to approximately double in

the following 10 years, only four non-disease-modifying

compounds were passed for AD during that equivalent period

(Crismon, 1994; Cusi et al., 2007; Birks and Evans, 2015; Birks

and Harvey, 2018). Besides the overwhelming load of AD and

other NDs on our healthcare system touching a bothersome level

and unfulfilled efficacious cure, the urgency for the well-timed

creation of competent therapies has been increasing bit by bit.

Currently, treatments accessible for NDs can barely handle

the symptoms or terminate the progression of the disease

(Durães et al., 2018). The drug discovery process right from

target identification and validation to licensed use of a drug is a

daunting task that comes with a long gestation period. DR (DR)

is a present-day trending strategy that overcomes several

shortcomings of the denovo development of entirely new

drugs. It speeds up the discovery process and is efficient,

economical, riskless, and reduces the failure rates in the

clinical development and testing phases (Tanoli et al., 2021).

With the expanding necessity for the treatment of NDs and the

commitment given by DR, it makes sense that old drugs are being

used as new treatments for these diseases. Nonetheless, the

foremost issue in drug repositioning is tracking down novel

drug-disease relationships. To deal with this issue, there are a

range of approaches and two cardinal strategies of DR, viz., on-

target and off-target (refer Figure 1) (Rudrapal et al., 2020). In

on-target (target-centric) DR, the pharmacological mechanism of

a drug molecule that is previously established is correlated to a

new therapeutic implication. In this plan of action, the biological

target of the drug candidate is unaltered, but the ailment is

dissimilar. It incorporates computational approaches, biological

experimental approaches, and mixed approaches (Ferreira and

Andricopulo, 2016). On the other way around, in the off-target

(drug-centric) profile, the pharmacological mechanism of a drug

candidate is unrecognized. Drugs and drug candidates respond to

new targets, out of the original scope, for afresh curative

indications. Consequently, the targets along with the

indications are unique (Ashburn and Thor, 2004). In the

sphere of DR emphasis is given to three significant stages:

procreation of candidate compounds, preclinical analysis, and

clinical trial. For the production of candidate compounds, it’s of

high priority to determine relevant drugs for potential remedial

indications. Notable advances have been made in the

understanding of neurodegerative disease biology. Likewise, a

plethora of fresh accessible resources has simplified drug
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discovery attempts through the medium of drug reprofiling.

These incorporate bounteous data from clinical, mechanistic

and epidemiological research, development of biomarkers, and

a number of well-validated models, both cell and animal-based.

Nowadays, the most prevailing drug reprofiling approaches in

NDs are predominantly grounded on ad hoc clinical and

epidemiological risk assessment in human testing and

preclinical alterations in rodent models (Ashburn and Thor,

2004). However, for the accomplishment of superior DR in

NDs, more precise and standardized approaches for both

activity-based and computational methods should be put into

effect. In conjunction with swift advancement in the scientific

study of disease, the accessibility to contrasting sophisticated

tools available in genomics and bioinformatics and assured

clinical drug libraries will immeasurably hasten and promote

future endeavours in neurodegenerative disease drug

repositioning. For exploration of novel therapeutic liabilities

for neurodegenerative disease, two alternative and

complementary approaches perhaps be applied widely, one is

activity-based/experiment based phenotypic screening and the

other is theoretical/in silico-based/computational approaches

(Rudrapal et al., 2020). DR can also be approached through a

combination of both fields.

2.1 Experiment-based approaches

When it comes to the series of actions in drug discovery and

drug repurposing, the experiment-based/experimental screening

approaches are frequently supposed to be the fundamental

step. It refers to the identification of original compounds for

new pharmacological utilization entrenched on experimental

assays. It necessarily blends protein target-based and cell/

organism-based screens in vitro and/or in vivo disease models

without necessitating the employment of every structural data of

biological target proteins. In this approach, structural data of

target proteins as well as the drug-induced cell/disease

phenotypic information is not mandatory. The activity-based

approach is also time and labor-consuming and amid the

screening process, the generation of false positive hits is low.

Experimental repositioning comprises a handful of approaches,

essentially the cell assay approach, target screening approach,

animal model approach, and clinical approach (Lionta et al.,

2014; Oprea and Overington, 2015).

Affinity chromatography and mass spectrometry are two

broadly operated proteomic techniques in analyzing drug

candidates (Brehmer et al., 2005). In the present age, drug

target analysis along with drug repositioning are entangled.

DR is distinctive from drug discovery in terms of modification

of drug targets. The affinity of drug ligands can be predicted using

a cellular thermal stability assay which can map the contact

patterns of intracellular targets (Molina et al., 2013). Utilizing

this method, a considerable number of molecular on and off-

targets have been divulged for numerous clinically approved

drugs. New biological targets of well-known drugs are derived via

affinity matrices chiefly observed in the area of kinases (Klaeger

et al., 2016; Scott et al., 2016).

2.2 In-silico approaches

To accomplish effective therapies for neurodegenerative

disease and get the therapies to the clinic faster,

computational drug repurposing, or the in silico screening of

FDA-approved compounds is advantageous. For investigating

drug-target binding kinetics and drug residence times of

prevailing drugs or drug candidates, using the computer as

assistance for molecular docking is a notable approach (De

FIGURE 1
Two cardinal strategies of drug repurposing (A) On target/target Centric (B) Off target/Drug Centric.
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Benedetti and Fanelli, 2018). In silico/computational drug

reprofiling, simulated screening of public databases of

mountainous drug/chemical libraries is executed by adopting

computational biology and bioinformatics/cheminformatics

tools. In this approach, the potential bioactive molecules are

identified based on the molecular interaction between the drug

molecule and protein target (Talevi, 2018). This calls for

structural data of target proteins and drug-induced cell/disease

phenotypic data. In-silico based approach is time and labor

efficient and has a higher rate of false positive hits during the

screening.

For many neurodegenerative disorders, it should be

considered that drugs look for satisfactory penetration into

the blood-brain barrier (BBB). The two sections for curative

means of accessing brain targeting are invasive and non-invasive

categories (Alam et al., 2010; Gabathuler, 2010). The invasive

category encompasses the transitory rise in BBB permeability,

and the non-invasive category primarily engages in the

transformation of drug molecules via a physiological,

chemical, or colloidal carrier system approach.

Simultaneously, these methods are also connected with

computational approaches.

Lately, the amalgamation of economically feasible large-scale

computational capacity with high-throughput clinical,

molecular, and structural biology technologies has constructed

a modernistic and favorable circumstance to logically repurpose

conventional drugs by adopting computational frameworks

rather than chance findings. Currently available computational

approaches/strategies to DR can be branched into molecular,

clinical, and structure-based (biophysical) methods.

Intending to conclude drugs that may modify disease gene

marks, molecular approaches have opted which aims to match

the drug-gene expression marks pre-and post-drug treatment

with disease gene expression marks. It does not depend on prior

recognition of the target molecule for high-throughput screening

of existing compounds. Currently, resources such as CMap

(Connectivity Map) and LINCS are limited in the case of

neurodegenerative disease. Molecular approaches of

computational drug repositioning integrate genetic, epigenetic,

proteomic, transcriptomic and metabolomics evidence to

determine promising and up-to-date indications for drugs.

Additionally, techniques such as network integration,

correlating gene expression profiles amidst a disease model

and drug-treated condition, prediction of drug-protein

interactions, and implementation of genotype-phenotype

associations are also being practiced (Yang and Agarwal, 2011;

Chen et al., 2017; Luo et al., 2017). There is an enormous demand

for the generation of databases based on transcriptomic drug

perturbation in CNS tissues to ascertain the drug response to

inappropriate tissue and cell types for neurodegenerative disease.

Recently, for AD (AD), a proteotranscriptomic-based

computational drug repositioning method named Drug

Repositioning Perturbation Score/Class (DRPS/C) resulted

based on inverse associations between disease-induced or

drug-induced gene and protein perturbation patterns (Lee

et al., 2020). Another such instance in the matter of ND is the

work by Zhang et al. where the National Human Genome

Research Institute-European Bioinformatics Institute Genome-

Wide Association Study catalog, PubMed, and the Human

Metabolome database were precisely extracted to generate an

assembly of proteomic, metabolomics, and genetic signatures of

AD (Zhang et al., 2016; Wishart et al., 2018; Buniello et al., 2019).

By commixing this multi-omics data with the Therapeutic Target

database and Drug Bank drug-target databases, the authors of the

study were capable of illustrating a list of 75 drug predictions in

AD (Wishart et al., 2006; Li et al., 2018).

In clinical methods of drug discovery and repurposing, large-

scale health data such as the electronic medical record (EMR),

insurance claims data, clinical trial data, health registries, health

surveys, and personal genome testing companies are engaged as a

supreme asset. Mount Sinai BioMe cohort and the eMERGE

network are two notable illustrations of EMR databases.

Meticulous medicine approaches can be utilized with the aid

of an abundant sample size. It is effortless to identify drugs that

are efficacious in indications other than the primary drug use by

taking the patient medication history as an asset. For instance,

the latest reconsideration of human trials and Medicare

pharmacy claim specifics has recommended that when

compared to nonuser counterparts, statin users experience a

lower incidence of AD (Geifman et al., 2017). Likewise,

utilizing EMR laboratory testing data from Ajou University a

group of researchers compared the ‘clinical signatures’ or

laboratory test values of patients before drug administration

and following drug administration and found two therapies

for Kawasaki syndrome that is terbutaline sulfate and

ursodeoxycholic acid evoked identical changes in laboratory

values. Correlating the disease pairs disclosed that there is a

significant extent of resemblance in clinical signatures between

Kawasaki syndrome and Amyloid lateral sclerosis (ALS),

advocating that terbutaline sulfate can be competent in

treating ALS besides Kawasaki syndrome. One of the

shortcomings of clinical methods is that before analysis

clinical data must be changed into a structured database.

Moreover, EMR evidence is oftentimes inadequate and

cluttered. In the event of neurodegenerative disease patients

are to be longitudinally outlined and for NDs with lengthy

disease courses it’s strenuous to track the physical and mental

wellness and consequences. Also for genetic subtype-specific

drug repurposing, clinical data should be paired with

genetic data.

However, substantial improvement has been made in the

computerized recovery of knowledge from unstructured EMR

data (Ford et al., 2016; Delespierre et al., 2017). Recently,

Observational Medical Outcomes Partnership (OMOP), has

been simulated by the Observation Health Data Sciences and

Informatics program. OMOP is a universally accepted scheme to
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transform claimed information and EMR record data into a

uniform and consistent data format with familiar data

representations essentially terminologies, coding schemes, etc.

(Hripcsak et al., 2015). As a result of mutable data coding and

formatting, consecutive statistical analyses can be intended with

the slightest information loss. There are alternative linkage

procedures that include probabilistic matching strategies and

‘fuzzy’matching techniques and these techniques take advantage

of multiple field values to compare records even when no single

field is an exact match (Dean et al., 2001; Malin and Sweeney,

2005).

In biophysical methods, drug-target predictions can be

accomplished by taking biochemical characteristics of drugs

into accounts such as binding affinity or biophysical

properties like 3D conformation (Holdgate et al., 2013;

March-Vila et al., 2017). These methods comprise structural,

ligand-based, and molecular docking methods and possibly be

principally advantageous in NDs such as HD with well-

established targets (Nance, 2017). Structural methods utilize

the complete advantage of 3D protein configuration data to

determine structurally identical drugs that might conceal

similar targets (March-Vila et al., 2017). Structural methods

employ local site similarity metrics to describe protein binding

sites or those that identify two protein environments that can

bind the same ligand that is chemiosmotic protein environments

(de Franchi et al., 2010; Jalencas and Mestres, 2013). If the

hypothesis is such that two diseases share similar target

proteins, then a structurally similar molecule/drug may be

dynamically useful in both diseases. This can be illustrated by

the fact that patients with AD and HD both have marked extra

synaptic NR2B subunit-containing N-Methyl-D-aspartate

receptors (NMDARs) and increased phosphorylation of

NMDARs (Song et al., 2003; Hoe et al., 2009). Establishing

drugs that hinder the extra synaptic NMDAR activity using

addressing structurally analogous ligands or binding sites

depicts a credible strategy for DR in both of these conditions

(Ehrnhoefer et al., 2012).

Ligand-based methods presume that two molecules may

share similar targets if they share a similar bioactivity profile.

To verify innovative targets for conventional drugs/compounds,

ligand-based methods pay attention to chemical and biological

knowledge such as binding affinity; cellular activity; absorption,

distribution, metabolism, and excretion data (Gregori-Puigjane

and Mestres, 2008; March-Vila et al., 2017). Ligand-based

methods entrust public bioactivity databases such as

PubChem, DrugBank, and ChEMBL in opposition to

structure-based methods, Docking-based methods implement

molecular docking simulations either to predict promising

drugs for a given target or novel targets for existing drugs

(Kitchen et al., 2004). One such example of docking-based

repurposing is to single out droperidol as an established drug

in AD by the application of high-throughput ligand–protein

inverse docking due to droperidol’s high binding affinity to seven

AD target proteins (Xie et al., 2016). Although biophysical

methods are competent in drug repositioning, they look for

prior labeling of target molecules and demand crystallographic

evidence of target and drug molecules.

In recent years, several companies are developing and

elaborated Artificial intelligence (AI) and machine learning

(ML) based frameworks for drug discovery. These methods

are exceptionally proficient at linking diverse classes of data.

There has been a blooming diversion towards the evolvement of

ML techniques to efficaciously dig for transcriptomic, structural,

and clinical data (Mani et al., 2012; Kadurin et al., 2017; Shameer

et al., 2017; Butler et al., 2018; Wang et al., 2018; Smith et al.,

2019). IBM adopted AI-based text-mining approaches to

constitute a semantic model of ALS-associated RNA-binding

proteins that may exemplify drug targets. BM could uncover

potential ALS-associated RNA-binding by application of this

model to a new set of RNA-binding proteins (Bakkar et al., 2018).

2.2.1 Artificial intelligence/machine learning
algorithms

In recent years, several companies are developing and

elaborated Artificial intelligence (AI) and machine learning

(ML) based frameworks for drug discovery. These methods are

exceptionally proficient at linking diverse classes of data.

There has been a blooming diversion towards the

evolvement of ML techniques to efficaciously dig for

transcriptomic (Wang et al., 2018; Smith et al., 2019),

structural (Kadurin et al., 2017; Butler et al., 2018; Popova

et al., 2018), and clinical (Shameer et al., 2017; Nemati et al.,

2018). ML is one of the forms of artificial intelligence. It does

facilitate vigorous interrogation of multiple datasets by using

statistical techniques to determine formerly undetected

associations and patterns in the data and in the recent past

the approaches have been presenting promising outcomes

when applied to drug repurposing of neurodegenerative

diseases (Myszczynska et al., 2020). Machine learning

algorithms are chiefly classified into supervised,

unsupervised and reinforcement learning approaches

(Bharadwaj et al., 2021). The ongoing methods most

frequently applied to neurodegenerative disease-related data

are the supervised machine learning algorithms. IBM adopted

AI-based text-mining approaches to constitute a semantic

model of ALS-associated RNA-binding proteins that may

exemplify drug targets. BM could uncover potential ALS-

associated RNA-binding by application of this model to a

new set of RNA-binding proteins (Bakkar et al., 2018). In a

study, a novel computational approach was reported to predict

drug repositioning grounded on a ML algorithm and data

integration. The approach in the study relied on the persistent

analysis of classification mismatches as genuine

reclassifications opportunities. The definiteness of the

results were of high levels and were rational with several

literature reports (Napolitano et al., 2013). In another
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study, a novel method “PREDICT” was presented which was

based on the observation that drugs that are similar can also be

indicated for similar disease (Gottlieb et al., 2011). The

method obtained tremendous specificity and sensitivity,

more desirable than the existing methods in predicting the

large-scale drug indications for both approved drugs and novel

molecules. In recent years, it has been a remarkable preference

to pave the way for novel computational approaches and deep

learning (DL) methods is one such example which commits to

intensify the capableness of drug repurposing methods.

Approaches known as deep neural networks (DNNs) are

adopted by DL which encompasses artificial neural

networks including plentiful hidden layers between the

input and output layers (Ma et al., 2015). One instance of a

work that selected deep learning was in which the authors

confirmed how DNN trained on gigantic transcriptional

response datasets can assort different drugs to therapeutic

categories solely established on their transcriptional profile

(Aliper et al., 2016). Additionally, favourable outcomes were

obtained by means of a deep learning-based algorithmic

framework termed as DeepDTIs (Drug target interaction)

which ascertained drug-target interactions using chemical

structures and known interactions. (Wen et al., 2017).

2.2.2 Network-based methods
By virtue of immense present-day progress in the sphere of

system biology has led to the progression in applications such as

drug repurposing. Networks are clear, understandable and

flexible data structures on which associations can be implied

using many statistical and computational approaches. The

perception of interaction network is massively engaged in

biology. In network models pairwise relations between various

objects is exhibited. Schematically, in such networks, nodes are

represented by entities (genes, proteins, complexes, metabolite,

disease), while edges represent interactions or relationship

between two nodes such the relationship between drugs and

known gene targets and large number of diverse connections

between two nodes can be displayed concurrently (Savva et al.,

2019). Despite of the potency of such approaches has been

verified for considerable times with drug-target interaction

prediction, these methods are afflicted by the deficiency of

current knowledge on molecular interactome, leading to noisy

results. Network-based drug repositioning methods can be

organized into categories based on their main source of

biological data: 1) gene regulatory networks, 2) metabolic

networks, and 3) drug interaction networks (Approaches

et al., 2019). Moreover, a fourth category, integrated

approaches, using multiple data sources simultaneously, can

also be supplemented.

For example, a recent work proposed a untried

bidirectional drug repositioning approach that comprised

of Top-down and Bottom-up approaches and eventually

provided information about significant repositioning drug

candidates (Rakshit et al., 2015). This method takes into

account tripartite indication-drug-target network (IDTN),

also considering the topological significance (choosing most

potent drugs based on seven topological parameters, such as

degree, betweenness, centroid, closeness, eccentricity,

radiality, and stress, which are basic network measures

used to analyse a network) of drugs. A separate study

proposed a different approach based on a two-pass random

walk with restart on the drug-disease heterogeneous network,

referred to as TP-NRWRH, to predict new indications for

approved drugs (Liu et al., 2016). It was applied on three

different types of networks, that is, integrated drug-drug

similarity, disease-disease similarity, and drug-disease

networks. This method was evaluated and in case study on

the AD it showed that nine of top 10 predicted drugs have

been approved or are investigational for neurodegenerative

diseases.

2.2.3 Genome-wide association studies-based
methods

Another robust tool for drug repurposing is the utilization

of genomics technologies. For the past few years, genome wide

association studies (GWAS) has been another source of data

which is being exploited for new information regarding the

association of specific genomic variations known as single

nucleotide polymorphisms (SNPs), with complex trait human

diseases, such as AD, multiple sclerosis, etc. (Savva et al.,

2019). GWAS can distinguish thousands of SNPs

synchronously and these data are used by researchers to

detect genes that are linked with a specific disease trait and

to analyse how these variations affect responses to drugs.

Furthermore, GWAS can be indicated to identify

alternative indications for existing drugs rapidly and

systematically (Hurle et al., 2013). However, objections

such as inadequacy of data regarding whether an activator

or inhibitor is needed to observe an effect, makes it

burdensome to use GWAS information alone. While

applying GWAS to initiate repurposing of drug candidates,

the basic process is to analyse the catalogue of SNPs linked

with the disease to determine a subgroup of genes that are

speculated to be drug targets according to the drug ability of

the gene’s product. Thereafter, process demands to select

which of these gene products, if any, are targets for the

drugs that are in the pharmaceutical channels at that

instant. One such illustration detected by this approach is a

clinical candidate Biib-033 (Biogen Idec, Cambridge, MA,

USA), which is an antibody targeting the leucine-rich

repeat and immunoglobulin domain-containing 1 (LINGO-

1), which was developed for multiple sclerosis. Two GWAS

studies detected LINGO-1 as a target for essential tremor,

which is a neurological disorder, propounding that it could be

repurposed for vital tremor ailments (Gudjonsdottir et al.,

2009; Clark et al., 2010). .
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3 Drug repurposing for
neurodegenerative diseases

Diseases that affect the central as well as the peripheral

nervous system, are known as neurodegenerative diseases

(NDs). More than 600 distinct neuropathological illnesses

exist, which include stroke, Parkinson’s disease, brain tumors,

and epilepsy. Considering that the global population is growing,

there are more NDs than ever before (Siuly and Zhang, 2016;

Matilla-Dueñas et al., 2017; Kumar et al., 2021). In the next

20 years, neurodegenerative disorders that impact motor

function will overtake cardiovascular disease as the second

most common cause of mortality, according to the World

Health Organization. No ND is currently curable due to its

poorly understood molecular basis, and the medicines

available merely treat the symptoms or slow the disease’s

course (Onyango et al., 2021). Since the medicine’s

pharmacokinetic and pharmacodynamic properties are already

known, DR is the most beneficial new technique for the creation

of an effective treatment for NDs. The promise of old

medications for the most important NDs, like Amyotrophic

lateral sclerosis, Huntington’s disease, Parkinson’s disease,

Multiple sclerosis, and Alzheimer’s disease has been the

subject of numerous studies (Durães et al., 2018). Figure 2

represents a summary of drugs repurposed for some

neurodegenerative diseases.

3.1 Alzheimer’s disease

AD accounts for 80% of occurrences of dementia in senior

persons. The gradual memory loss, the incapacity to learn, and

the deterioration in behavior and function are its signs. Although

the exact pathology of AD is unknown, it is thought to be related

to the buildup of amyloid-β plaques in the brain, which

eventually cause neuronal and synaptic degeneration

(Scheltens et al., 2016). The majority of AD medications are

used to address cognitive impairments or other symptoms, and

they work best when started early (Appleby et al., 2013).

Commonly prescribed drugs for AD are cholinesterase

inhibitors viz. Galantamine, Donepezil, Rivastigmine etc.

Galantamine, an alkaloid found in Galanthus species, has

been researched as a potential treatment for peripheral

neuropathies and myopathies. It has the potential to block

FIGURE 2
Summary of a few drugs repurposed for neurodegenerative diseases, adapted from (Durães et al., 2018) via CC by 4.0 license.
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TABLE 1 List of repurposed drugs for AD.

Drug name Earlier indication Repurposed References

Carmustine It is a small, lipophilic, non-ionized nitrosourea molecule
that can cross the blood-brain barrier and is employed as
an alkylating agent in cases of brain cancer

Carmustine, at a non-toxic dose, demonstrated a
significant reduction in amyloid-β development in cells
overexpressing the precursor protein to the amyloid
protein

Hayes et al. (2013)

Bexarotene A retinoid X receptor antagonist is used to treat
cutaneous T-cell lymphomas

In mice overexpressing familial AD mutations, it has been
demonstrated to be effective at reversing
neurodegeneration, enhancing cognition, and lowering
amyloid-β levels

Tousi (2015)

Tamibarotene It is an agonist of the retinoic acid receptor and is used to
treat acute promyelocytic leukemia

It can influence a variety of pathways involved in the
pathogenesis of AD, including those that control the
release of pro-inflammatory chemokines and cytokines by
brain cells, the behavior of animals with increased
senescence, and cortical acetylcholine levels

Fukasawa et al. (2012)

Paclitaxel It is an antimitotic drug authorized for the treatment of
non-small cell lung cancer as well as ovarian and breast
cancer

Although paclitaxel can be a substrate for P-gp and only
penetrates a small portion of the central nervous system, it
is particularly helpful in treating tauopathies because it
reduces tau protein phosphorylation

Brunden et al. (2011)

Thalidomide It prevents angiogenesis, endothelial cell growth, and
blood-brain barrier disruption

Through the inhibition of tumor necrosis factor-α, it can
minimize the death of hippocampus neurons

Ryu and McLarnon (2008)

Azithromycin,
erythromycin

Macrolide antibiotics They prevent the production of the amyloid precursor
protein, which lowers the amyloid-β levels in the brain

Appleby et al. (2013)

Tetracyclines Antibiotic (protein synthesis inhibitors) It has been discovered that it encourages the destruction of
fibrils and inhibits the synthesis of amyloid-β

Diomede et al. (2010)

Rifampicin Use for Mycobacterium infections It has shown results in the reduction of amyloid-β fibrils in
a dose-dependent manner because of reduced production
and enhanced elimination of amyloid-β

Tomiyama et al. (1996)

Acyclovir,
penciclovir, foscarnet

antiviral drugs In AD cell models, decreases phosphorylated tau protein
and amyloid-β

Wozniak and Itzhaki
(2010)

Amphotericin B Antifungal drug It has been demonstrated to slow down the production of
amyloid-β (but posses toxicity)

Hartsel and Biochemistry
(2003)

Clioquinol Antifungal, Antiparasitic In transgenic mice brains, it shows a reduction in the
amyloid-β plaques

Grossi et al. (2009)

Valproic acid Antiepileptic drug Due to its ability to alleviate memory impairments and
diminish the production of amyloid-β plaques in
transgenic mice, it is recommended as a neuroprotective
treatment for AD.

Smith et al. (2010)

Valsartan Antihypertensive (angiotensin receptor blocker) Chronic adverse stress, which can increase brain
angiotensin II levels, is one of the main environmental
factors of AD. Because it has been shown that angiotensin
II increases are linked to amyloidogenesis, using
angiotensin receptor blockers may be useful in delaying
the loss of cognitive processing. Additionally, valsartan
reduces inflammation, vasoconstriction, and
mitochondrial dysfunction while encouraging
acetylcholine release

Culman et al. (2002)

Trimetazidine Anti-ischemic drug It can penetrate the blood-brain barrier, lower free radical
production, enhance axonal regeneration, and effectively
myelinate both healthy and damaged axons

Hassanzadeh et al. (2015)

Liraglutide Anti-diabetic drug It demonstrated brain penetration and indicated
physiological changes in the brain that improved learning
and reduced the development of amyloid-β and
inflammation in the brain

Mcclean et al. (2011)

Ghrelin Peptide hormone (synthesized in the alimentary tract
which controls appetite)

It has been shown that ghrelin, as well as its deacylated
precursor, has neuroprotective effects by preventing
programmed cell death and reducing the rise of
interleukins induced by amyloid-β

Wagner et al. (2017)

Acitretin Retinoid receptor activators It reported an increase in antioxidant regulation and
amyloid- β clearing enzymes

Tippmann et al. (2009)

Zileuton Antiasthma drug Zileuton, which inhibits 5-lipoxygenase, is thought to offer
therapeutic benefits for AD. This is due to the finding that

Di Meco et al. (2014)

(Continued on following page)
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muscle acetylcholinesterase. Galantamine’s ability to improve

nerve impulse transmission also makes it useful for reversing

neuromuscular blockade during anesthesia. During the 1960s

through the 1980s, the majority of galantamine use was confined

to Italy, Bulgaria, Germany, and France under the brand name

Nivalin®. Galantamine’s therapeutic properties for the treatment

of AD were first investigated in the 1980s, and it was only in

2000 that it was included in the arsenal of drugs used to treat AD

(Mucke, 2015). The production of misfolded proteins, oxidative

stress, mitochondrial dysfunction, and impaired cell metabolism

are only a few of the signaling pathways that may be involved in

the pathogenesis of both cancer and neurodegeneration. The goal

of the subsequent research was to see whether cancer medications

may also be used to treat AD. Following these, investigations have

been made to see if cancer medications can also be used to treat

AD (Monacelli et al., 2017). Pathogens can enter the CNS in a

variety of ways, depending on the organism, which may speed up

the development of AD. The first is accomplished by a damaged

BBB (Orgogozo et al., 2003). Some viruses, like the herpes virus,

can go dormant after the original infection and then reawaken

decades later in elderly people, causing delayed harmful

complications (Nagarajan and Wilde, 2005). According to a

2020 study model, immunocompromised people who were

exposed to C. pneumoniae through their noses developed Aβ
plaque and NFTs in their olfactory cortex as well as in

hippocampus (Sundar et al., 2020). Thus antimicrobials such

as Rifampicin, Amphotericin B, acyclovir, penciclovir, foscarnet

etc. (see Table 1) have also been researched to see whether they

may be used to treat AD, specially its symptoms (Iqbal et al.,

2020). Antidiabetics are also used to treat AD because type

2 diabetes has been established as a risk factor for the disease.

According to studies, AD sufferers’ brains have become less

sensitive to insulin signalling. Insulin therapy has been shown

to improve memory and cognition while also protecting the brain

from damage and controlling the levels of phosphorylated tau

protein. Additionally, insulin can promote cell growth, repair,

and activation of neural stem cells. As a result, substances that

affect insulin release may potentially be beneficial for AD.

Analogues of glucagon-like peptide 1, which increase insulin

production, may also have an impact on a number of AD-related

processes, including tau phosphorylation, amyloid-β reduction,

and impaired neuronal function and cell death (Perry et al., 2003;

Zhao et al., 2004). Some drugs repurposed for AD are listed in

Table 1.

3.2 Parkinson’s disease

PD is a multifactorial neurological condition that impairs a

patient’s ability to move. Dopamine neurons in the putamen and

caudate areas of the brain are the main targets of Parkinson’s

disease. Due to mitochondrial DNA deletion, elevated ROS and

RNS generation decreased antioxidant function, and dopamine

inhibition, the activities of mitochondria are reduced in the

substantia nigra of parkinsonian brains (Ryan et al., 2015;

Reeve et al., 2018). As dopamine is oxidized by both

Monoamine oxidase (MAO) A and B, the level of dopamine

drops in PD (Alexander, 2004). Primary tremor, akinesia,

rigidity, bradykinesia, lack of postural instability, and

secondary motor symptoms including the freezing of gait,

micrographia, and speech issues are the hallmarks of

Parkinson’s disease (PD). In PD, non-motor symptoms

include sensory impairment, autonomic dysregulation,

neurobehavioral abnormalities, and sleep problems are also

possible. Parkinson’s disease is treated with levodopa,

carbidopa, amantadine, rotigotine, dopamine agonists,

Catechol-O-methyltransferase (COMT) inhibitors,

anticholinergics Selegiline, rasagiline, safinamide, etc (Gupta

and Shukla, 2021). The most recent therapy options for PD

include newer dopaminergic medications, immunotherapies,

drug repurposing, medications that target non-dopaminergic

neurotransmitters, regenerative treatments, and deep brain

stimulation. Many medications are currently undergoing

clinical trials. Several medications, including the following, are

being repurposed for PD: The antibiotic doxycycline, which has

been investigated for its anti-PD effects after being once

TABLE 1 (Continued) List of repurposed drugs for AD.

Drug name Earlier indication Repurposed References

5-lipoxygenase is more prevalent in AD, creating it an
exciting target within this context. Research using zileuton
in mice revealed a decrease in amyloid-β accumulation

Sildenafil/tadalafil Erectile dysfunction drugs (inhibitors of
phosphodiesterase-5) Phosphodiesterase-5 regulates
cGMP, which in turn regulates memory problems caused
on by amyloid-β

In aged mouse models, sildenafil was effective in reducing
amyloid-β and suppressing neuroinflammation.
Furthermore, Tadalafil showed neuroprotection and an
increase of cognition

García-Barroso et al.
(2013), Zhang et al. (2013)

Trazodone Antidepressant Trazodone has demonstrated potential in suppressing
signaling via the PERK/eIF2α-P branch of the unfolded
protein response, which is overactivated in AD patients
and harms regulating translation s in cells

Halliday et al. (2017)
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identified as a possible anti-AD therapeutic approach

(Dominguez-Meijide et al., 2021). Differences in doxycycline

concentration can distinguish between an antibacterial and an

anti-inflammatory effect. Smaller concentrations than the ones

used to treat microorganisms with antibiotics do not influence

bacterial susceptibility, according to studies, but they do exhibit

anti-inflammatory activity, which is connected to their

neuroprotective effects. Doxycycline’s antioxidant properties

and its capacity to transform early species of α-synuclein
oligomers (a presynaptic neuronal protein connected to PD

genetically and neuropathologically) into non-toxic and non-

seeding species are two additional ways that aid neuroprotection

(Dominguez-Meijide et al., 2021). Only oligomeric species of α-
synuclein have been discovered to bind to doxycycline, however,

the physiological monomeric forms of α-synuclein are still

present. Table 2 represents repurposed drug for PD. The anti-

PD activity of antiasthma medications, specifically β2-
adrenoreceptor agonists, has been researched. Recent research

has connected the β2-adrenoreceptor to the control of the SNCA-
synuclein gene. More particular, stimulation of the β2-
adrenoreceptor was demonstrated to exhibit neuroprotection.

Three anti-asthmatic drugs were investigated, and salbutamol,

the one with the highest blood-brain barrier permeability,

demonstrated the greatest promise. The conducted analysis

revealed that all three medications were capable of lowering

the abundance of SNCA-mRNA and α-synuclein (Mittal et al.,

2017).

3.3 Huntington’s disease

HD is characterized by dementia, behavioral and mental

abnormalities, and involuntary choreatic movements (McColgan

and Tabrizi, 2018). The multifunctional protein huntingtin

(HTT) develops a mutant form as a result of a genetic

mutation, which causes toxicity and causes neuronal death

and malfunction. When a mutation in the HTT gene’s exon

1 on chromosome 4p16.3 results in CAG (C-cytosine, A-adenine,

and G-guanine) trinucleotide DNA segment extension,

repetition, and multiplicity, HD develops. In a gene, the CAG

segment is typically repeated between 10 and 35 times. However,

due to mutations, more than 36 CAG repeats are produced,

which results in the genesis of HD (Tabrizi et al., 2020). The slow

degeneration of neurons in the basal ganglia, particularly the

caudate nucleus and putamen to the cerebral cortex, signals the

beginning of HD (Kshirsagar et al., 2021). The symptoms of HD

begin to appear in adults, and they worsen with time until they

eventually result in death within years. The sole alternative is to

control the symptoms since there is no known cure for this illness

s (Roos, 2010).

Tetrabenazine was initially created as a result of research into

the design of straightforward drugs with reserpine-like

antipsychotic action. It functions as both a mild blocker of the

D2 dopamine postsynaptic neurons and a highly selective,

reversible inhibitor of monoamine absorption by presynaptic

neurons. Research on this substance as an antipsychotic was

conflicting, thus this medication was repurposed for conditions

like HD that are characterized by abnormal, involuntary

hyperkinetic movements. Tetrabenazine has never been shown

to elicit signs of dyskinesia, making it a safer drug to use in HD

than dopamine receptor blockers (Paleacu, 2007). For the

treatment of HD, several medications with dopamine

antagonistic action have been investigated. This is the

situation with the antipsychotic drug tiapride, a D2 receptor

antagonist. Selegiline, however, is a popular option for the

treatment of Huntington’s chorea in Europe (Roos et al.,

1982). A neuroleptic medication called clozapine is used to

treat schizophrenia. With little antagonistic activity toward the

D2 dopaminergic receptors, it exhibits a high affinity for the

D1 and D4 dopamine receptors. Although clinical trials had

mixed outcomes, it was recommended as a good symptomatic

medication for chorea due to its low prevalence of

TABLE 2 List of repurposed drugs for PD.

Drug name Earlier indication Repurposed References

Amantadine Anti influenza As a mild glutamate receptor antagonist, it is used to treat Parkinson’s disease
(PD), boosting dopamine and preventing its reuptake

Lee and Kim,
(2016)

Nilotinib Tyrosine kinase Abl inhibitors, used to treat chronic
myeloid leukaemia

It was found that α-synuclein build-up and increased α-synuclein expression
are both signs of Abl activation in neurodegeneration. Nilotinib accelerates α-
synuclein breakdown by preventing Abl phosphorylation

Pagan et al.
(2016)

Zonisamide Antiepileptic drug Increased dosages revealed a reduction in intracellular dopamine. Both motor
and non-motor symptoms have responded well to this medication, but its
exact mode of action is yet unknown

Fox et al. (2018)

Methylphenidate Central nervous system stimulant used to treat
attention-deficit hyperactivity disorder

This medication has been found in numerous studies to be beneficial in
lowering PD-related gait problems and non-motor symptoms

Devos et al.
(2013)

Exenatide Glucagon-like peptide-1 (used for type 2 diabetes) It has proven to be capable of neuroprotection and beneficial neuroplastic
change, which can stop or reduce the progression of the disease. It can cross
the blood-brain barrier and offers neuroprotection by turning on GLP-1
receptors

Jankovic, (2017)
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TABLE 3 List of repurposed drugs for HD.

Drug
name

Earlier indication Repurposed References

Clozapine Neuroleptic drug Although clinical trials had mixed outcomes, it was recommended as a good
symptomatic medication for chorea due to its low prevalence of extrapyramidal
side effects

Bonuccelli et al.
(1994)

Tetrabenazine Intended to have antipsychotic effects but
produced conflicting success

Repurposed to treat HD symptoms, it functions as a mild blocker of D2 dopamine
postsynaptic neurons and a high-affinity, reversible inhibitor of monoamine
uptake by presynaptic neurons

Paleacu (2007)

Olanzapine Antipsychotic drug It is routinely prescribed for the treatment of HD’s motor and behavioural
symptoms. Although this medication has a strong affinity for serotonin receptors,
it is antagonistic to dopamine D2 receptors

Paleacu et al.
(2002)

Risperidone Antipsychotic drug It is used to treat schizophrenia and bipolar disorder as a D2 receptor antagonist
and serotonin agonist, and it can also be used to treat HD chorea

Duff et al. (2008)

Memantine Used to treat AD. Investigation into memantine’s efficacy for treating HD revealed that it could
lower neurons’ sensitivity to glutamate-mediated excitotoxicity

Beister et al. (2004)

TABLE 4 Some repurposed drugs for ALS and MS.

Drug name Earlier indication Repurposed References

Masitinib Tyrosine kinase inhibitor (used to treat canine cancer) Tyrosine kinase inhibitors may be effective against the
aberrant glial cells that grow in ALS, explaining their usage
in the disease

Trias et al. (2016)

Triumeq® (dolutegravir +
abacavir + lamivudine)

An antiretroviral Drug used in anti-HIV therapy Based on the fact that ALS patients had reverse
transcriptase blood concentrations comparable to HIV-
infected patients and that a human endogenous retrovirus
was found to be expressed in the brains of ALS victims, this
medicine was investigated for the treatment of the disease

Clinicaltrials
(2022)

Retigabine Anti-epileptic drug (causes membrane hyperpolarization
by attaching to voltage-gated potassium channels, which
increases the M-current.)

Because it is believed that neurons in this condition are
hyper-excited and fire more frequently than usual,
ultimately leading to cell death, it can promote motor
neuron survival and lower excitability, which is beneficial
in the treatment of ALS.

Wainger et al.
(2021)

Tamoxifen An antioestrogen drug (authorized for use in breast cancer
chemotherapy and chemoprevention)

The discovery of neurological improvements in patients
and disease stability in ALS patients who had breast cancer
treated with tamoxifen led to the drug’s accidental
repurposing for the treatment of ALS.

Chen et al.
(2020)

Mitoxantrone An anthracenedione that has been proven effective in the
treatment of breast and prostate cancer, acute leukaemia,
and lymphoma

Mitoxantrone has also been licensed for the treatment of
MS due to its immunosuppressive properties, which are
connected to variable responses of the T- and B-cells in the
central nervous system to antigens, myelin degradation
brought on by macrophages, and axonal lesions

Fox (2004)

Cyclophosphamide An alkylating agent treatment of leukaemia, lymphomas,
and breast carcinoma

Cyclophosphamide is used in MS because it can have an
immunosuppressive and immunomodulatory effect.
Additionally, cyclophosphamide has good absorption in
the central nervous system and can cross the blood-brain
barrier

Awad and Stue
(2009)

Amiloride A diuretic medication Amiloride can prevent the neuronal proton-gated acid-
sensing ion channel 1 (ASIC1), which is overexpressed in
axons and oligodendrocytes in MS lesions, from having its
neuroprotective and myeloprotective effects. A further
benefit of amiloride’s preventive action occurring later in
the course of inflammation is that it makes it active even
before inflammation begins

Arun et al.
(2013)

Ibudilast Phosphodiesterases inhibitor used for bronchial asthma
and cerebrovascular disorders

Ibudilast can prevent the brain’s microglia and astrocytes
from releasing tumor necrosis factor, which reduces
neuronal degeneration. It is also helpful in MS because it
can prevent oligodendrocyte apoptosis, suppress astrocyte
apoptosis, and prevent demyelination

Barkhof et al.
(2010)
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extrapyramidal side effects (Bonuccelli et al., 1994). Another

antipsychotic medicine, olanzapine, is frequently recommended

to treat HD’s behavioral and motor symptoms. While

antagonizing dopamine D2 receptors, this medication has a

high affinity for serotonin receptors. It can be advised when

irritation, sleep issues, weight loss, and chorea are present

because it is safe and well tolerated (Paleacu et al., 2002). As a

D2 receptor antagonist and serotonin agonist, the antipsychotic

risperidone, which is used to treat schizophrenia and bipolar

disorder, can also be used to treat HD chorea. It demonstrated

positive results in stabilizing mental symptoms and motor

deterioration (Duff et al., 2008). Quetiapine, an atypical

antipsychotic, has a strong affinity for dopamine and

serotonin receptors. Even though there haven’t been many

instances of quetiapine being used to treat HD symptoms,

those have emphasized the drug’s value in treating chorea,

particularly when it’s coupled with psychiatric symptoms

(Alpay and Koroshetz, 2006). An adamantane derivative called

memantine is used to treat AD. It is an inhibitor of N-methyl-D-

aspartate (NMDA) that is non-competitive. A large influx of

calcium enters the cell as a result of excessive NMDA receptor

stimulation, which ultimately results in cell death. Memantine

can therefore stop this calcium influx in neuronal cells and stop

the death of brain cells. When memantine’s effectiveness in

treating HD was investigated, it was shown that it could

lessen the susceptibility of neurons to glutamate-mediated

excitotoxicity (Beister et al., 2004). Table 3 represents list of

repurposed drugs for HD.

3.4 Other neurodegenerative diseases

Upper and lower motor neurons, which regulate the

voluntary muscles, die as a result of the condition known as

ALS. Muscles eventually weaken and shrink as a result, which

causes muscular atrophy. Other signs include difficulty breathing,

swallowing, speaking, and twitching or rigid muscles. Most ALS

causes are aetiologically unknown, with genetic inheritance

accounting for roughly 10% of cases (Kiernan et al., 2011).

Only two medications, edaravone, and riluzole, are presently

accessible to postpone the development of the illness, albeit

they cannot reverse the symptoms once they have appeared

(Zoccolella et al., 2007; Sawada, 2017). Another autoimmune

condition affecting the central nervous system is MS. It is a

protracted, inflammatory disorder in which the myelin and

axons are partially or completely damaged. Its progression is

uncertain, and its early symptoms include temporary neurological

impairments that eventually turn severe. There is currently no

approved treatment for MS, however, there are medications that

can slow the disease’s progression and symptoms (Trapp and

Nave, 2008). Several drugs are currently being repurposed for the

treatment of ALS as well as MS. Table 4 represents some drugs

that are under clinical trial for ALS or MS.

3.5 Unsuccessful repurposed drugs for
neurodegenerative diseases

Even though there have been numerous instances of

pharmacological repurposing, numerous attempts at

repositioning have also been unsuccessful. A drug may look

promising in computational analyses or in vitro assays but not in

vivo, requiring the investigation of the medicine to be stopped in

favor of other activities. This was the situation with latrepirdine,

an antihistamine that was repurposed for AD and HD after being

licensed in Russia for the treatment of rhinitis brought on by

allergies. Despite the lack of a characterized mechanism of action,

it had been suggested that it might alter the activity of channels

and neurotransmitters, avoiding amyloid toxicity among other

things (Bezprozvanny, 2010). In actuality, phase III studies

unsuccessful to find any appreciable variations in the course

of the disease, despite phase II research showing improvement in

AD patients related to placebo (Doody et al., 2008). There have

also been attempts to employ the anti-hypercholesterolemic

medications simvastatin and atorvastatin for AD. This notion

was developed in response to the important finding that

cardiovascular illness and AD frequently co-occur. Studies had

demonstrated that statins could raise neuroprotection and reduce

amyloid-β levels, among other positive benefits. However, none

of them were effective in the management of AD (DL et al., 2005;

Sano et al., 2011). Studies evaluating the use of selective serotonin

reuptake inhibitors, commonly used as antidepressants, in the

treatment of AD have also been conducted. Although

nortriptyline and paroxetine originally showed an

improvement in cognitive abilities, subsequent analyses

revealed that there was no improvement in cognitive behavior

even after these medications had addressed mood disorders

(Nebes et al., 2003).

In phase II investigations for the treatment of ALS, the

antibiotic ceftriaxone seemed promising, but it also failed to

demonstrate clinical efficacy in phase III tests (Cudkowicz et al.,

2014). Even cladribine was initially rejected as an MS treatment

before it was approved (Leist and Weissert, 2011). Even though

DR is encouraging in the creation of new treatments for ND, the

approval procedure can be challenging and frequently leads to

the failure of repurposing initiatives.

5 Opportunities and challenges of
drug repurposing

Owing to its proficiency in sparing time and cost, drug

repositioning has become a crucial method for exploiting new

therapeutic implications of current drugs or drug candidates.

Such an ingenious type of approach will undeniably accelerate

the drug development process. Concurrently, in the case of

neurological diseases, some restraints need to be considered

during the process of drug repositioning. Repurposing drugs
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experiences humongous challenges due to which there are

limitations in the market for repurposed drugs. A single phase

III clinical trial of a repurposed drug for AD can cost up to

300–400 million dollars (Shineman et al., 2014). This

demonstrates even though repurposed drugs can deviate from

the initial development stage and safety testing, they demand

profound high-risk extravagant clinical trials to establish efficacy.

As a result of the sluggish progression of neurodegenerative

diseases, clinical trials might take a long duration. Further, apart

from proving the drug penetration into the brain, many times

drugs must be tested for safety issues in geriatric populations who

periodically have comorbidities and undergo treatment that may

interreact with the repurposed drug. DR may be difficult in

neuropathological states considering its complex molecular and

cellular signaling mechanisms. The reason that drugs respond to

multiple targets despite affecting a single target might accelerate

the risk of a range of adverse reactions (Vogt and Mestres, 2010).

An all-inclusive evaluation of the assets as well as lacking these

adverse effects can assist us to figure out drug repositioning from

a more multifaceted perspective (Reddy and Zhang, 2013). Other

challenges in repurposing drugs include limited or no patent

protection or patent life, commercialization, and reimbursement

challenges.

In pursuance of overcoming obstructions encountered in the

course of drug repurposing, we can consider several proposals. In

the first place, it is inspirited to furnish more financial support in

conjunction with technical assistance for clinical trials of drugs to

be repurposed. Pharmaceutical companies are exceedingly

doubtful to finance human trials of approved drugs to be

repositioned unless there is a viable commercial strategy. This

generates a favorable circumstance where government and

foundations can take the eagerness to do something.

Currently, several groups are taking a large interest in funding

pilot trials of repurposed drug candidates with the hopes of

paying more impetus to drug repurposing. Foundations such as

‘Cures Within Reach’ are entirely centralized on aiding

repurposing studies. The MJFF, ADDF, Cure Parkinson’s

Trust, Alzheimer’s Society (United Kingdom), the Multiple

Myeloma Research Foundation, and others have financed

repurposing trials. In association with government initiatives,

various academic centers are also heading the repurposing

attempts. Secondly, to augment data sharing it is crucial to

constitute an exhaustive data analysis platform. The enormous

volume of data piled up by approved drugs or drug candidates for

clinical trials can be stored in an assorted manner and can be

unlocked and reanalyzed adopting Information science services

and artificial intelligence. The bottleneck in the research process

is that data derived from biological databases and human trials

are massive and perplexed and the conventional data processing

methods cannot work out with it. We can unquestionably

improve our understanding of the disease from this big data

and make more accurate disease-related strategies. Nevertheless,

there is a considerable breach between producing biomedical

data and data analysis. Expertise needs to find technical

clarifications to ensure the efficiency of research with less

energy and time. Finally, it is fundamental to resolve patent

restrictions and take judicious surveillance in pursuance of

facilitating the DR process. The utilization of drug reprofiling

should be backed by a risk handling strategy and the drug’s safety

assurance can be established by clinical trial information or data

from post-marketing surveillance.

6 Conclusion

In recent years, many repurposed drugs have found their

place as potential agents to treat various neurodegenerative

diseases. As already discussed many companies are developing

and elaborating the strategic advantages of using Artificial

intelligence (AI) and machine learning (ML) based

frameworks for drug discovery in this segment. Despite these

advancements, there are threats to the precise analysis of existing

pre-clinical and clinical evidence concerning particularly from

regulatory and scientific perspectives. Apart from focussing on

the efficacy of the newly repurposed drugs, robust post-

authorization studies are equally important.
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