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The ultimate goal of cancer treatment is to kill cancer cells, based on the use of

various therapeutic agents, such as chemotherapy, radiotherapy, or targeted

therapy drugs. Most drugs exert their therapeutic effects on cancer by targeting

apoptosis. However, alterations in apoptosis-related molecules and thus

assisting cells to evade death, eventually lead to tumor cell resistance to

therapeutic drugs. The increased incidence of non-apoptotic cell death

modes such as induced autophagy, mitotic catastrophe, senescence, and

necrosis is beneficial to overcoming multidrug resistance mediated by

apoptosis resistance in tumor cells. Therefore, investigating the function and

mechanism of drug-induced non-apoptotic cell death modes has positive

implications for the development of new anti-cancer drugs and therapeutic

strategies. Phytochemicals show strong potential as an alternative or

complementary medicine for alleviating various types of cancer. Quercetin is

a flavonoid compound widely found in the daily diet that demonstrates a

significant role in inhibiting numerous human cancers. In addition to direct

pro-tumor cell apoptosis, both in vivo and in vitro experiments have shown that

quercetin exerts anti-tumor properties by triggering diverse non-apoptotic cell

death modes. This review summarized the current status of research on the

molecular mechanisms and targets through which quercetin-mediated non-

apoptotic mode of cancer cell death, including autophagic cell death,

senescence, mitotic catastrophe, ferroptosis, necroptosis, etc.
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1 Introduction

Even with advances in medical technology and the

development of anti-cancer drugs, treatment for most cancers

remains a lingering problem. According to GLOBOCAN,

approximately 19.3 million patients will be newly diagnosed

with cancer and almost 10 million cancer patients died

occurred in 2020 worldwide, while the global cancer burden is

expected to reach 28.4 million cases in 2040 (Sung et al., 2021).

Mainstream cancer therapies include radiotherapy,

chemotherapy (anti-cancer drugs), surgery, and new anti-

tumor technologies such as immunotherapy and targeted

cancer therapy (Furue, 2003; Baskar et al., 2012; Vanneman

and Dranoff, 2012). The ultimate goal of all these therapies is to

regulate the survival or death of cancer cells, and anti-cancer

drugs can kill clonogenic malignant cells by regulating various

cell death modes, such as apoptosis, autophagy, senescence,

mitotic catastrophe, ferroptosis, necroptosis, etc. (Galluzzi

et al., 2018; Sun et al., 2022).

Apoptosis is a programmed cell death (PCD) process that

occurs following the stimulation of cells by various death

signals, which is characterized by caspase-dependent, cellular

contraction, and the formation of apoptotic body (Su et al.,

2020). Currently, the majority of chemotherapeutic drugs

inhibit the growth of cancer cells by inducing apoptosis,

thus providing treatment for various malignancies.

However, the inherent apoptotic resistance of cancer cells

or the occurrence of a series of pro-survival mutations occurs

during the malignant transformation rendering them resistant

to apoptosis, which is the main cause of radioresistance and

chemoresistance in most cancers (Liu et al., 2010; Carneiro

and El-Deiry, 2020; Cao et al., 2021). An early study has

demonstrated that the sensitivity of chemotherapeutic drug-

induced cell death via apoptosis depends on the activation of

caspases, such as cytarabine, doxorubicin, and methotrexate,

whereas the inactivation of caspases leads to drug resistance in

cancer cells (Los et al., 1997). As a key regulator of the

mitochondrial apoptotic pathway, overexpression of

members of B-cell leukemia/lymphoma-2 (BCL-2) family

proteins inhibit apoptosis both in normal cells and tumor

cells, which is another drug resistance factor (Kapoor et al.,

2020). Overall, most anti-tumor drugs exert their anticancer

activity by targeting cancer cells through apoptosis, and

apoptosis defective, manifested by mutations, deletions,

and/or overexpression of pro-apoptotic genes, contribute to

the development of acquired therapy resistance of cancer cells

to chemotherapeutic agents. Hence, it is essential to develop

adjuvant or alternative drugs that target the non-apoptotic cell

death modes.

Natural products are an essential source of anticancer lead

molecules due to their multi-targeting efficacy and low toxicity,

especially flavonoids (Yang H. et al., 2022a; Liao et al., 2022). As a

flavonoid with various biological activities, quercetin is

abundantly present in plants, fruits, and vegetables, mainly in

the form of glycosides, such as onions, apples, blueberries,

cauliflower, etc. (Batiha et al., 2020) (Figure 1). Considering

its anti-inflammatory and antioxidant abilities as well as the

modulating effects on tumor microenvironment, quercetin has

been added to functional foods as a dietary supplement for the

prevention and/or treatment of diverse diseases such as cancer

(Li Y. et al., 2016b; Andres et al., 2018; Reyes-Avendaño et al.,

2022). Numerous in vivo and in vitro research have found that

quercetin induces apoptosis in different cancer cell lines and

exhibits anti-tumor properties (Hashemzaei et al., 2017;

Khorsandi et al., 2017; Safi et al., 2021). Nevertheless, recent

studies suggest that quercetin may also kill cancer cells via several

different mechanisms. The current paper summarizes the

literature on the regulation of diverse cancer cell death modes

and mechanisms following cancer treatment with quercetin,

rather than apoptosis.

2 Background information on
quercetin

Quercetin, a member of the flavonoid family, with the

chemical name of 3,5,7-trihydroxy-2-(3,4-dihydroxy phenyl)-

4-Hchromen-4-one (Li Y. et al., 2016b). As a derivative of

phenyl benzoyl ketone, quercetin consists of two benzene

rings (A and B rings) linked by an oxygenated pyrene ring (C

ring), with the flavonoid structure C6 (A ring)-C3 (C ring)-C6 (B

ring) as the basic backbone (Figure 1). It is structurally evident

that the flavonol skeletal framework of quercetin has five

hydroxyl groups located on the 3,3′, 4′, 5 and 7 carbons,

therefore it is also known as pentahydroxyflavonol. The

relative substitution of various functional groups on the

flavonol molecule is the main cause and effect of the wide

range of pharmacological activities of quercetin and its

metabolites (Khan et al., 2016). For instance, the substitution

pattern of the A and B rings of quercetin and the presence and

amount of free hydroxyl groups in their backbone are known to

be key to the perceived free radical scavenging potential of

quercetin (Nabavi et al., 2012). The sugars, lipids, alcohols

and a sulphate groups are all able to conjugate to quercetin

via the O-glycosidic bond, resulting in the formation of its

derivatives (Williams and Grayer, 2004). Numerous studies

have confirmed that prenylated quercetin analogs show

powerful potential in antibacterial properties (Cushnie and
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Lamb, 2005; Wang et al., 2018). Furthermore, it was found that

the natural form of quercetin in the form of a sulphate conjugate

had significant anticoagulant activity (Guglielmone et al., 2020).

Hence, the investigation and development of functional group

substitutions for the different biological effects of quercetin

analogues is of considerable and far-reaching importance.

As the most popular dietary flavonoid, quercetin has the

wealthiest resources (Figure 1), with β-glucoside being the

main form of quercetin that exists in the diet. In the

gastrointestinal tract, glycosides are highly dependent on

microbially-derived β-glucosidases for hydrolyzing to the

aglycon before their absorption and transportation take

place (Zhao L. et al., 2022a). In intestinal epithelial cells,

quercetin is extensively metabolized to quercetin-3- and

quercetin-7-glucuronide. Afterward, they are rapidly

metabolized in the liver to methyl, glucuronides, or sulfate

conjugates, the forms of quercetin present in circulation

(Terao et al., 2011). Notably, the highly lipophilic nature of

quercetin determines its relatively low water solubility and

bioavailability. Consequently, it is imperative to investigate

the absorption, distribution, metabolism, and excretion

(ADME) of quercetin, which contributes to understanding

its bio-transfer in vivo. Yin et al. investigated the

pharmacokinetics of quercetin. After oral administration of

quercetin (50 mg/kg) to rats (n = 5), the pharmacokinetic

analysis showed that quercetin peaked after 1 h. The mean

plasma concentration (CMax) of quercetin was 7.47 ± 2.63 μg/

mL, and the average area under the plasma concentration-

time curve extrapolated to infinitive time (AUC0-∞) and

elimination half-life (t1/2) was 2,590.5 ± 987.9 mg/L*min

and 437.3 ± 54.3 min, respectively (Yin et al., 2019). The

distribution of quercetin in the tissues of rats fed with 0.2%

quercetin diet for 11 weeks was observed, and its

concentration distribution was in the following order:

lung > testis > kidney > thymus > heart > liver > brown

fat > bone > brain > spleen (de Boer et al., 2005). In addition,

researchers exposed pigs to a high-dose quercetin diet

[500 mg/kg/day)] for 3 days. The results showed that the

distribution of quercetin concentration is ranked by: liver >
kidney > brain > heart > spleen. 3-hydroxyphenylacetic acid,

benzoic acid, and hippuric acid are the main excretion

products of quercetin, the majority of which are excreted

through urine and feces, however, when taken in a high

amount of quercetin, the lungs are also one of the organs

of clearance (Walle et al., 2001; Guo and Bruno, 2015). The

safety of quercetin as a dietary supplement also requires

consideration. In a double-blind, placebo-controlled

crossover trial, the overweight or obese volunteers were

administered a relatively low dose of quercetin (150 mg/

day) for 6 weeks. The results of blood biochemical tests

showed that the parameters of biomarkers of liver and

kidney function (alanine transaminase, g-glutamyl-

transpeptidase, aspartate transaminase, creatinine, etc.)

were within normal limits, indicating no adverse effects of

FIGURE 1
Natural sources and chemical structure (Skeletal formulas and 3D stick representations) of quercetin.
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quercetin (Egert et al., 2009). Moreover, continuous

administration of quercetin (250–5,000 mg) for 28 days

showed no exacerbation of liver enzyme (aspartate

transaminase and alanine transaminase) levels in patients

with chronic hepatitis C (Lu et al., 2016). However, data

related to the safety evaluation of long-term, high-dose

quercetin supplementation are still limited. Hence, more

in-depth exploration of these issues is needed in future

intervention research.

As research progresses, quercetin has received increasing

attention for its nutritional and therapeutic potential,

benefiting from its wide range of biological activities (Yang

et al., 2020). Numerous in vivo studies have demonstrated the

strong potential of quercetin for anti-diabetes and its

complications, together with antioxidant, anti-inflammatory,

anti-viral, and significant neurological and cardiovascular-

related benefits (Patel et al., 2018; Shi et al., 2019; Yang et al.,

2019; Di Petrillo et al., 2022; Zhang et al., 2022). Moreover,

growing evidence suggests that in addition to apoptosis,

quercetin also exerts anti-tumor effects via multiple signaling

pathways that induce non-apoptotic cancer cell death modes,

making it a promising natural product for the prevention and

nutritional management of cancer (Rauf et al., 2018; Tang et al.,

2020).

3 Therapeutic mechanisms of
quercetin targeting non-apoptotic
cell death patterns in cancer

Different tumor therapy may induce cancer cell death via

diverse mechanisms. As a common mode of cell death caused by

impaired cytogenetic content, conventional cancer therapy

usually evokes cell death by inducing apoptosis, however, the

inherent and/or acquired apoptotic resistance of cancer cells

persists being a major hindrance to the efficacy of chemotherapy

(Farhat et al., 2014; Murray et al., 2014; Fox and Storey, 2015).

Chemotherapeutic drugs are also known to kill cancer cells via

other different mechanisms, including autophagic cell death,

mitotic catastrophe, senescence, ferroptosis, necroptosis, etc.

(Galluzzi et al., 2018; Sun et al., 2022). Quercetin induces cell

death via different mechanisms, the most common of which is

triggering apoptosis. However, it has been suggested that some

other mechanisms are also possible factors for quercetin to

trigger cancer-killing (Tang et al., 2020). With the sustained

exploration of cell death mechanisms, targeting non-apoptotic

cell death modes has emerged as a potentially new mechanism of

cell death induced by cancer therapies, which may complement

or replace apoptosis-induced cancer cell therapy (Denisenko

et al., 2016; Li et al., 2017). This section reviews the various

mechanisms of non-apoptotic cell death induced following

cancer therapy with quercetin based on the literature

conducted over the past 10 years (Tables 1, 2).

3.1 Quercetin and autophagy

Autophagy is a type II programmed cell death that prevents

tumor initiation and suppresses cancer progression in early

tumorigenesis. As a key regulator of cellular metabolism

during starvation, autophagy normally protects cells from

stressors like nutrient deprivation. (Kimmelman and White,

2017). Stimulation of the tumor microenvironment usually

triggers autophagy, such as nutrient deprivation, reactive

oxygen species (ROS), hypoxia, and pathogen invasion (Su

et al., 2015). Typically, autophagy passes through distinct

stages including induction of autophagy, nucleation of the

autophagosome, expansion, and elongation of autophagosomal

membranes, closure, and fusion of autophagosomes with

lysosomal membranes, and degradation and recirculation of

intracapsular products (Li et al., 2020). During cancer cell

survival, autophagy plays dichotomous role, exerting dynamic

tumor-suppressive or tumor-promoting effects at different stages

or settings (White, 2015; Levy et al., 2017). Although autophagy

promotes tumorigenesis, abundant evidence indicates that the

triggering of autophagy may limit tumor progression and

improve response to cancer therapy (White, 2015; Amaravadi

et al., 2019). In addition to the cytoprotective and cytotoxic forms

of autophagy, Gewirtz DA proposed in a review published in

2014 that autophagy is actually populated by at least two

additional players, a nonprotective form of autophagy and a

cytostatic form of autophagy (Gewirtz, 2014). As a survival

response, cytoprotective autophagy enables tumor cells to

evade apoptotic signals and become resistant to chemotherapy

and radiotherapy. When cytoprotective autophagy is blocked, it

can enhance the sensitivity of tumor cells to chemotherapy and

increase apoptosis in cancer cells (Ulasov et al., 2020; Xu et al.,

2022). For this reason, multiple clinical trials are currently being

conducted for treating cancer by targeting cytoprotective forms

of autophagy using autophagy inhibitors (e.g., chloroquine or

hydroxychloroquine) in combination with various conventional

therapeutic modalities tto achieve improved efficacy (Gewirtz,

2014). Although autophagy promotes tumorigenesis, abundant

evidence indicates that the triggering of autophagy may limit

tumor progression and improve response to cancer therapy

(White, 2015; Amaravadi et al., 2019). Cytotoxic autophagy

promotes tumor cell death, either by killing its own cells or

by acting as a precursor to apoptosis (Sui et al., 2013; Gewirtz,

2014). Generally, the key to distinguish between cytotoxic

autophagy and cytoprotective autophagy is to observe the

sensitivity of tumor cells to the therapeutic modality. Besides,

Thorburn A andGewirtz DA observed induction of another form

of autophagy by radiation, which would be termed

‘‘nonprotective’’, whose inhibition is neither affect cell

proliferation nor apoptosis (Bristol et al., 2013). In a

particular tumor cell line, the manner of treatment may

determine whether autophagy is cytoprotective or

nonprotective (Gewirtz, 2016). In 2014, Gewirtz DA proposed
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for the first time a novel form of autophagy, namely cytostatic

autophagy (Sharma et al., 2014). This study noted that combined

treatment with vitamin D (or a vitamin D analogue, EB 1089)

and radiation resulted in more pronounced growth inhibition in

non-small cell lung cancer cells than radiation alone, as well as

greater sensitivity to radiation. In addition, they identified that

radiation-induced conversion of cytoprotective autophagy to

cytostatic autophagy. Considering that cytostatic autophagy

usually mediates cell growth inhibition, this form of

autophagy may affect the effectiveness of chemotherapy and/

or radiotherapy targeting tumor cell growth arrest.

Unfortunately, there is no well-defined biochemical or

molecular signature that distinguishes these forms from each

other.

Quercetin has been demonstrated to promote and control the

regulation of autophagy in different types of cancers. Treatment

of Burkitt lymphoma cell lines with quercetin, LC3Ⅰ was

converted to LC3Ⅱ, which is commonly considered a

biomarker of autophagy, suggesting that quercetin induced a

complete autophagic flux (Granato et al., 2016). The same

findings were obtained in HL-60 xenograft mice, where

quercetin administration induced the conversion of LC3-I to

LC3-II and activated autophagy proteins, indicating that

quercetin treatment triggered the autophagic process and thus

anti-tumor growth (Calgarotto et al., 2018). In addition to

upregulating the LC3-II/I ratio in a dose-dependent manner, a

large number of double membranes were observed in quercetin-

treated glioma cell lines (Bi et al., 2016). In SH-SY5Y cells,

quercetin also induced autophagy by upregulating LC3II. This

study also revealed that quercetin restored organelle endoplasmic

reticulum homeostasis and alleviated the cytotoxic damage

induced to Cu by regulating the autophagic pathway

(Chakraborty et al., 2022). Moreover, the highest number of

cellular autophagic vacuoles was observed in HeLa cells treated

with 50 μM quercetin, but the number decreased instead at

higher doses (Wang et al., 2016). In lung cancer cells,

TABLE 1 Summarized mechanisms of autophagy following treatment with quercetin.

Cells/tumor Quercetin concentration Findings and involved
mechanisms

References

MG-63 cells Balb/c
nude mice

50, 100, and 200 μM 100 mg/kg/day i.g. Quercetin treatment up-regulated LC3B-II/LC3B-I and down-regulated
P62/SQSTM1 expression, suggesting that quercetin increased autophagic
flux in MG-63 cells. Specifically, quercetin induced osteosarcoma cell
death by inducing excessive autophagy mediated by the ROS-NUPR1
pathway

Wu et al. (2020)

BC3, BCBL1, and
BC1 cells

50 nM Quercetin treatment induced a complete autophagic flux. Furthermore,
further accumulation of the lipidated form of the autophagy marker LC3
(LC3-II) was observed in quercetin combined with vesicular proton pump
inhibitor-treated BC3, BCBL1, and BC1 cells compared to the single
treatments, and the cleavage of PARP in the cells was increased, indicating
that the combined treatment increased the cytotoxicity

Granato et al.
(2017)

SH-SY5Y Cells 50 nM Quercetin causes autophagy via up-regulation of microtubule-associated
protein LC3II bound by autophagic vesicles. In addition, quercetin exerts
against Cu-induced toxic damage by regulating the autophagic pathway to
restore endoplasmic reticulum homeostasis in cellular organelles

Chakraborty et al.
(2022)

MIA Paca-2GEMR cells 25, 50, 100, and 200 μM Quercetin treatment of MIA Paca-2 GEMR cells for 24 h or 48 h resulted
in a decrease in RAGE protein expression levels and a dose-effect increase
in the percentage of autophagic cells

Lan et al. (2019)

LM3 cells BALB/c
nude mice

80 and 120 μM 100 mg/kg/day i.g. Quercetin treatment induced cellular autophagy by upregulating
LC3 expression and downregulating P62 expression in a time-dependent
manner. These effects partially depended on quercetin downregulation of
JAK2 and STAT3 activation

Wu et al. (2019)

A549 cells 20, 40, and 80 μM Quercetin significantly enhanced TNF-related apoptosis-inducing ligand
(TRAIL)mediated lung cancer cell death by activating autophagic flux.

Moon et al. (2015)

U251 and U87 cells 30 μM Quercetin blocked t-AUCB-induced autophagy in a human glioblastoma
cell line by inhibiting the expression of Hsp27 and Atg7

Li et al. (2016)

AGS and MKN28 cells 40 μM for AGS cells 150μM for MKN28 cells Quercetin-induced autophagy decreased its therapeutic effect in gastric
cancer cells. miR-143 targeting GABARAPL1 effectively inhibited
autophagy in gastric cancer cell lines, which could improve the efficacy of
quercetin.

Du et al. (2015)

CAOV3 and primary
ovarian cell

10, 20, and 40 μM for CAOV3 cells 20, 40, and
80 μM for primary ovarian cell

Quercetin treatment triggers protective autophagy through activation of
the p-STAT3/Bcl-2 axis induced by endoplasmic reticulum stress.

Liu et al. (2017a)
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TABLE 2 Summarized mechanisms of non-apoptotic death of cancer cells following treatment with quercetin.

Cells/tumor Quercetin
concentration

Cell death
type

Findings and involved
mechanisms

References

T24 cellS 40, 60, or 80 μM Senescence Quercetin treatment showed an increase in the
percentage of the nuclear characteristic of the
senescence process, the cell nucleus area, as a result of
the morphological analysis of the cell nuclei

Adami et al. (2021)

Colo-320 and Colo-741 cells 25 µM Senescence After treatment with quercetin, Lamin B1, p16, and
cyclin B1 immunoreactivity were increased in Colo-
320 and Colo-741 cells, which is usually considered a
marker of cellular senescence

Özsoy et al. (2020)

C6 and U87 cells 25 μM Senescence Treatment with quercetin for four consecutive days
increased the levels of senescence markers in C6 and
U87 cells, furthermore senescence-associated cell
morphological changes such as flattening, increased
particle size, and cell enlargement could be observed. In
addition, HDAC inhibited the positive effects of
quercetin-induced senescence

Vargas et al. (2014)

U87-MG, U251 and SHG44 cells 50,100, or 200 μM Senescence Quercetin promotes glioma cell senescence via
inhibition of the Ras/MAPK/ERK signaling pathway in
a dose-dependent manner

Pan et al. (2015)

HeLa cells 30, 60, or 90 μM Senescence After 18 h of quercetin treatment, Hela cell density
increased in the G2/M phase of the cell cycle, reflecting
cell cycle arrest at that stage

Bishayee et al. (2013)

U251 cells 10, 20, 30, or 40 μM Senescence The number of U251 glioblastoma cells in sub-G2/M
phase increased after treatment with quercetin
(10–30 μM) for 24 h, indicating that quercetin caused
G2/M phase arrest

Liu et al. (2017b)

SKOV3 and U2OSPt cells 10 and 50 µM Senescence After treatment with quercetin in SKOV3 and U2OSPt
cells, cell cycle distribution was significantly altered.
Quercetin treatment affected the cell cycle in G1/S and
G2/M phases by decreasing cyclin D1 and cyclin
B1 levels

Catanzaro et al. (2015)

A549 cells 10, 30, or 60 μM Mitotic
catastrophe

Quercetin treatment exerted the inhibitory effect on the
proliferation of A549 cells mainly via the induction of
mitotic catastrophe and apoptosis. The mechanism
may involve the perturbation of mitotic microtubules,
leading to the monopolar spindle formation, which
leads to the failure of cytokinesis

(Klimaszewska-
Wiśniewska et al., 2017)

Hepa1c1c7 cells 0.01 μM Mitotic
catastrophe

Low concentrations of quercetin treatment produced
mitotic catastrophe. Disproportionate DNA
segregation was observed when quercetin
concentration was as low as 0.01 μM

Jackson et al. (2016)

MCF-7 and MDA-MB-231 cells 0.1, 1, and 10 μM Ferroptosis Quercetin treatment upregulated intracellular iron,
carbonyl protein, and MDA levels in breast cancer cells
in a dose-dependent manner. The pharmacological
effects of quercetin on killing breast cancer cells might
be related to the promotion of TFEB expression and
nuclear transcription, which induce the occurrence of
iron death

An and Hu, (2022)

HepG2, Hep3B, MDA-MB- 231,
and HCT116 cells

50 μM Ferroptosis Quercetin possesses the effect of promoting lysosome-
dependent ferritin degradation and free iron release,

Wang et al. (2021a)

(Continued on following page)
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quercetin treatment also significantly increased Beclin 1 protein

expression and the number of autophagic vacuoles and

autophagosomes (Guo et al., 2021). Contrasting results were

observed in human glioblastoma cell lines, where quercetin

treatment increased the formation of autophagic lysosomal

vesicles but had no effect on the expression of Beclin-1 (Kim

et al., 2013). Mammalian target of rapamycin protein (mTOR) is

one of the key proteins regulating the autophagic process, causing

phosphorylation and inactivation of autophagy protein (ATG),

thus inhibition of mTOR leads to upregulation of ATG and

initiation of the autophagic process (Kim et al., 2011; Kim and

Guan, 2015). In an in vivo and in vitro study, quercetin was used

to treat breast cancer. This study indicated that quercetin induced

cellular autophagy by inactivating the protein kinase B (Akt)-

mTOR pathway, while the use of Akt-mTOR pathway inducers

and autophagy inhibitors further confirmed the involvement of

the Akt-mTOR pathway in quercetin-induced autophagy (Jia

et al., 2018). Similarly, autophagosomes and autophagolysosomes

were significantly increased in hepatocellular carcinoma (HCC)

cells after quercetin treatment. By using pathway-specific

inhibitors or activators, it is suggested that quercetin

stimulates autophagy by inactivating the AKT/mTOR pathway

and activating the MAPK pathway (Ji et al., 2019). In addition,

quercetin significantly induced cellular autophagy and enhanced

gemcitabine-induced cytotoxicity by inhibiting the

phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR axis in

pancreatic cancer cells (Lan et al., 2019). In addition,

quercetin may also induce autophagy in cancer cells through

other mechanisms. Wu et al. found that quercetin treatment

induced cellular autophagy by upregulating LC3 expression and

downregulating p62 expression in a time-dependent manner.

These effects were at least partially dependent on quercetin

downregulation of Janus kinase 2 (JAK2) and signal

transducer and activator of transcription 3 (STAT3) activation

(Wu et al., 2019). In primary ovarian cancer (OC) cells, quercetin

treatment activates the p-STAT3/Bcl-2 axis followed by

induction of protective autophagy (Liu, Gong, et al., 2017). In

TABLE 2 (Continued) Summarized mechanisms of non-apoptotic death of cancer cells following treatment with quercetin.

Cells/tumor Quercetin
concentration

Cell death
type

Findings and involved
mechanisms

References

which in synergy with quercetin-induced ROS
generation leads to lipid peroxidation and ferroptosis.

MCF-7 cells 50 μM Necroptosis Quercetin significantly inhibited MCF-7 cell viability
and proliferation via activation of apoptotic and
necroptosis signaling pathways. Quercetin possesses a
necroptosis-inducing effect possibly by increasing the
expression of RIPK1 and RIPK3

Khorsandi et al. (2017)

Giant cell tumor of bone 120 μM Necroptosis and
autophagy

The ultrastructural changes observed in giant cell
tumors of bone cultured quercetin for 24 h
corresponded mainly to necroptosis, secondary
necrosis, and autophagocytosis

Estrada-Villaseñor et al.
(2021)

4T1 cells nude mice with
subcutaneous injection of
4T1 cells (107/mL)

Not mentioned (in vivo)
20 mg/kg/day, i.p. (in vivo)

Pyroptosis Quercetin-treated BCRD rat, serum IFN-γ, IL-10, and
IL- 2 levels were significantly upregulated, which
probably via promoting anti-tumor immune response.
In addition, quercetin partially reversed the pyroptosis
on LPS-cultured 4T1 cells in vitro, as evidenced
markedly by upregulating the ASC, NLRP3 and
Caspase-1

Zhu et al. (2022)

FIGURE 2
Mechanisms of autophagymodulation by quercetin in cancer
(By Figdraw).
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the study of quercetin-induced osteosarcoma cell death,

quercetin promoted the expression of autophagy-related genes

through activation of NUPR1 gene activity, which subsequently

triggered excessive autophagy in cancer cells (Wu et al., 2020).

There are complex interactions between autophagy and

apoptosis. A study confirmed that quercetin significantly

enhanced tumor necrosis factor (TNF)-related apoptosis-

induced ligand-mediated lung cancer cell death through

activation of autophagy (Moon et al., 2015) (Figure 2).

Interestingly, the combination of quercetin with other drugs

can improve the antitumor efficacy of quercetin by inhibiting or

inducing autophagy. Granat et al. demonstrated that quercetin

treatment induced a complete autophagic flux in the primary

effusion lymphoma (PEL) cell lines. Furthermore, further

accumulation of the lipidated form of the autophagy marker

LC3 (LC3-II) was observed in quercetin combined with vesicular

proton pump inhibitor-treated BC3, BCBL1, and BC1 cells

compared to the single treatments (Granato et al., 2017).

Another study demonstrated that quercetin-induced

autophagy reduced its therapeutic effect on gastric cancer

(GC) cells, and treatment with quercetin combined with miR-

143 agonist, an inhibitor of autophagy in GC cells targeting

GABARAPL1, could improve the antitumor efficacy of quercetin

(Du et al., 2015). In addition, quercetin combined with soluble

epoxide hydrolase inhibitor (t-AUCB) promotes cell death by

inducing autophagy blockade, which may be a potential strategy

for the treatment of glioblastoma (Li J. et al., 2016a).

3.2 Quercetin and senescence

Cellular senescence, a permanent state of cell cycle arrest due

to various cancer-induced stresses, inhibits cancer by irreversibly

preventing cell proliferation and is one of the protective

mechanisms against cancer in addition to apoptosis (Collado

et al., 2007; Calcinotto et al., 2019). Cellular stress, DNA damage,

and oncogene activation are among the stimuli that cause cellular

senescence (Ma et al., 2018; Jochems et al., 2021). Besides the cell

cycle arrest, the morphological features that accompany cellular

senescence include cellular enlargement, flattening,

vacuolization, and occasionally multinucleation or increased

nuclear occupancy. However, these changes are usually only

observed during cellular senescence in vitro cultures, while in

vivo senescent cells maintain normal morphologically

determined tissue structure (Collado and Serrano, 2006;

Muñoz-Espín and Serrano, 2014; Bernadotte et al., 2016). In

cultured cells and/or tissues, the detection of a collection of

biomarkers is used to define senescence. The histochemical assay

for β-galactosidase activity is the most widely used assay for

senescence. Common mediators of senescence, including p16,

ARF, p53, p21, p15, and p27, are also typical biomarkers of

senescence (Muñoz-Espín and Serrano, 2014). In addition,

alterations in Lamin B1 levels are a common feature of many

types of senescence (Lukášová et al., 2018; Radspieler et al., 2019).

Generally, senescence is considered as an effective anti-tumor

mechanism through which cancer cells proliferate and inhibit

malignant progression. Furthermore, senescence is one of the

physiological tumor suppressor mechanisms that limit the

progression of tumors from benign tumor lesions to

malignant ones. As a consequence of these effects, it has

cancer suppressive potential, while senescence-associated

secretory phenotype (SASP) plays an important role in the

pathophysiological role of senescent cells (Wyld et al., 2020;

Özsoy Gökbilen et al., 2022). However, the signaling pathway of

senescence is also a key effector of radiotherapy and

chemotherapy injury, which may lead to reduced recovery in

patients receiving anticancer therapy and may result in cancer

recurrence. On the other hand, growing evidence indicates that

senescent cells may induce proliferative pathology in cancer,

moreover, SASP factors may also trigger epithelial-mesenchymal

transition (EMT) in premalignant epithelial cells (Liu and

Hornsby, 2007; Kuilman et al., 2008). Therefore, the use of

senolytic agents to remove senescent cells may play a key role

in preventing cancer recurrence.

It was found that quercetin can induce senescence in cancer

cells. In quercetin-treated T24 bladder cancer cells, an increase in

the percentage of nuclei during cellular senescence was observed

by nuclear morphometric analysis (NMA) (Adami et al., 2021).

Furthermore, the immunoreactivity of Lamin B1, p16, and cyclin

B1, markers of cellular senescence, was also increased in Colo-

320 and Colo-741 cells after treatment with quercetin (Özsoy

et al., 2020). Pan et al. found that the mechanism by which

quercetin promotes cellular senescence may be via inhibition of

the Ras/MAPK/ERK signaling pathway in a dose-dependent

manner (Pan et al., 2015). In another study, treating C6 and

U87 cells with quercetin for 4 consecutive days elevated levels of

cellular senescence markers, furthermore senescence-associated

cell morphological changes such as flattening, increased particle

size, and cell enlargement could be observed. The researchers also

found that histone deacetylase (HDAC) played a key role in

quercetin-induced senescence. HDAC inhibitors significantly

enhanced quercetin-induced senescence in human and rat

glioma cell lines (Vargas et al., 2014). Quercetin triggers

cellular senescence probably by increasing the expression of

tumor suppressor gene p53 and cell cycle protein-dependent

kinase (CDK) and cyclin B1 inhibitors p21, p27, thus inducing

cell cycle arrest in G1 and G2/M phases (Tang et al., 2017; Özsoy

Gökbilen et al., 2022). A study in 2013 showed that quercetin

treatment for 18 h increased Hela cell density in the G2/M phase

of the cell cycle, reflecting cell cycle arrest at this stage (Bishayee

et al., 2013). Moreover, Liu et al. confirmed the same finding in

different cell lines. After quercetin treatment for 24 h, the number

of U251 glioblastoma cells in the sub-G2/M phase increased,

indicating that quercetin induced G2/M phase arrest and thus

inhibited U251 cell proliferation (Liu, Tang, et al., 2017).

Cantanzaro et al. designed a study to investigate the factors by
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which quercetin affects the G1/S and G2/M cell cycles. The

results showed that quercetin treatment on SKOV3 and

U2OSPt cells for 48 h significantly altered the cell cycle

distribution, possibly affecting the G1/S and G2/M phases of

the cell cycle by decreasing the levels of cyclin D1 and cyclin B1

(Catanzaro et al., 2015).

Quercetin is usually not as powerful as targeted senolytics

agents, but quercetin in combination with other senolytic agents

can be more effective in removing senescent cells. Zhu Y et al. first

reported a senolytic cocktail (Dasatinib combined with quercetin)

that effectively killed senescent cells with the help of small

interfering RNA (Zhu et al., 2015). Subsequently, in two open-

label Phase I pilot studies, researchers demonstrated for the first

time that senolytic agent (Dasatinib combined with quercetin)

significantly reduces human senescent cell burden and provided

preliminary evidence that senolytic agents may alleviate physical

dysfunction in patients with idiopathic pulmonary fibrosis (IPF)

(Hickson et al., 2019; Justice et al., 2019). Notably, some

chemotherapeutic agents that exert their antitumor effects via

the induction of cancer cell senescence also trigger cellular

senescence in normal cells, which drives the development of a

malignant phenotype in residual living tumor cells (Demaria et al.,

2017; Bruni et al., 2019). Quercetin has been demonstrated to

reduce chemotherapeutic drug-induced aging in combination with

anticancer drugs. Recent studies have established that quercetin

pre-treatment can prevent doxorubicin-induced senescence in

normal cells by reducing the number of senescent cells and the

production of SASP factors (Bientinesi et al., 2022). Furthermore,

quercetin pre-treatment may also protect normal cells from

doxorubicin treatment-induced ROS damage, by increasing

cellular antioxidant defense. In another study, a quercetin

derivative (quercetin-3-O-β-D-glucuronide) also showed a good

inhibitory effect on cellular senescence in doxorubicin-treated

HDFs and HUVECs cells (Yang et al., 2014). Considering that

cancer cells may use senescence as an escape strategy from cancer

treatment, the use of quercetin may selectively remove

spontaneous cancer cells previously induced by chemotherapy

and/or radiotherapy. Therefore, the use of some phytochemicals

as senolytic agents or protectors, such as quercetin, is probably

useful for overcoming tumor resistance (Figure 3).

3.3 Quercetin and mitotic catastrophe

Mitotic catastrophe is another critical non-apoptotic

mechanism of cancer cells, defined by the Nomenclature

Committee on Cell Death (NCCD) in 2012, which usually

occurs after massive damage to DNA following ROS

generation (Galluzzi et al., 2012). Cells undergoing mitotic

catastrophe are often in partnership with other mechanisms of

cell death, such as autophagy, senescence, or, necroptosis (Eom

et al., 2005; Zhao W. et al., 2022b; Egorshina et al., 2022). Recent

studies have found that the therapeutic efficiency of anticancer

modalities such as radiotherapy and chemotherapy can be

reinforced by stimulating mitotic catastrophe, which is also a

promising way to overcome multidrug resistance (Pérès et al.,

2015; Bai et al., 2017). In addition, ionizing radiation (IR) can

also trigger immune cell mitotic catastrophe (Adjemian et al.,

2020). Hence, the stimulation of mitotic catastrophe constitutes a

new direction for tumor therapy. However, very few studies have

evaluated the effects of quercetin on mitotic mutations, and the

available studies have only found that quercetin induced mitotic

mutations, but precisely little has been done to characterize

exactly what signals are involved. Jackson et al. characterized

the effect of different concentrations of quercetin on mitotic

mutagenesis in Hepa1c1c7 cells. The results demonstrated that

aberrant mitotic images were observed at concentrations as low

as 0.01 μM quercetin, showing disproportionate DNA

segregation (Jackson et al., 2016). Sufficient evidence

documented that such mitotic abnormalities may eventually

lead to mitotic catastrophes (Zhu et al., 2005). Thus, it

appears that utilizing lower doses of quercetin to trigger

mitotic catastrophes would significantly limit the side effects

of the administration of large doses of quercetin anti-tumor. In

another study, to investigate whether quercetin can induce

growth inhibition in A549 cells by altering the cell cycle,

image cytometric analysis of cellular DNA content was used

to assess the effect of quercetin on cell cycle distribution. It was

found that quercetin treatment dose-dependently resulted in a

decrease in cell cycle distribution in G0/G1-phase accompanied

by an increase in cell cycle distribution in G2/M-phase in

A549 cells (Kobayashi et al., 2008). Moreover, the researchers

attribute the failure of cytokinesis to quercetin-induced mitotic

catastrophe, with monopolar spindle formation caused by

perturbation of mitotic microtubules as a possible mechanism.

However, the mechanism of quercetin in regulating mitotic

catastrophe needs further elucidation (Figure 3).

FIGURE 3
Modulation of senescence and mitotic catastrophe in cancer
cells by quercetin (By Figdraw).
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3.4 Quercetin and ferroptosis

Ferroptosis, a novel mode of cell death first introduced in

2012, depends on intracellular iron and differ from apoptosis,

necroptosis, and autophagy in morphology and biochemistry

(Dixon et al., 2012; Lei et al., 2022). Ferroptosis is mainly

characterized by iron ion accumulation and ROS-induced

lipid peroxidation, which morphologically induces marked

mitochondrial contraction, increased membrane density, and

reduction or disappearance of mitochondrial cristae (Xie et al.,

2016; Yang and Stockwell, 2016). The important role of

ferroptosis in oxidative stress, iron metabolism, inflammation,

and amino acid metabolism has been convincingly established

(Galaris et al., 2019; Sun et al., 2020; Yang J. et al., 2022b).

Correspondingly, ferroptosis involves multiple physiological and

pathological processes, including hematological disorders,

ischemia-reperfusion injury, renal injury, and particularly

tumor inhibition (Mou et al., 2019; Chen et al., 2021; Li et al.,

2021; Zhao et al., 2021).

Recently, it has been found that quercetin exerts anti-tumor

effects via triggering ferroptosis to induce cancer cell death. The

activation of ferroptosis involves multiple signaling pathways.

Recent research has identified a new ferroptosis-inducing

pathway stimulated by autophagy, namely autophagy-

dependent ferroptosis, which is selective autophagy that

contributes to ferroptosis (Pierzynowska et al., 2021). During

autophagy, the macromolecules in need of degradation are

engulfed by phagophores, followed by acid hydrolase digestion

of their contents by the lysosome. Transcription factor EB

(TFEB) is the master gene for lysosomal biogenesis and

autophagy (Settembre et al., 2011; Medina et al., 2015). These

findings enlighten us that lysosomal storage diseases (LSD) and

related molecular pathogenesis may involve the regulation of

ferroptosis. Wang et al. found that the induction of cell death by

quercetin could be reversed by lysosomal inhibitors and

knockdown of the TFEB, which indicated the involvement of

lysosomes in quercetin-induced cell death (Wang Z. X. et al.,

2021b). In addition, quercetin promotes ferritin degradation, free

iron release, and lipid peroxidation, which was induced by

promoting nuclear TFEB and transcriptional activation of

lysosomal genes that induce lysosomal activation and inducing

ROS production. The synergistic effect of both together leads to

iron death. Interestingly, another research also demonstrated

that TFEB-mediated lysosomal activation plays an important

role in quercetin-induced ferroptosis (An and Hu, 2022). In

breast cancer cells, quercetin treatment induced the onset of

ferroptosis by promoting TFEB expression and nuclear

transcription. Further mechanistic studies showed that the

degradation of ferritin and release of ferric ions were

regulated by the lysosome-related gene LAMP-1, which was

up-regulated due to the high expression of TFEB in the

nucleus. Notably, quercetin exhibits a therapeutic effect in

several non-tumor disease models due to its significant

antioxidant activity characterized by reduced malondialdehyde

(MDA) and lipid ROS levels and increased glutathione (GSH)

levels, which contradicts the induction of ferroptosis in tumor

cells (Wang Y. et al., 2021a; Jiang et al., 2022). ROS is a double-

edged sword, and the heterogeneity of tumor cells and non-

tumor cells leads to their different responses to ROS. Therefore,

quercetin may exhibit opposite abilities in regulating ROS in

different cells. Thus, the mechanisms and signaling pathways of

quercetin regulation of ferroptosis for cancer treatment still need

to be further elucidated (Figure 4).

3.5 Quercetin and necroptosis

As another important mechanism of cancer cell death,

necroptosis was initially found to be an alternative to

apoptosis following the involvement of death domain

receptors (Degterev et al., 2005). Triggering necrosis in cancer

cells is a promising way to avoid the failure of cancer

chemotherapy due to apoptosis resistance by bypassing the

apoptotic pathway to induce cancer cell death. As such, the

molecular mechanisms of necroptosis have been well

investigated, which depends critically on receptor-interacting

serine-threonine kinase 1 (RIPK1), RIPK3, and mixed lineage

kinase domain-like (MLKL), regardless of the upstream trigger

(Hu et al., 2022; Yan et al., 2022). Currently, only limited

experiments have shown the induction of necroptosis in

cancer cells by quercetin. A study was conducted to observe

the ultrastructural changes of quercetin on giant cell tumor of

bone (GCTB) cells. The researchers demonstrated that, in

addition to autophagy, quercetin treatment affected all

histological components of necroptosis and secondary

necroptosis by increasing the expression of RIPK1 (Estrada-

Villaseñor et al., 2021). Another study reported that quercetin

FIGURE 4
Modulation of ferroptosis and necroptosis in cancer cells by
quercetin (By Figdraw).
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treatment of MCF-7 breast cancer cells depended onmultiple cell

death pathways, which mainly involve necroptosis (Khorsandi

et al., 2017). This study indicated that quercetin induced

necroptosis mainly through increasing the expression of

RIPK1 and RIPK3. However, other studies indicated that

quercetin treatment inhibits M1 macrophage/microglia

polarization after spinal cord injury by inhibiting signal

transducer and activator of transcription-1 (STAT1) and

nuclear factor kappa-B (NF-κB) pathways, which ultimately

results in partial alleviation of necrosis of Oligodendrocytes

(Fan et al., 2019). The contradictory findings suggest that

quercetin may possess the ability to specifically identify and

kill tumor cells, which results in opposed effects in tumor

cells and non-tumor cells. However, numerous types of

research are still needed to confirm this conjecture (Figure 4).

3.6 Quercetin and pyroptosis

Pyroptosis, programmed cell death in the form of

inflammation, is mediated by the gasdermin family (GSDMs)

(Kovacs and Miao, 2017). In the canonical pathway of

pyroptosis, certain inflammasomes drive cysteinyl aspartate

specific proteinase-1 (Caspase-1) activation, leading to cleavage

of gasdermin D (GSDMD) and activation of the inactive cytokines

like interleukin-18 (IL-18) and interleukin-1beta (IL-1β),
ultimately triggering pyroptosis (He et al., 2015; Schneider

et al., 2017). Recent evidence suggests that pyroptosis induces a

strong inflammatory response and shows a strong tumor

regression effect (Fang et al., 2020). Currently, quercetin has

not been reported to possess anti-tumor effects through the

regulation of pyroptosis. However, it has been investigated that

the specific role of quercetin in breast cancer-related depression

(BCRD), in which the inhibition of pyroptosis and promotion of

immune response are the main mechanisms for effectively

mitigating the progression of BCRD (Zhu et al., 2022). In this

study, quercetin partially reversed the pyroptosis on LPS-cultured

4T1 cells in vitro, as evidenced markedly by upregulating the card

structural domain, NLR family pyrin structural domain (NLRP3),

and Caspase-1. In addition, quercetin also promoted an anti-

tumor immune response in xenograft mice. Quercetin

treatment significantly upregulated the levels of interferon-

gamma (IFN-γ), interleukin-10 (IL-10), and interleukin-2 (IL-2)

in BCRD Mice. However, the modulation pathways of pyroptosis,

especially the immunological effects, remain to be further

elucidated after the treatment of cancer with quercetin.

4 Summary and future perspective

In summary, this paper reviews the progress of pharmacological

research on the non-apoptotic cell death modes induced by

quercetin in cancer cells in the last decade. Various cancer cell

death modes are interrelated, and regulators of different death

modes may crosstalk each other, causing shifts between modes

and even accelerating or alleviating tumor cell death. The crosstalk

between these cell death mechanisms is complex. For example,

apoptosis, autophagy and necrosis are interrelated. Autophagy may

promote or antagonize apoptosis through multiple mechanisms, as

many regulators, including the mTOR kinase pathway, Beclin 1,

caspases, and p53, are involved in both autophagy and apoptosis

(Nikoletopoulou et al., 2013; Gali-Muhtasib et al., 2015).

Furthermore, a genetic relationship exists between autophagy and

aging. On the one hand, the aging program controls the activation of

autophagy, on the other hand, different types of autophagy

regulation can act through either an anti- or pro-senescence

mechanism (Kang and Elledge, 2016). Most anti-cancer drugs

exert their efficacy in killing cancer cells mainly by inducing

apoptosis, however, apoptosis-resistant cancer cells are often

present in the advanced stages of tumor formation and

metastasis. Fortunately, some plant-derived components may

induce the death of cancer cells resistant to apoptotic stimuli

through other non-apoptotic mechanisms. Emerging evidence

indicates that quercetin indirectly kills cancer cells by promoting

the modes of apoptosis, mitotic catastrophe, senescence, ferroptosis,

necroptosis, and pyroptosis. Correspondingly, the induction of each

non-apoptotic cancer cell death mode by quercetin is dependent on

the up- or down-regulation of some survival-relatedmediators, such

as mTOR, AKT, p53, p21, p15, p27, RIPK1, RIPK3, NLRP3, etc. In

addition to exerting anticancer effects through the regulation of

epigenetics, the sensitivity of tumor cells to chemotherapeutic agents

could be enhanced synergistically by quercetin (Bądziul et al., 2014;

Kedhari Sundaram et al., 2019; Zhai et al., 2021). Surprisingly, the

experiments conducted by Kovacovicova et al. suggested that the

combination of dasatinib and quercetin did not synergistically

increase the antitumor efficacy of adriamycin or remove

adriamycin-induced HCC senescent cells, and even dasatinib +

quercetin alone shown acute pro-tumorigenic effects

(Kovacovicova et al., 2018). Given the comprehensive and

complex pharmacological treatment strategy for oncology

patients with underlying diseases, the use of quercetin needs to

be carefully considered. Besides, several studies have found that the

efficacy of quercetin for inducing cellular autophagy is strongly

correlated with the concentration of administration, with the

advantage of lower concentrations being more pronounced (Kim

et al., 2013).

However, the current research still has some objective

limitations, and many issues affecting the development of

quercetin as a drug remain to be solved. Firstly, the low

bioavailability, poor stability and weak tumor-targeted

biodistribution of quercetin extremely limit its application as

an anti-tumor drug. To address these challenges, researchers

developed some strategies to increase the bioavailability of

quercetin. As a carrier for quercetin, chitosan helps quercetin

release into the target site in a sustained and controlled state

through various epithelial systems, thus enhancing cellular
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uptake (Rashedi et al., 2019; Elsayed et al., 2021). Lipid

nanoparticles are also effective in enhancing the bioavailability

of quercetin (Lou et al., 2016; Ren et al., 2017; Chen et al., 2020).

Hence, the development of novel carriers and overlays for

quercetin to enhance its bioavailability and targeted tumor

effect is a critical research direction in the future. Secondly,

most of the currently available studies on the pharmacological

effects of quercetin in the non-apoptotic mode of induction of

cancer cells are dominated by animal and cellular experiments,

whereas large-sample, multicenter randomized controlled

clinical trials are still needed to explore its true efficacy on

tumors, including side effects. Thirdly, considering that the

appropriate transfer of drug doses from animal models to

humans is important in the development of new drugs, we

recommend that additional investigations must be conducted

to determine the appropriate and most effective doses for human

use. Last but not least, the effects of quercetin on cell death

mechanisms such as mitotic catastrophe, ferroptosis, necroptosis,

and pyroptosis need to be fully investigated in terms of network

pharmacology and genomics.
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