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Background: Osteoporosis is a type of systematic metabolic bone disease

caused by the decrease in osteogenic activity or excessive resorption of bone

with the relative enhancement of osteoclast function. As osteoporosis seriously

affects the quality of patients’ life, effective drugs are needed to treat this

disease. Based on the combination of network pharmacology and cellular

studies, this study aimed to investigate the probable mechanism of

Dehydromiltirone (DHT) in the treatment of osteoporosis.

Method: The targets of DHT in osteoporosis were searched using the

PharmGKB, OMIM, and Genecard platforms. The PPI core targets, and

the GO and KEGG enrichment analysis results were obtained using

Cytoscape software, and the David and Metascape databases,

respectively. The network pharmacology results were also verified via

in vitro cellular experiments.

Results: Through network pharmacology and docking analysis, we found DHT

was involved in peptide tyrosine phosphorylation, cell surface receptor tyrosine

kinase signaling pathways, and MAPK signaling pathways. According to the

molecular docking results, the binding of DHT to MAPK14 was more stable than

other proteins, which suggests that DHT may affect osteoclast formation

through the MAPK signaling pathway. Moreover, DHT was found to inhibit

the expression of osteoclast-associated genes, including NFATc1, CTSK, c-Fos,

Acp5, and MMP9; as well as the phosphorylation of P38, ERK, and JNK of the

MAPK signaling pathway; and the degradation of IκB-α of NF-κB signaling

pathway.
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Conclusion: DHT exhibited an anti-osteoclastogenesis effect by reducing the

expression of related genes, ultimately inhibiting bone resorption in vitro.
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1 Introduction

Bone is a volatile equilibrium organ that constantly

regenerates and resorbs. The basic condition for maintaining

bone morphology and function is a harmonious balance between

bone formation and absorption (Baron and Kneissel, 2013;

Siddiqui and Partridge, 2016; Leong, 2018).

Osteoclasts are special monocyte macrophages that possess a

bone resorption function. When the balance between osteogenesis

and osteolysis is disrupted, numerous bone diseases occur, such as

bone cancer, periodontal disease, and bone rarefaction (Rath et al.,

2013; Lou et al., 2019; Li et al., 2021). In particular, when osteoclasts

exert an excessive effect on bone resorption, osteoporosis is prone to

occur and is distinguished by bone loss, destruction of the bone

structure, and fragile fractures, ultimately leading to a burden on

society and families (Rachner et al., 2011; Boudin and Van Hul,

2017; Bernard, 2019; Compston et al., 2019).

Owing to the development of bioinformatics, the concepts

and models of network pharmacology have been further

extended, transforming the traditional “Singlemode (target +

drug)” into a “Multi-component (target + drug)” mode. This

model uses modern information technology to develop the

interaction mechanism, target prediction, and toxicology of

traditional Chinese medicine (TCM) (Wu et al., 2016; Zhang

et al., 2019). Therefore, we employed network pharmacology in

this research predicting the drug-target interactions of

Dehydromiltirone (DHT) and providing a theoretical basis for

further experimental validation.

The traditional Chinese medicines, Salvia miltiorrhiza Bge

and Salvia przewalskii Maxim have been widely used to treat

osteoporosis and other related diseases in the clinic. Other active

ingredients have also been demonstrated to inhibit osteoporosis

by blocking osteoclast production or promoting osteoblast

growth (Guo et al., 2014; He et al., 2019; Ekeuku et al., 2021;

Qin et al., 2021; Qu et al., 2021). DHT, a diterpenoid quinone

found in the traditional Chinese medicines, Salvia miltiorrhiza

Bge and Salvia przewalskii Maxim, has been widely used to

prevent liver injury by modifying the MAPK and NF-κB
signaling pathways, reducing neuroinflammatory responses,

and inhibiting platelet aggregation. (Lin et al., 1988; Chen

et al., 2003; Yang et al., 2011; Yue et al., 2014). Therefore, the

mechanism by which DHT inhibits osteoclast formation is

related to the MAPK pathway. The NF-κB pathway acts as a

downstream pathway of MAPK and a classical pathway of

osteoclasts, which are affected by the MAPK pathways that

inhibit osteoclast production.

Owing to the vital role of osteoclasts in osteoporosis, and the

anti-inflammatory effect of DHT, previous network

pharmacology results and cellular and molecular experiments

were employed to explore the mechanism of action of DHT in the

prevention and treatment of osteoporosis.

2 Materials and methods

2.1 Network pharmacology data sources

2.1.1 Structural formula of dehydromiltirone and
prediction of related targets

According to the chemical name, “Dehydromiltirone

(DHT),” and the CAS number “116064-77-8,” the target

information was obtained by searching the TCMSP database

(https://tcmsp-e.com/). The structural formula of DHT was also

searched in the PubChem Data Bank (https://pubchem.ncbi.nlm.

nih.gov/), saved in “PDF” format, and input into the

SwissTargetPrediction database to obtain potential drug targets.

2.1.2 Excavate OP-related targets
Using “Osteoporosis” as the keyword, relevant disease targets

were obtained by searching PharmGKB (https://www.pharmgkb.

org/), OMIM (https://omim.org/), and Genecards (https://www.

genecards.org/). After deduplication and sorting, the data were

imported into Excel tables and retained for future use. The

potential targets and disease-related targets of DHT were then

imported into the online website, Draw Venn Diagram (https://

www.researchgate.net/), along with two intersected maps to

obtain drug-disease common targets and generate Venn

diagrams.

2.1.3 Protein-protein interaction analysis
The common targets obtained in Section 2.1.2 were analyzed

using the String database. The biological category was set to

“Homo Sapiens,” the minimum interaction scores were set to

0.700, the free nodes were hidden, and the remaining parameters

were kept as the default parameters of the system.

2.1.4 Screening of the core targets
Using the CytoNCA plug-in in Cytoscape software (v.3.5.1),

topological analysis was performed based on the degree centrality

parameters. Local average connectivity-based method

centralities, betweenness centrality, closeness centralities,

network centralities, and core targets were obtained.
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2.1.5 GO enrichment and KEGG analysis
GO and KEGG enrichment analyses of the common targets

were performed using the David and Metascape databases,

respectively. The results of these analyses were uploaded to

the Biological Information Data Analysis Platform, and

histograms and bubble charts were generated for data

visualization. The number of genes in the enriched pathway

determines the size of the bubbles and the height of the columns

in the plot. Colors represent p-values; the higher the enrichment,

the smaller the p-value.

2.1.6 Molecular docking between the core
targets and naringin

DHT was selected as the ligand, and its small molecule two-

dimensional structure in mol2 format was downloaded from the

TCMSPwebsite. The core gene in 1.4 was selected as the receptor,

and the corresponding protein structure in PDB format was

downloaded from the RCSB PDB database. AutoDock software

(v.4.2) was used to make the molecular docking. The binding

energy was used to assess the docking effect of the key target and

active ingredients. In addition, the greater the binding energy, the

better the binding activity of the ligand and receptor protein, and

the more stable the docking state.

2.2 Osteoclast cultivation and
experimental verification

2.2.1 Materials and reagents
DHT (98% or higher purity) was extracted by ChemFaces

(Wuhan, China). The DHT monomer was solubilized in

dimethyl sulfoxide (DMSO, Sigma) to a concentration of

100 mM, stored at −80°C, and diluted with phosphate-

buffered saline (PBS) buffer. Alpha Minimum Essential

Medium (α-MEM), 100 U/ml penicillin, 100 U/ml/

streptomycins (P/S), and fetal bovine serum (FBS, Cat #

10099141C) were acquired from Gibco (Carlsbad, CA). The

Cell Counting Kit-8 (CCK-8, Cat # GK10001) was obtained

from Glpbio (Montclair, CA). NFATc1(Cat # DF6446), c-Fos

(Cat # AF5354), CTSK (Cat # DF6614), β-actin (Cat#

AF7018), ERK (Cat# AF0155) Phospho-ERK1/2 (Thr202/

Tyr204) (p-ERK,Cat# AF1055), JNK1/2/3 (Cat# AF6318)

Phospho-JNK1/2/3 (Thr183 + Tyr185) (p-JNK,Cat#

AF3318), P38 (Cat# AF6456), Phospho-p38 MAPK

(Thr180/Tyr182) (p-P38, Cat# AF4001), IκB-α (Cat#

AF5002), RANK (Cat # DF12532), and goat anti-rabbit IgG

(H + L) HRP (Cat# S0001) were obtained from Affinity

Biosciences Ltd. (Jiang Su, China). The Receptor Activator

of Nuclear Factor-κ B Ligand (RANKL, Cat #315-11C) and

Macrophage-Stimulating Factor (M-CSF, Cat # 500-P62G)

were purchased from PeproTech (Rocky Hill, NJ). DAPI

staining solution (Cat #C1005) was purchased from

Beyotime Biotechnology Co., Ltd. (Shanghai, China).

Fibrous actin (F-actin) was purchased from Beijing Bailui

Polar Biotechnology Co. Ltd. (Cat # BN10063, Beijing,

China). The tartrate-resistant acid phosphatase (TRAcP)

stain Kit (Cat#G1492) was purchased from Solaibao

Technology Co., Ltd. (Beijing, China). The EVO M-MLV

Premix Kit (Cat #AG11706) and SYBR Premix (Cat

#AG11721) were obtained from Accurate Biology (Hu Nan,

China). The RAW 264.7 cell lineage (The Fifth Passage, Cat#

JNO-3841) was obtained from Guangzhou Jennio Biotech Co.,

Ltd. (Guangzhou, China).

2.2.2 In vitro osteoclastogenesis assay
The fifth-generation RAW264.7 cells were incubated in a

complete medium containing 1% penicillin/streptomycins (P/S)

and 10% FBS at 37°C in 5% CO2. When RAW264.7 cells reached

90%–95% confluence, they were subcultured.

Fresh bone marrow-derived macrophages (BMMs) were

extracted from the upper and lower limbs of 4-week-old

C57BL/6J mice according to the Guangzhou University of

Chinese Medicine Animal Ethics Committee Guidelines (No.

20220527001), filtered, and then centrifuged with a 70 μm cell

filter. A whole medium comprising M-CSF (50 ng/ml), 100 U/ml

P/S, and 10% FBS was cultured for 6–7 days. Medium change was

performed every other day.

2.2.3 Cytotoxicity assays
RAW264.7 and BMMs were seeded in 96-well plates at 1 ×

104/well. After 48 h of treatment with different concentrations of

DHT (0, 2.5, 5, 7, and 10 μM for RAW264.7; and 0, 0.625, 1.25,

2.5, and 5 μM for BMMs), 10 μl of CCK-8 was dispensed in each

well according to the Cell Counting Kit-8 (CCK-8) instructions

and incubated for 1 h without the light. The absorption of the

sample was measured immediately at 450 nm by using a

microplate reader. Thereafter, a histogram was generated, and

the cytotoxicity and proliferation of DHT were evaluated using

the absorbance values.

2.2.4 TRAcP staining
RAW264.7 cells and BMMs were seeded in 96-well plates at

5 × 103 cells/well. After 24 h, osteoclasts were cultured in

complete α-MEM containing RANKL (50 ng/ml) and

administered various concentrations of DHT for 6–7 days.

Media change was performed every 2 days and the osteoclasts

were scoured three times with PBS until the formation of mature

osteoclasts. Thereafter, the cells were fixed with 4%

paraformaldehyde (Macklin, Shanghai, China) for 3–5 min,

stained according to the TRAcP kit procedure, and

photographed using a standard inverted microscope

(Olympus, Japan). Mature osteoclasts were observed when

more than three nuclei were present in the stained

multinucleated cells.
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2.2.5 Bone resorption preparation
To ensure asepsis, beef bones are purchased at the market,

cleaned, and placed in alcohol. Rinse the material overnight with

complete medium containing the 1% P/S, and 10% FBS then

place it in a 37-degree incubator to keep it dry. BMMs were

induced for osteoclast differentiation in media containing

RANKL (50 ng/ml) and M-CSF (50 ng/ml), and BMMs were

transferred into 96-well plates containing bovine bone slices

3 days later.

On the second day, different concentrations of DHT

(0,5,10 M) were used to intervene in the osteoclasts. After the

osteoclasts had formed for 48 h, they were fixed with the electron

microscope’s fixative solution and observed under the electron

microscope (JEOL, ARM200F, JAPAN).

2.2.6 Reverse transcription PCR
RAW 264.7 cells were seeded in 6-well plates at a consistency

of 1 × 105/well and cultured with DHT (5 μM and 10 μM) and

RANKL (50 ng/ml) for 6–7 days, with medium change

performed every 2 days until the formation of mature

osteoclasts. Total RNA was extracted by TRIZOL (Thermo

Fisher Scientific, China) and the obtained RNA was reverse

transcribed into cDNA by EVOM-MLV Premix Kit. PCR was

performed using SYBR Green Kit and the following cycling

conditions: 95°C, 30 min; 95°C, 5 s; 60°C, 30 min; and

50 cycles. All primers are listed in Table 1. All relevant gene

expression results were processed using the RT-PCR instrument

(Bio-Rad, United States). The 2−ΔΔCT method was used to

calculate the comparative expression levels of each gene.

2.2.7 Western blot
RAW264.7 cells were cultivated in a 6-well board at a cell

consistency of 1 × 106 cells per well. On days 5, 3, and 1 post-

seeding, the cells were cultured with DHT (10 μM) and

RANKL (50 ng/ml). After 5–6 days of continuous

intervention, proteins were extracted. The cells were

washed three times with PBS, and 200 μl of RIPA lysate

converted Phosphatase and Protease inhibitor was added to

each well for 30 min on ice. Protein collection was performed

using a cell scraper, and centrifugation was performed at

12,000 g, 5 min. The protein concentration was measured

using a BCA kit (Biosharp, An Hui, China). The proteins

were subjected to sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) under constant pressure

conditions of 80 V, 30 min, 120 V, and 70 min. The

proteins were transferred onto the PVDF membrane at a

constant current of 300 mA for 90 min. The membrane was

then incubated with 5% bovine serum albumin (BSA) for 1 h,

washed three times with TBS with Tween-20 (TSBT) for

10 min, incubated with the primary antibody overnight at

4°C, followed by the secondary antibody for 1 h at ambient

temperature. Enhanced chemiluminescence (ECL) was used

for visualization. The expression of related proteins was

detected using β-actin as the internal control. Protein gray

levels were quantified using ImageJ software (v. 1.48).

2.2.8 Immunofluorescence staining of
podosome belts and vinculin

RAW264.7 cells were cultivated in a 96-well cell culture

apparatus at a density of 5 × 103 cells and stimulated with

50 ng/ml RANKL (with or without DHT) for 6–7 days until

the formation of mature osteoclasts. The cells were then fixed

with 4% paraformaldehyde and blocked with 3% BSA in PBS for

approximately 30 min.

200 μl of phalloidin diluent with the vinculin antibody was

added to each well according to the Fibrous Actin kit procedure

and incubated for 90 min in the dark. The cells were then

incubated with the corresponding fluorescent anti-rabbit

secondary antibody for 90 min at room temperature and

observed using a fluorescence microscope.

3 Statistical analysis

All data are presented as mean ± standard deviation. Two

independent samples were compared using the t-test. One-

dimensional comparisons of the groups of samples were calculated

using one-way ANOVA. p < 0.05 was considered significant.

TABLE 1 Primers for RT-PCR.

Gene Forward (5-3) Reverse (5-3) Tm (m3)

NFATc1 GGAGAGTCCGAGAATCGAGAT TTGCAGCTAGGAAGTACGTCT 60

c-Fos GCGAGCAACTGAGAAGAC TTGAAACCCGAGAACATC 60

CTSK GGGAGAAAAACCTGAAGC ATTCTGGGGACTCAGAGC 60

Acp5 TGTGGCCATCTTTATGCT GTCATTTCTTTGGGGCTT 61

MMP9 CGTGTCTGGAGATTCGACTTGA TTGGAAACTCACACGCCAGA 60

MMP13 TGTTGCTGCCCATGAGCTTG GGCTTTTGCCAGTGTAGGTA 61

β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 61
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4 Result

4.1 The common targets between
dehydromiltirone and osteoporosis

The molecular formula of DHT is shown in Figure 1A. After

searching and sorting, 4,598 OP-related disease targets were

identified. The intersection of the target mapping was

acquired, and 72 common targets were obtained, as shown in

Figures 1B,C.

4.2 Construction of the protein-protein
interaction network

The PPI results were obtained using the String database

(HTTP://string-db.org), and the protein network was

modularized using Cytoscape and the MCODE plug-in to

obtain core proteins with a higher degree. The drug-disease

protein interaction (PPI) network is shown in Figure 1D.

4.3 Biological function

A total of 213 results were obtained in the GO

enrichment analysis, 127 of which were related to

biological processes (BPs), including peptidyl-tyrosine

phosphorylation, transmembrane receptor protein

tyrosine kinase signaling pathway, and drug response;

30 related to cellular components (CCs), including the

plasma membrane, membrane raft and integral

component of the plasma membrane; and 56 related to

molecular functions (MFs), including transmembrane

receptor protein tyrosine kinase activity, enzyme binding,

and protein binding, as shown in Figure 2A. KEGG

enrichment analysis revealed a total of 143 signaling

FIGURE 1
Molecular formula of dihydrotanshinone (A); Venn diagram of the DHT-OP intersection targets (B,C); and PPI network of the potential
targets (D).
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pathways, with cancer, PI3K-Akt, calcium, and MAPK

signaling pathways as the most enriched pathways, as

shown in Figure 2B. Figure 2C shows the distribution of

the core targets in the KEGG signaling pathway. The results

of GO and KEGG enrichment analyses suggest that DHT

may play a joint regulatory role through the MAPK

pathways, acting on certain proteins to suppress their

phosphorylation.

4.4 Molecular docking

Table 2 lists the binding energies of ligands and receptors. All

binding energies were less than −5 kcal/mol. The molecular

docking results indicated that AR, SRC, MAPK14, CASP3,

FIGURE 2
(A,B) GO and KEGG enrichment analysis (C) and pathway-target network.

TABLE 2 Molecular interactions between the core targets and DHT.

Compound Target Affinity (kcal/mol)

DHT AR −9.26

DHT SRC −8.24

DHT MAPK14 −7.69

DHT CASP3 −6.45

DHT EGFR −6.81

DHT STAT3 −6.79

DHT ESR1 −6.49

DHT HSP90AA1 −7.83
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EGFR, STAT3, ESR1, HSP90AA1, and DHT were stable after

docking, as shown in Figure 3.

4.5 CCK-8 assay

A schematic of BMM extraction and culture was created

for reference (Figure 4A). The cytotoxicity/proliferation of

RAW264.7 and BMMs was detected using the CCK-8 assay,

and cells were stimulated with various concentrations of

DHT for 48 h. DHT had no cytotoxic or proliferative

effects on RAW264.7 and BMMs at concentrations below

10 and 7.5 μM, respectively, compared to the controls

(Figures 4B,C).

4.6 Dehydromiltirone inhibits RANKL-
induced osteoclastogenesis

To investigate the effect of DHT on RANKL-induced

osteoclast formation, RAW264.7 was simultaneously

stimulated with RANKL and DHT, and BMMs were

differentiated into osteoclasts containing RANKL (50 ng/ml)

and M-CSF (50 ng/ml). DHT inhibited osteoclast formation in

a concentration-dependent manner. For RAW264.7 and BMMs,

the number of osteoclasts induced by DHT (10 μM for

RAW264.7, 7.5 μM for BMMs) was significantly decreased

relative to that induced by the positive control (Figures 4D,E).

RAW264.7 cells were treated (1–3, 3–5, 5–6 days) with DHT

to determine the longer-lasting inhibitory effect of 10 µM DHT

FIGURE 3
DHT docking with the core target molecule.
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FIGURE 4
Dehydromiltirone (DHT) suppresses RANKL-induced osteoclastogenesis in vitro. (A) Schematic of osteoclast extraction, culture, and
differentiation induction. (B,C) RAW264.7 and BMMs treated with different DHT concentrations were detected by the CCK-8 method. (D,E)
Representative images of RAW264.7 cells and BMMs treated with various concentrations of DHT and the TRACP strains were obtained by light
microscopy. (F,G) Stimulation with 10 μM at different stages of osteoclast differentiation for 1–3, 3–4, 5–6, and 1–6 days and the statistical
analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 relative to the control group. Scale Bar = 200 μm.
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FIGURE 5
DHT inhibits the formation of podosome belts of osteoclasts induced by RANKL. (A) The Podosome Ring and nuclei were stained with
Rhodamine Phalloidin, Vinculin, and DAPI, respectively, and confocal images were obtained. (B) The number of nuclei per osteoclast and the mean
area of erythrocyte ligament per cell was quantified. (C)The expression of genes related to osteoclasts based on PCR, includingNFATc1, c-Fos,CTSK,
MMP9, MMP13, and Acp5 (TRAcP). β-Actin expressionwas used to normalize the gene expression levels (n = 3). **p < 0.01, ***p < 0.001, ****p <
0.0001 relative to the RANKL-induced control group. Scale Bar = 200 μm.
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on osteoclasts. DHT had different effects on osteoclast

differentiation at different time points and a significant effect

at the double stage (day 1–3, 3–5, p < 0.05) (Figures 4F,G).

The effect of DHT on the morphology and nuclear transport

of osteoclasts was verified by staining Podosome belts and

Vinculin. The formation of the F-actin podosome ring on the

surface of the osteoclasts and aggregation of the nucleus was

significantly inhibited by 5 and 10 μM DHT (Figures 5A,B).

4.7 Dehydromiltirone attenuates
osteoclast-involved gene expression

To further explore the mechanism of DHT inhibiting

osteoclast formation, RAW264.7 cells were cultured in

RANKL and treated with DHT (5 and 10 μM) for

approximately 5–6 days until mature osteoclasts formed.

RT-PCR detection of NFATc1, c-Fos, CTSK, MMP9,

MMP13, and Acp5 expression levels. As illustrated in

Figure 5C, DHT effectively inhibited the expression of

related genes in a dose-dependent concentration compared

with the control group.

4.8 Dehydromiltirone inhibits osteoclastic
resorption activity

Next, we investigated the effect of DHT on the bone

resorption of osteoclasts. DHT (5 μM, 10 μM) stimulated

mature osteoclasts for 48 h, the bone resorption area, and the

number of osteoclasts per well as shown in Figure 6. We

observed that at a concentration of 10 μM, the number of

osteoclasts still had a statistical difference compared with the

control group. Besides, the area of bone resorption was

significantly reduced, showing the characteristics of a

concentration gradient.

4.9 Dehydromiltirone inhibits the
expression of NFATc1 and related proteins

Western blot revealed that DHT significantly inhibited the

expression of the RANK, c-Fos, NFATc1, and CTSK proteins

declined following treatment with DHT compared to treatment

with the positive control (Figure 7). Therefore, DHT may affect

downstream signaling by inhibiting NFATc1 activity.

FIGURE 6
Effect of DHT on bone resorption of osteoclasts. (A) DHT interfered with mature osteoclasts for 48 h and found a statistical difference at 10 μM
concentrations. (B,C)There was a significant difference between the number of osteoclasts and the area of bone resorption. *p < 0.05, ***p < 0.001,
****p < 0.0001 relative to the RANKL-induced control group. Scale Bar = 200 μm.
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4.10 Dehydromiltirone represses the
RANKL-induced MAPK signaling pathway

To further investigate the mechanism by which DHT inhibits

osteoclast formation, we analyzed MAPK pathway-related proteins,

including JNK, ERK, and P38, by western blotting. The

phosphorylation levels of JNK, ERK, and P38 were measured at

0, 15, 30, 45, and 60 min after DHT stimulation. Based on previous

literature, DHT can inhibit the expression of related inflammatory

factors through the NF-κB pathway (Guo et al., 2014; Qin et al.,

2021), and NF-κB is one of the classical signaling pathways of

osteoclasts. Therefore, the pathway of NF-κB was employed as the

FIGURE 7
DHT can effectively inhibit the expression of osteoclast differentiation-related proteins(A)Representative images of the effect of DHT on RANKL
stimulation (50 ng/ml) on days 0, 1, 3, and 5 for RANK, c-Fos, NFATc1, CTSK, and Acp5 protein. (B)Quantification of the ratio of band intensities to that
of β-actin for RANK, c-Fos, NFATc1, and CTSK (n = 3). *p < 0.05, **p < 0.01 compared to the RANKL-induced group.
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research object to explore the molecular mechanism by which DHT

inhibits osteoclasts to exhibit an anti-osteoporosis effect. As

illustrated in Figure 8, DHT significantly inhibited ERK1/2 and

P38. After 45 min of RANKL stimulation, DHT significantly

decreased the expression of phosphorylated p-ERK1/2 in

RAW264.7 cells. DHT significantly inhibited p-JNK expression

after 60 min and p38 phosphorylation at 45 min after RANKL

stimulation. After treatment with DHT (10 μM) for 1 h, as

illustrated, the Western blot revealed significant inhibition of

IκB-α degradation by DHT, especially at 30 and 60 min. The

above results suggest that DHT may inhibit MAPK/NF-κB-
induced signaling, including the phosphorylation of P38, ERK1/2,

JNK, and the inhibition of IκB-α.

5 Discussion

Excessive bone resorption due to active osteoclasts is

associated with but not limited to several bone diseases,

including osteoporosis, rheumatoid arthritis, synovitis,

periodontitis, cholesteatoma, and others (Lee et al., 2015;

Boudin and Van Hul, 2017; Jamsen et al., 2017; Muramatsu

et al., 2021). Osteoclasts are tissue-specific hematopoietic giant cells

formed by the aggregation of several monocytes and macrophage

progenitors on or near the bone surface. Mature osteoclasts secrete

proteolytic and acid enzymes, such as Acp5, CTSK, and matrix

metalloproteinases (MMPs), which are linked to the bone matrix

and collagen formed by osteoblasts during bone resorption. Under

pathological conditions, osteoporosis is often caused by hyperactivity

of bone resorption, which affects normal physiological bone

remodeling and excessive bone loss (Kim et al., 2020).

Osteoporosis, a high-prevalence clinical disease, is a public

health burden on society, with approximately 10 million people

diagnosed each year in the United States. Women in their 50 s

and approximately one in five men are at increased risk of

osteoporotic fractures (Weycker et al., 2016; Borgstrom et al.,

2020; Ayub et al., 2021). Many drugs are used to treat

osteoporosis, such as bisphosphonates, calcitonin, raloxifene,

FIGURE 8
DHT inhibits RANKL-induced ERK activation and P38 phosphorylation. (A) p-JNK1/2, JNK, p-ERK1/2, ERK, p-P38, P38, and RANKL were
stimulated with DHT dots (with or without 10 μM) at 0, 15, 30, 45, and 60 min (B–D)Quantification of the refractive index for the p-ERK, p-P38, and
p-JNK bands. (F,G) The relative protein level of IκB-α is standardized to that of β-actin. (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001 compared to the control group.
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and denosumab (Anthamatten and Parish, 2019; Ensrud and

Crandall, 2021; Kobayakawa et al., 2021). However, due to

adverse reactions, such as bone end sclerosis (Ensrud and

Crandall, 2021), multiple fractures after drug withdrawal

(Deeks, 2018), osteonecrosis (Reid, 2015), and hypercalcemia

(Roux et al., 2019), which ultimately lead to a limited range of

drug applications, new drugs that are effective and have few side

effects are required.

In addition to the development of modern information

technology and further bioinformatics and pharmacology studies,

researchers have combined network pharmacology and traditional

Chinese medicine by analyzing the active components of traditional

Chinese medicine (TCM) and constructing the “Compound-protein/

gene-disease” interaction to explain the related biological function and

mechanism of action between drug and disease (Wu et al., 2016;

Zhang et al., 2019; Jiao et al., 2021). Thus, determining the

pharmacological action and mechanism of TCM is of great

significance to modern research and the development of new

TCM drugs and their clinical application.

Our study revealed 72 targets between DHT and

osteoporosis, including CTSK, MMP13, MAPK14, CASP3,

etc., suggesting that these targets are principally related to the

inflammatory response, apoptosis, and oxidative stress, which is

consistent with the results of GO and KEGG analyses.

DHT could significantly reduce the expression of the CTSK

gene and protein, which was consistent with the experimental

results in vitro. CTSK is a cathepsin protein that is mainly

expressed in osteoclasts and is involved in bone resorption

and bone formation (Inaoka et al., 1995; Bromme and

Lecaille, 2009). When CTSK is knocked out in mice,

FIGURE 9
Schematic indicating the mechanism by which DHT inhibits osteoclast formation. DHT inhibits RANKL-induced osteoclast differentiation via
the MAPK and NF-κB signaling pathways, thereby decreasing the expression of related genes and proteins, such as NFATc1, Acp5, c-Fos, and CTSK
that affect osteoclast bone resorption.
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osteoclast bone resorption is reduced, thereby increasing bone

formation by affecting the RANKL/OPG signaling pathway of

osteoblasts, however, its knockdown may also contribute to the

development of osteosclerosis (Lotinun et al., 2013).

MMP13 belongs to the MMP family. The MMP family is

mainly secreted by osteoblasts and selectively secreted by

osteoclasts. (Freije et al., 1994; Ohshiba et al., 2003). In the

present study, DHT decreased the expression of MMP13 and

MMP9 or other genes involved in inflammation, which is

consistent with the results reported in previous literature.

When RANKL binds to RANK, several sequential signaling

cascades are initiated to govern the formation of mature

osteoclasts. The MAPK pathways, including P38, ERK, and JNK,

are involved in osteoclast differentiation and apoptosis (Mizukami

et al., 2002; Wada et al., 2017). P38 plays a concerning role in the

idiophone of osteoclast precursors into mature osteoclasts. When

P38 is activated through the RANKL-RANK-TRAF6 axis,

TRAF6 accumulates in the cytoplasmic tail, thereby promoting the

differentiation of osteoclast progenitors into mature osteoclasts (Lee

et al., 2016). Similarly, JNK and ERK play important roles in osteoclast

apoptosis and precursor proliferation, respectively. ERK activation

leads to an increase in AP-1 activity through c-Fos induction, which

leads to an increase in c-Fos synthesis. The AP-1 protein structures

formed by the binding of c-Fos to pre-existing Jun proteins transcribed

in the nucleus aremore stable than those formed by JUN alone (Karin,

1995). Consistent with the above conclusions, DHT inhibits JNK

phosphorylation at 60min and ERK and P38 phosphorylation at

45 and 60min, respectively. Therefore, DHT may inhibit osteoclast

formation by blocking the MAPK pathway.

NF-κB, a vital transcription factor in bone remodeling and

inflammation, plays an important role in the regulation of

osteoclast differentiation. The NF-κB complex binds to the

IκB-α protein to prevent nuclear translocation. However, after

RANKL stimulation, NF-κB is degraded and released into the

cytoplasm, inducing the generation of mature osteoclasts

(Lawrence, 2009; Yao et al., 2021). Based on our results, DHT

can inhibit the degradation of IκB-α upon RANKL stimulation,

suggesting that it inhibits the activity of NF-κB.
In conclusion, DHT is not cytotoxic to RAW264.7 and

BMMs, and exhibits anti-osteoporotic functions at working

concentrations of 10 and 7.5 μM, respectively. DHT was

found to inhibit RANKL-induced osteoclast preparations

and bone resorption by affecting the MAPK and NF-κB
pathways, aligning with the network pharmacology results.

Based on such findings, researchers have shown strong

support for the following points:1) DHT can promote the

development of traditional Chinese medicine by adding

modern bio-information technology into the research

system of traditional Chinese medicine; 2): Theory and

preliminary experiments support that DHT, a natural

compound of Salvia miltiorrhiza Bge and Salvia

przewalskii Maxim, can affect osteoclast differentiation at

lower concentrations, and potentially inhibiting

osteoporosis caused by excessive-resorption through

inhibiting osteoclast formation. However, the specific

mechanism of action of DHT in the inhibition of

osteoclast production and anti-osteoporosis still needs

further validation via in vivo and related experiments,

which is the direction of future studies (Figure 9).
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