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Background and purpose: Neutrophil extracellular traps (NETs) are special

web-like structures that can be generated in both infectious and noninfectious

diseases. Previous studies showed that reactive oxygen species (ROS) were

crucial in the formation of NETs (NETosis). The purpose of this study is to

evaluate the effect of (+)-borneol, an antioxidant, on NETosis.

Methods: Human neutrophils were stimulated with phorbol-12-myristate-13-

acetate (PMA) to induceNETosis in vitro. Neutrophils treatedwith (+)-borneol at

three different time points (−30min, 0, and 30min) associated with PMA

stimulation were used to examine the effect of (+)-borneol on the formation

of NETs. The ROS generation of neutrophils was also measured to explore the

potential mechanism of the inhibitory effect of (+)-borneol on NETosis.

Results: (+)-Borneol pretreatment inhibited NETosis induced by PMA.

Immunofluorescence staining visualized and confirmed the inhibitory effect.

(+)-Borneol inhibited the burst of ROS in neutrophils caused by PMA.

Suppressing NADPH oxidase or protein kinase C (PKC) eliminated the effect

of (+)-borneol on NETosis. Moreover, inhibiting Toll-like receptor 2 (TLR2) led

to increased NETosis which can be inhibited by (+)-borneol.

Conclusion: (+)-Borneol decreases the ROS level in activated neutrophils and

inhibits NETosis triggered by PMA stimulation in vitro. (+)-Borneol therapy may

be effective in some NET-dependent conditions.
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Introduction

Neutrophils are essential phagocytes that play a crucial role

in immune responses. They make up around 60% of white blood

cells in normal conditions in humans (Bainton et al., 1971). As

the first line of host defense against pathogens, they are activated

and recruited to the infectious sites rapidly after pathogen entry

(Mayadas et al., 2014). Activated neutrophils can not only

phagocytose pathogens into the phagosome for intracellular

killing but also release various proteases into the extracellular

milieu to enhance their microbicidal function (Ley et al., 2018).

In addition, neutrophils can capture and kill microorganisms by

releasing special web-like structures called neutrophil

extracellular traps (NETs) (Brinkmann et al., 2004). NETs are

mainly composed of decondensed chromatin, with granular,

cytoplasmic, and nuclear proteins attached (Brinkmann and

Zychlinsky, 2007). The formation of NETs, known as

NETosis, helps the immune system to eliminate bacteria

(Brinkmann et al., 2004; Pilsczek et al., 2010), fungi (Urban

et al., 2006), and viruses (Saitoh et al., 2012) more efficiently.

Recently, an increasing body of evidence suggests that NETosis

can be observed in noninfectious inflammation. In

cardiovascular diseases, NETs can act as stimuli and scaffolds

for thrombus formation (Fuchs et al., 2010; Döring et al., 2020).

In autoimmune diseases, DNA and citrullinated peptides in

NETs may be potential sources of autoantibody production

(Hakkim et al., 2010; Sur Chowdhury et al., 2014; Grayson

and Kaplan, 2016; Gupta and Kaplan, 2016). In cancers, NETs

can promote tumor progression and metastasis (Olsson and

Cedervall, 2016; Albrengues et al., 2018). Therefore, NETosis

is a double-edged sword and should be inhibited in certain

circumstances.

There are two main mechanisms of NETosis, vital NETosis

and suicidal NETosis. Vital NETosis can be observed in

infectious diseases. Neutrophils are still alive and can also

crawl and phagocytose pathogens after vital NETosis (Yipp

et al., 2012). Suicidal NETosis occurs mainly in noninfectious

diseases. Phorbol-12-myristate-13-acetate (PMA) is a good

stimulus to induce suicidal NETosis in vitro, which has been

used originally and widely in studies (Brinkmann et al., 2004;

Jorch and Kubes, 2017; Kenny et al., 2017). PMA stimulation

initiates the activation of protein kinase C (PKC) and NADPH

oxidase (Bianchi et al., 2009; Thiam et al., 2020) which causes

reactive oxygen species (ROS) generation. Then, protein arginine

deiminase 4 (PAD4), an enzyme that citrullinates histones and

decondenses chromatin, is activated (Thiam et al., 2020). Finally,

chromatin is released into the cytosol and expelled out of the cell.

The purpose of this study is to explore methods to decrease

suicidal NETosis.

Borneol, a traditional Chinese medicine, has anti-

inflammatory, antioxidative, and analgesic effects (Liu et al.,

2021). As one of the borneol products, (+)-borneol is extracted

from fresh branches and leaves of Cinnamomum camphora (L.)

Presl. It is found that (+)-borneol can enhance the activity of

antioxidant enzymes such as superoxide dismutase and glutathione

peroxidase (Huang et al., 2020). (+)-Borneol can also increase the

expression of nuclear factor erythroid 2-related factor 2 (Nrf2)

which can activate antioxidant enzymes to alleviate the effects of

ROS (Li et al., 2021). Treating primary cultured cortical neurons

with (+)-borneol results in decreased ROS generation (Liu et al.,

2011). Furthermore, it is noteworthy that ROS are central to PMA-

induced NETosis. Stimulating neutrophils with PMA leads to ROS

generation (Papayannopoulos, 2018). ROS scavengers can inhibit

PMA-induced NETosis (Fuchs et al., 2007; Kenny et al., 2017).

Neutrophils isolated from chronic granulomatous disease patients

have impaired NADPH oxidase function, and stimulating them

with PMA fails to induce NETosis (Bianchi et al., 2009). Taking

into consideration the crucial role of ROS in NETosis, we speculate

that (+)-borneol reduces NETosis by regulating ROS generation.

In this study, we isolate neutrophils fromwhole human blood

and stimulate them with PMA to generate NETs. Then, we

demonstrate the inhibitory effects of (+)-borneol on NETosis,

and the underlying mechanism is also explored.

Materials and methods

Materials

(+)-Borneol was obtained from the Simcere Pharmaceutical

Group. Polymorphprep was obtained from Axis–Shield. RPMI-

1640 was obtained from Gibco. PMA and the NETosis assay kit

were obtained from Cayman Chemical. HEPES buffer, enhanced

cell counting kit-8 (CCK-8), and ROS assay kit were obtained

from Beyotime Biotechnology. The Quant-iT PicoGreen dsDNA

Assay Kit was obtained from Invitrogen. SYTOX Green nucleic

acid stain and Calcein Blue AM were obtained from Maokang

Biotechnology. Diphenyleneiodonium chloride (DPI) and

Go6976 were obtained from Selleck. C29 and TAK-242 were

obtained from MedChemExpress.

(+)-Borneol was dissolved in DMSO (80 mg/ml) and then

diluted with RPMI-1640 to different concentrations (1.56, 6.25,

25, 100, and 400 μM). PMA (1 mg/ml in DMSO) was diluted

with RPMI-1640 to 100 nM. The vehicle group had no

(+)-borneol or inhibitor but the same PMA and DMSO level

as the 400-μM (+)-borneol group. In the control group,

neutrophils were treated without PMA.

Donor consent

This study was approved by the Medical Ethical

Committee of Sir Run Run Shaw Hospital. Healthy

volunteers above the age of 18 were recruited. People were

excluded if they have a history of any chronic disorder or take

any medication within 2 weeks. Human blood was collected
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according to the Declaration of Helsinki. Participants

involved in the study provided written informed consent

before participation.

Neutrophil isolation

Blood was collected using EDTA-K2 blood collection tubes.

Neutrophils were isolated using Polymorphprep, according to

the manufacturer’s instructions. Briefly, 5 ml of fresh blood was

layered over 5 ml of Polymorphprep. After centrifugation at

600 g for 30 min, the lower band was collected and

erythrocytes were removed using RBC lysis buffer (CWBIO).

The neutrophils were washed and resuspended in RPMI-1640

supplemented with HEPES buffer.

Cell viability analysis

Cell viability was evaluated using enhanced cell counting kit-8.

The time points were determined according to the instruction.

Briefly, 5 × 104/well neutrophils from three healthy volunteers

were seeded in 96-well plates and treated with vehicle and

different concentrations of (+)-borneol (1.56, 6.25, 25, 100, and

400 μM) for 4 h. A measure of 10 μl/well of CCK-8 solution was

added and incubated for 1 h at 37°C. Wells containing no neutrophil

but the same volume of RPMI-1640 and CCK-8 solutions were set as

a negative control. The absorbance was then measured at 450 nm

using a microplate reader (SpectraMax M5, Molecular Device). The

results were normalized by dividing the value in the vehicle group

and representing as percentages.

NETosis analysis

NETosis analysis was performed, as previously described (Schulz

et al., 2020). Briefly, freshly collected neutrophils were plated in 24-

well plates (1 × 106/well). Neutrophils were treated with or without

inhibitors such as the NADPH oxidase inhibitor (DPI, 20 μM), PKC

inhibitor (Go6976, 1 μM), TLR2 inhibitor (C29, 100 μM), or

TLR4 inhibitor (TAK242, 100 μM) for 30 min at 37°C. Then,

400 μM (+)-borneol was added. After incubation for another

30 min, 100 nM PMA was added to each well to stimulate

NETosis and incubated for 4 h. At the end of incubation,

neutrophils were washed twice with 1 ml RPMI-1640 to remove

unbound neutrophil elastase. Then, S7 nuclease (50 U/ml) was added

to digest DNA and release NET-associated neutrophil elastase.

Following incubation for 30 min, 15 μl EDTA (500 mM) was

added to stop the effect of S7 nuclease. The supernatant was

collected for neutrophil elastase activity analysis using

N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide. Cell-free DNA

(cfDNA) was detected using the Quant-iT PicoGreen dsDNA Assay

Kit, according to the instruction. To explore the effect of (+)-borneol,

400 μMof it was added at three different time points (−30min, 0, and

30min) associated with PMA stimulation. Relative fold expression of

elastase and cfDNA was used in data analysis to make the results

comparable.

Reactive oxygen species assay

Freshly isolated neutrophils were resuspended in RPMI-1640 and

plated in 96-well plates (1 × 106/well) for 30min. Then, neutrophils

were treated with 400 μM (+)-borneol for another 30min, followed

FIGURE 1
(+)-Borneol has no effect on neutrophil viability. (A)Chemical structural formula of (+)-borneol. (B) 5 × 104 neutrophils from healthy volunteers
were treated with different concentrations of (+)-borneol (1.56, 6.25, 25, 100, and 400 μM) for 4 h, and the cell viability wasmeasured using a CCK-8
assay (n = 4).
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by stimulation by 100 nM PMA for 4 h. For ROS assay, 100 μl of

DCFH-DA (10 μM, diluted with RPMI-1640) was added to eachwell.

After incubation for 30 min at 37°C, fluorescence was detected at an

excitation wavelength of 480 nm and emission wavelength of 520 nm

using a microplate reader (SpectraMax M5, Molecular Device).

Neutrophil extracellular trap imaging

For imaging, 1 × 104 neutrophils were plated in Φ 15-mm glass

bottom dishes and incubated in the incubator for 30 min. Then, they

were treatedwith or without 400 μM(+)-borneol for another 30 min.

After that, 100 nM PMA was added to induce NETosis. After

stimulation for 4 h, neutrophils were washed with 1 ml PBS. We

used 5 μMCalcein Blue AM and 0.1 μM SYTOX Green nucleic acid

stain to visualize live neutrophils and DNA in NETs, respectively.

Images were acquired using a Nikon A1 confocal microscope.

Statistics

Data from at least three independent experiments are

presented as mean ± SEM. GraphPad Prism software (version

8.0) was used for data analysis. Student’s t-test and one-way

ANOVAwere used for two-group andmulti-group comparisons,

respectively. p < 0.05 was considered significant.

Results

(+)-Borneol has no effect on neutrophil
viability

The chemical structure of (+)-borneol is shown in Figure 1A.

To determine the effect of (+)-borneol on neutrophil viability, 5 ×

104 neutrophils from healthy volunteers were treated with

FIGURE 2
(+)-Borneol reduces PMA-induced NETosis. Neutrophils were stimulated with PMA for 4 h, (A)NETosis was measured by the NETosis assay kit,
and (B) cfDNA was measured by the Quant-iT PicoGreen dsDNA Assay Kit. Neutrophils were treated with (+)-borneol (1.56, 6.25, 25, 100, and
400 μM) at three different time points related to PMA stimulation. NETosis (C–E) and cfDNA (F–H)weremeasured, respectively. *p < 0.05, **p < 0.01,
and ***p < 0.001 compared with the control or vehicle groups (n = 3).
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different concentrations of (+)-borneol (1.56, 6.25, 25, 100, and

400 μM) for 4 h. Then, the viability of neutrophils was measured

using CCK-8 assay. As shown in Figure 1B, (+)-borneol did not

affect neutrophil viability significantly.

(+)-Borneol suppresses phorbol-12-
myristate-13-acetate-induced NETosis

Human neutrophils were isolated and stimulated with 100 nM

PMA, an activator of protein kinase C (PKC) and NADPH oxidase.

After stimulation for 4 h, the generation of NETs and dsDNA

increased significantly compared to the control group (Figures

2A,B). In order to investigate the effect of (+)-borneol on

NETosis, different concentrations of (+)-borneol were added to

the medium at different time points. In groups where (+)-borneol

were added 30min before PMA stimulation, 400-μM (+)-borneol

inhibited NETosis significantly (Figure 2C). Moreover, 400-μM

(+)-borneol exhibited similar inhibitory effects in groups where

(+)-borneol and PMA were added simultaneously (Figure 2D).

However, (+)-borneol had no inhibitory effect when added

30min after PMA stimulation (Figure 2E). The effect of

(+)-borneol on the generation of dsDNA was also evaluated.

(+)-Borneol decreased the generation of dsDNA significantly only

when added 30 min before PMA stimulation (Figures 2F–H).

The effect of (+)-borneol on NETosis
confirmed by live cell imaging

Immunofluorescence staining was used to visualize and

confirm the inhibitory effect of (+)-borneol on NETosis.

FIGURE 3
Immunostaining confirms the effect of (+)-borneol onNETosis. Neutrophils that had no treatment or stimulationwere set as control. In the PMA
group, neutrophils were stimulated with PMA for 4 h. In the (+)-borneol group, neutrophils were preincubated with 400-μM (+)-borneol for 30 min
before 100-nM PMA stimulation. We visualized live neutrophils and NETs with Calcein Blue AM (blue) and SYTOX Green nucleic acid stain (green),
respectively. Scale bars: 100 μm (n = 3).
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Neutrophils were pre-incubated with (+)-borneol for 30 min

before PMA stimulation. Neutrophils that had no treatment

or stimulation were set as control. We visualize live

neutrophils and NETs with Calcein Blue AM (cell-permeable)

and SYTOX Green nucleic acid stain (cell-impermeable),

respectively.

After PMA stimulation, neutrophils were characterized by

cell disruption, chromatin decondensation, and the subsequent

massive release of NETs. Consistent with the aforementioned

results, more neutrophils with morphological intact survived and

NETosis was inhibited when preincubated with 400 μM

(+)-borneol (Figure 3).

(+)-Borneol inhibits the generation of
reactive oxygen species

Next, we examined the effect of (+)-borneol on the

generation of ROS, which plays a crucial role in NETosis.

PMA stimulation induced a burst of ROS in neutrophils.

However, this PMA-stimulated ROS was inhibited

significantly by (+)-borneol (Figure 4A). To explore the effect

of (+)-borneol on ROS generation, we treated neutrophils with

DPI. Consequently, DPI decreased NETosis induced by PMA,

and (+)-borneol cannot enhance the effect of DPI (Figure 4B).

Detection of cfDNA showed similar results (Figure 4C).

Moreover, PMA-induced NETosis was inhibited by Go6976, a

PKC inhibitor. Treating neutrophils with (+)-borneol did not

change the inhibitory effect of Go6976 significantly (Figure 4D).

Likewise, the cfDNA assay showed consistent results (Figure 4E).

The effect of (+)-borneol on inhibiting
NETosis is independent of Toll-like
receptor 2/4

To explore the role of TLR2/4 on PMA-induced NETosis, we

pre-incubated neutrophils with C29 and TAK242 to inhibit

TLR2/4. Then, neutrophils were stimulated with PMA for

NETosis. It was worth noting that the inhibition of

TLR2 increased the generation of NETs and cfDNA induced

by PMA compared with PMA treatment alone (Figures 5A,B).

However, TAK242 preincubation did not change the level of

NETosis and cfDNA (Figures 5C,D). Compared with neutrophils

FIGURE 4
(+)-Borneol inhibits PMA-stimulated ROS generation. (A) ROS generation by neutrophils. ROS generation was measured in the presence or
absence of (+)-borneol before PMA stimulation. n = 4 per group. (B–E)NETs and cfDNA produced by neutrophils. n = 3 per group. (B,C)Neutrophils
were preincubated with 20 μM DPI for 30 min, followed by being treated with or without (+)-borneol for another 30 min and then stimulated with
PMA. (D,E) Neutrophils were pre-incubated with 1 μM Go6976 for 30 min, followed by being treated with or without (+)-borneol for another
30 min and then stimulated with PMA. *p < 0.05, **p < 0.01, and ***p < 0.001; ns = not significant.
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preincubated with C29/TAK242 alone, neutrophils treated with

(+)-borneol after preincubation of C29/TAK242 generated fewer

NETs and cfDNA after PMA stimulation (Figures 5A–D). These

results indicated that (+)-borneol suppressed NETosis in a way

independent of TLR2/4.

Discussion

NETs have been found to play increasingly important roles in

many diseases. The effect of NETosis is a double-edged sword

that should be taken seriously. In this study, we demonstrated for

the first time that (+)-borneol inhibits ROS generation and

NETosis of human neutrophils triggered by PMA stimulation

in vitro.

The stimulus used for NETosis in this study is PMA. PMA

stimulation initiates the activation of PKC and NADPH oxidase,

which causes ROS generation (Bianchi et al., 2009; Thiam et al.,

2020). Afterward, PAD4 is activated by ROS. Meanwhile,

neutrophil elastase and myeloperoxidase are released into the

cytosol from azurophilic granules. All these responses lead to

histone hypercitrullination and chromatin decondensation,

followed by NETosis (Jorch and Kubes, 2017). Previous

studies have shown that ROS inhibitors block PMA-induced

NETosis (Fuchs et al., 2007; Kenny et al., 2017). Neutrophils

isolated from chronic granulomatous disease patients have

impaired the NADPH oxidase function, and stimulating them

with PMA fails to induce NETosis (Bianchi et al., 2009).

Therefore, ROS are central to NETosis induced by PMA.

(+)-Borneol is a bicyclic terpenoid that has been shown to

synergistically enhance the antitumor and neuroprotective effects

of other drugs (Chen et al., 2014; Chen et al., 2015; Lai et al., 2020;

Xu et al., 2021). It has been proven to inhibit Aβ-induced ROS

generation in SH-SY5Y cells (Hur et al., 2013) and decrease

FIGURE 5
(+)-Borneol suppressed NETosis in a way independent of TLR2/4. (A,B) Neutrophils pre-incubated with 100 μM C29 were treated with or
without (+)-borneol and then stimulated with PMA. (A) NETosis and (B) cfDNA were detected after stimulation. (C,D) Neutrophils preincubated with
100 μMTAK242were treated with or without (+)-borneol and then stimulated with PMA. (C)NETosis and (D) cfDNAwere detected after stimulation.
n = 3 per group; *p < 0.05 and **p < 0.01; ns = not significant.
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neuronal ROS production caused by oxygen-glucose deprivation

(Liu et al., 2011). (+)-Borneol can also increase the expression of

Nrf2 (Hur et al., 2013), which can bind to antioxidant response

element receptors and induce the expression of antioxidant

enzymes to help resist ROS. Moreover, (+)-borneol exerts its

antioxidative effect by increasing the superoxide dismutase and

glutathione peroxidase activity (Yu et al., 2016). PMA can induce

mitochondrial ROS production in neutrophils despite a slight

effect on NETosis (Lood et al., 2016). A recent study shows that

(+)-borneol reduces mitochondrial ROS generation in

endothelial cells (Li et al., 2022).

Taking into consideration the important role of ROS in

NETosis and the antioxidative effect of (+)-borneol, we

evaluated the effect of (+)-borneol on NETosis. As shown

previously, 400-μM (+)-borneol inhibited PMA-induced

NETosis without affecting the neutrophil viability. We

measured ROS generation and found that (+)-borneol can

decrease PMA-stimulated ROS levels in neutrophils. DPI and

Go6976 can inhibit NADPH oxidase and PKC, respectively.

Treating neutrophils with them can result in a decrease in

PMA-induced ROS generation and inhibition of NETosis

(Fuchs et al., 2007; Hakkim et al., 2011; Kenny et al., 2017).

In this study, we used DPI and Go6976 to inhibit ROS to explore

the role of ROS in (+)-borneol’s effect on NETosis inhibition. As

shown in Figure 4, the effects of (+)-borneol on NETosis were

eliminated in neutrophils pre-treated with DPI or Go6976, which

further confirmed the finding mentioned previously. However, it

is noteworthy that the inhibitory effect of (+)-borneol on

NETosis is time-dependent. A stronger effect was observed

when (+)-borneol was added 30 min before PMA stimulation.

Thus, (+)-borneol therapy targeting NETosis may be effective in

some diseases, especially those with relatively slow neutrophil

activation. In future experiments, in order to realize the effect of

(+)-borneol in vivo, it should be administered before neutrophil

activation.

Currently, DNase is the most frequently used inhibitor of

NETs (Jorch and Kubes, 2017). It can eliminate DNA, which is

the framework of NETs, and the proteins attached in NETs are

then released. Thus, the detrimental effect of these proteins

cannot be neutralized. As shown in our study, (+)-borneol

inhibits ROS generation and NETosis of neutrophils triggered

by PMA stimulation. However, the effect of (+)-borneol on

NETosis in vivo and the specific mechanism await further study.

TLRs located on the cell surface and in endosomes are the first

pattern-recognition receptors to be identified (Baral et al., 2014).

They detect numerous damage-associated molecular patterns and

mediate innate immune responses. TLR2 and TLR4 are two vital

members of the neutrophil TLRs (Prince et al., 2011). NETosis can be

induced by bacteria, parasites, or lipopolysaccharides (infectious

stimuli) via TLR2 and/or TLR4 in a few minutes (Jorch and

Kubes, 2017). However, the roles TLR2/4 played in the process of

PMA-induced NETosis are not clear. In this study, we show that

inhibiting TLR4 has no effect on PMA-induced NETosis, which is in

line with the previous study (Khan et al., 2017). However, it is

interesting that inhibiting TLR2 results in an elevated level of

NETosis induced by PMA. Hitherto, TLR2 has not engaged

much attention in the process of PMA-induced NETosis. This

study indicates that the role of TLR2 in NETosis may be

mysterious, and future studies should pay more attention to it

because we have not found a reasonable explanation.

There are some limitations to our study. First, we showed that

(+)-borneol can inhibit ROS generation of neutrophils, but the exact

target of (+)-borneol in neutrophils during NETosis is still unclear.

Second, NETs can be induced by many stimuli; we only stimulated

neutrophils with PMA. Other stimuli such as lipopolysaccharide

(LPS), A23187, and the immune complex can also induce NETosis,

and the mechanisms involved are also different. The effect of

(+)-borneol on NETosis induced by other stimuli should be

studied in the future. However, PMA is a robust NET inducer

that has been used originally and widely in studies about NETosis

(Brinkmann et al., 2004; Jorch and Kubes, 2017; Kenny et al., 2017).

PMA, (auto) antibodies and cholesterol crystals elicit similar

pathways in NETosis (Jorch and Kubes, 2017). PMA stimulation

can induce suicidal NETosis in vitro which can be found in many

noninfectious diseases. The purpose of our study is to explore the

effect of (+)-borneol on suicidal NETosis. Thus, we selected PMA as

the stimulant. Third, according to the Chinese Pharmacopoeia, there

are three borneol products: (+)-borneol, (−)-borneol, and (±)

borneol. The functions of these products are similar but not

identical. However, only the function of (+)-borneol was

evaluated in this study. Therefore, our results may not be

applicable to other borneol products.

Conclusion

In summary, our study shows for the first time that

(+)-borneol inhibits ROS generation and NETosis of

neutrophils triggered by PMA stimulation in vitro. This

finding indicates that (+)-borneol therapy targeting NETosis

may be effective in some diseases.
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