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The prevalence and mortality rates of cardiovascular diseases are increasing,

and new treatment strategies are urgently needed. From the perspective of

basic pathogenesis, the occurrence and development of cardiovascular

diseases are related to inflammation, apoptosis, fibrosis and autophagy of

cardiomyocytes, endothelial cells and other related cells. The involvement of

maternally expressed gene 3 (MEG3) in human disease processes has been

increasingly reported. P53 and PI3K/Akt are important pathways by which

MEG3 participates in regulating cell apoptosis. MEG3 directly or

competitively binds with miRNA to participate in apoptosis, inflammation,

oxidative stress, endoplasmic reticulum stress, EMT and other processes.

LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases,

immune system diseases, cardiovascular and cerebrovascular diseases, etc.,

LncRNA MEG3 has a variety of pathological effects in cardiomyocytes,

fibroblasts and endothelial cells and has great clinical application potential in

the prevention and treatment of AS, MIRI, hypertension and HF. This paper will

review the research progress of MEG3 in the aspects of mechanism of action,

other systemic diseases and cardiovascular diseases, and point out its great

potential in the prevention and treatment of cardiovascular diseases. lncRNAs

also play a role in endothelial cells. In addition, lncRNA MEG3 has shown

biomarker value, prognostic value and therapeutic response measurement in

tumor diseases. We boldly speculate that MEG3 will play a role in the emerging

discipline of tumor heart disease.
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1 Introduction

The prevalence and mortality rates of cardiovascular diseases

are on the rise, with an estimated 19 million people worldwide

dying from cardiovascular diseases in 2020, an increase of 18.7%

from 2010 (Tsao et al., 2022). 80% of deaths are related to CVD

(Global, 2017). By 2030, 23.6 million people are expected to die

from cardiovascular disease, including heart disease and stroke

(Dehghan et al., 2017), (Yusuf et al., 2014). New treatment

strategies are urgently needed. From the perspective of basic

pathogenesis, the occurrence and development of cardiovascular

diseases are related to inflammation, apoptosis, fibrosis and

FIGURE 1
lncRNA MEG3 is frequently involved in endoplasmic reticulum stress, apoptosis, inflammation and epithelial-mesenchymal transformation via
the P53 and PI3K/AKT pathways. The common downstreampathways areMDM2, NF-κB, Bcl-2/Bax,mTOR and other protein pathways. Regulation is
also accomplished by competitively binding downstream protein pathways with miRNA.

FIGURE 2
Downregulation of MEG3 can directly or through miR-361-5p mediate the downregulation of FOXO1, promote cell apoptosis, negatively
regulate the expression level of miR-23b 3p, and negatively regulate the expression level of FOXO4 in the same family to promote cell apoptosis.
MEG3 recovery can reduce β-catenin and CyclinD1, improve the level of GSK-3β in vitro culture, block the activity of the Wnt signaling pathway, and
then inhibit cell proliferation, migration and invasion, triggering cell apoptosis.
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autophagy of cardiomyocytes, endothelial cells and other related

cells (Hou et al., 2014; Zhang et al., 2019a; Lan et al., 2019;

Shihabudeen Haider Ali et al., 2019). In recent years, precision

medicine has been gradually applied to the cardiovascular field

along with the development of gene medicine. Currently, the

following diseases are considered: common cardiovascular

diseases, such as hypertension (Sun et al., 2017a;

Padmanabhan and Joe, 2017; Savoia et al., 2017); diagnosis

and treatment of uncertain diseases, such as angina and

coronary artery disease (Ladapo et al., 2017; Niccoli et al.,

2017); high-mortality diseases and/or interventions are

complex and expensive, such as dilated cardiomyopathy and

cardiac resynchronization therapy (Halliday et al., 2017). It is

worth emphasizing that these methods involve new molecular

and genetic diagnostic methods (Padmanabhan and Joe, 2017;

Savoia et al., 2017).

Maternally expressed gene 3 (MEG3) is an imprinted gene with

maternal expression that encodes a noncoding RNA with a length

of−1,600 nt (Tian et al., 2015) located at chromosome 14q32 (Zhang

et al., 2010). The involvement in human disease processes is

increasingly reported. For example, MEG3 functions as a

competing endogenous RNA to regulate cancer progression,

reduces mitochondrial-derived apoptosis (Wang et al., 2021a),

participates in the regulation of tumor drug resistance (Yu et al.,

2020), participates in glaucoma onset (Sun et al., 2018), etc., This

noncoding RNA is not only involved in the pathogenesis of many

diseases but also found in an increasing number of mechanisms. For

instance, it participates in cell migration and proliferation, promotes

cell apoptosis, inhibits cell autophagy activity, and inhibits

inflammatory factors (Li et al., 2017; Han et al., 2020; Yang

et al., 2022). Cardiovascular disease researchers are increasingly

interested in MEG3. Hongchun Wu’s group reported that

MEG3 exists in mouse myocardial cells and myocardial

fibroblasts and mainly plays a role in the myocardial nucleus

(Wu et al., 2018). Thum’s team reported that MEG3 plays a key

role in promoting cardiac fibroblast fibrosis (Piccoli et al., 2017). The

inhibition of Meg3 prevents cardiac fibrosis and diastolic

dysfunction (Piccoli et al., 2017), and the downregulation of

MEG3 protects myocardial cells against I/R-induced apoptosis

through the miR-7-5p/PARP1 pathway (Zou et al., 2019) Chao

FIGURE 3
MEG3 plays a role in cardiovascular-related cell types: cardiomyocytes, cardiac fibroblasts and endothelial cells. Regulation of TGE-β1 and
P53 in cardiac fibroblasts; It is involved in apoptosis and autophagy in cardiomyocytes. It is associated with autophagy and DNA damage in
endothelial cells.
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He et al. found in their study that MEG3, as a ceRNA, inhibits miR-

9, affects the phenotype of MEG3-mediated vascular endothelial

cells (He et al., 2017).

Currently, studies on lncRNA MEG3 in cardiovascular

diseases are relatively rare, and there is still a large space for

exploration. This paper will review the research progress of

MEG3 in the functional mechanism, other systemic diseases

and cardiovascular diseases and find its great potential in the

prevention and treatment of cardiovascular diseases.

2 Functional mechanism

This paper focuses on the role of lncRNA MEG3 in

cardiovascular disease. Although so far, there have been few

studies on the effects of lncMEG3 on cardiovascular diseases,

most of which focus on tumor diseases, from the perspective of

functional mechanism, the regulatory mechanisms involved in

MEG3 are also common in cardiovascular diseases, suggesting

that MEG3 may be involved in the occurrence and development

of cardiovascular diseases through these pathways. Therefore, the

second part of this paper reviews MEG3 from the functional

mechanism.

2.1 Signaling pathway

2.1.1 Regulation of the P53 signaling pathway
The p53 protein is a transcription factor that activates cell

cycle arrest, DNA repair and apoptosis in response to stress and

DNA damage (Kruiswijk et al., 2015). The 27 known splicing

variants of MEG3 contain variable intermediate exons with

common exons entraining at the 50 (E1-E3) and 30 (E10-

E12) ends, and their ability to stimulate the p53 pathway

varies (Yu et al., 2020). Based on this, MEG3 can regulate cell

physiology by regulating p53 and downstream signaling

pathways and play a role in a variety of diseases. In vascular

endothelial cells, the p53 signaling pathway is the most

significantly regulated pathway after MEG3 knockout.

Downregulation of MEG3 leads to phosphorylation of p53 at

serine 15 and weakens its binding with multiple p53 target gene

promoters, such as MDM2, resulting in accumulation of p53.

Meanwhile, MEG3 loss leads to high expression of P21, induces

p53 cell cycle arrest, reduces cell proliferation, promotes cell

apoptosis, and aggravates cardiac dysfunction after pressure

overload in mice. Early studies have shown that the loss of

p53 in the vascular endothelium can reduce apoptosis of

endothelial cells and protect cardiac dysfunction after pressure

overload in mice (Deng et al., 1995; Gartel and Radhakrishnan,

2005; Gogiraju et al., 2015; Shihabudeen Haider Ali et al., 2019).

In tumor cells, lncRNA MEG3 inhibits the proliferation and

metastasis of breast, gastric, liver and pancreatic cancer cells by

activating the p53 signaling pathway (Chen et al., 2016; Hu et al.,

2016; Wei and Wang, 2017; Huang et al., 2022). Especially in

hepatocellular carcinoma cells, MEG3 activates the NF-κB
signaling pathway and then activates the p53 pathway and

upregulates the expression of the ER stress-related protein

GRP78, resulting in ER stress (Chen et al., 2016). Xueling Li’s

group found that lncMEG3 was downregulated around the

infarcted myocardial tissue, which directly acted on p53 and

reduced its expression level. Meanwhile, the expression of ERS-

related protein GRP78 decreased, which proved that lncRNA

MEG3 in myocardial cells was awaiting ERS-mediated apoptosis

through the p53 pathway (Li et al., 2019). On the other hand,

inhibition of endogenous Meg3 in mouse fibroblasts reduced the

expression of Mmp-2 at promoters by inhibiting p53 binding but

had no effect on cell apoptosis or proliferation (Piccoli et al.,

2017). Western blotting was used to detect the proteins in the

pathway, and it was found that p53 was regulated by MeG3,

which then regulated the apoptosis of adipose stem cells (adScs)

through the Bcl-2/Bax pathway (Shi, 2020). In mouse neurons,

overexpression of Meg3 induces p53 and enhances its

transcriptional activity, leading to increased cell death (Yan

et al., 2016) (Figure 1).

2.1.2 Regulation of the PI3K/Akt signaling
pathway

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B

(PKB/AKT) signaling pathway is one of the core signaling

pathways involved in regulating cell growth, proliferation,

apoptosis and other processes (Yang et al., 2019a). Studies

have shown that inhibition of the PI3K/AKT signaling

pathway can inhibit cell proliferation and promote cell

apoptosis (Okano et al., 2000; Oyama et al., 2007; Feng et al.,

2016). LncRNA MEG3 has a negative regulatory effect on the

PI3K/Akt signaling pathway. LncRNA MEG3 expression was

significantly increased in the temporal cortex of rats with

subarachnoid hemorrhage and in the cerebrospinal fluid of

patients with subarachnoid hemorrhage, while the expression

of the PI3K/Akt signaling pathway was decreased, which

promoted neuronal apoptosis (Liang et al., 2018). At the same

time, the upregulation of MEG3 can improve cognitive

dysfunction by inhibiting the PI3K/Akt signaling pathway and

then inhibiting the activation of hippocampal astrocytes (Yi et al.,

2019). MEG3 overexpression of the inactivated PI3K/Akt

signaling pathway can inhibit the growth of cervical cancer

HeLa cells and breast cancer cells, thus achieving anticancer

effects (Wang et al., 2017; Zhu et al., 2019).

PI3K/AKT can play a regulatory role alone and crosstalk with

the mTOR signaling pathway to regulate various pathological

processes (Rosenbloom et al., 2013). It is through this signaling

axis that MEG3 inhibits the TNF-α-induced inflammatory

response (Tang et al., 2021). In endometrial cancer cells,

MEG3 regulates the PI3K/m-TOR signaling pathway to

regulate cell cycle progression, thus regulating apoptosis (Sun

et al., 2017b). MEG3 enhances adenosine-induced hepatocellular
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carcinoma cytotoxicity by downregulating ILF3 and activating

this signaling axis (Pu et al., 2019). MEG3 also plays a positive

role as a potential target for the treatment of epilepsy by

activating this pathway to reduce proinflammatory factors,

oxidative stress and apoptosis of hippocampal neurons in rats

(Zhang et al., 2020). In rat and cell models of diabetic

retinopathy, overexpression of MEG3 inhibits endothelium-

stromal transformation by inhibiting the PI3K/Akt/mTOR

signaling pathway (He et al., 2021).

The tumor suppressor PTEN, a central negative regulator of

the PI3K/Akt signaling pathway, is often mutated in cancer and

loses its tumor suppressor function (Leslie, 2012; Wang et al.,

2018). It has been reported that both MEG3 and PTEN are

downregulated in ovarian cancer cells, which promotes tumor

cell proliferation and inhibits cell apoptosis. LncRNA

MEG3 regulates PTEN/PI3K/AKT to play an anti-

proliferation role in hemangioma cells and testicular germ cell

tumor cells through sponge adsorption of miR-494 and miR-

1297, respectively.

Experiments have proven that upregulation of MEG3 can

sponge miR-27a-3p, upregulate IGF1 and activate the PI3K/Akt

signaling pathway, thus promoting osteogenic differentiation

(Liu et al., 2019a) (Figure 1).

2.2 MEG3 induces apoptosis

Apoptosis is a programmed cell death that occurs after many

stimuli, infections or injuries and plays a key role in normal

physiological processes such as embryogenesis and adult tissue

homeostasis (Morana et al., 2022). With the advancement of

research on MEG3, it has been found that it has an obvious

regulatory effect on the molecular mechanism of cell apoptosis,

thus participating in a variety of diseases.

MEG3 down-regulation can regulate FOXO1 and FOXO4 to

promote apoptosis through competitive binding of miR-361-5P

and miR-23b-3p respectively (Tsao et al., 2022), (Wang et al.,

2019a), (Wang et al., 2021b). H2O2 induces oxidative stress in

adipose stem cells (adScs), thus increasing the apoptosis rate of

adScs. MeG3 silencing can reduce H2O2-induced apoptosis,

while MeG3 overexpression can aggravate apoptosis (Shi,

2020). MEG3 recovery can reduce β-catenin and cyclin D1 in

melanoma cells, improve GSK-3 β levels in vitro, block Wnt

signaling activity, inhibit cell proliferation, migration and

invasion, and trigger cell apoptosis (Li et al., 2018a).

MEG3 functions as a ceRNA to regulate apoptosis by

sponging different miRNAs (Moradi et al., 2019). Activation

of Sema3A, a member of the Sema family, may disregulate a

series of apoptosis-related regulatory factors, thus promoting

apoptosis (Vadasz and Toubi, 2014; Cheng et al., 2019).

MEG3 inhibition significantly increased the expression of

miR-424-5p, decreased the expression of Sema3A, increased

cell viability, and reduced cell apoptosis (Xiang et al., 2020).

As an endogenous sponge, MEG3 inhibits miR-223 function,

increases NLRP3 expression and promotes endothelial cell

apoptosis through sequence complementation (Zhang et al.,

2018). Overexpression of MEG3 inhibits miR-141-3p, activates

RNA binding motif single stranded protein 3 (RBMS3), and

promotes apoptosis of breast cancer cells (Dong et al., 2021a).

Overexpression of MEG3 and miR-376B-3p inhibits the

tumogenesis of PDFS cells and promotes cell apoptosis (Zhu

et al., 2020). In the In vitro AP model, MEG3 promotes cell

apoptosis through the MEG3/miR-195-5p/FGFR2 signaling axis

(Chen and Song, 2021). MEG3 has been reported to regulate

miR-21, target Caspase-8 to regulate proliferation and apoptosis

of psoriatic epidermal cells, and inactivate the PI3K/Akt pathway

to promote apoptosis in breast cancer cells (Jia et al., 2019; Zhu

et al., 2019). Mir-361–5p. In the research of Shen B’s group, it is

suggested that MEG3 regulates miR-361–5p and promotes cell

apoptosis (Shen et al., 2019). In laryngeal cancer cells,

overexpressed MEG3 specifically binds and negatively

regulates miR-23a, activates apoptotic protease activator

factor-1 (APAF-1), and thus activates Caspase-9 and Caspase-

3, leading to apoptosis (Zhang et al., 2019b).

MEG3 overexpression leads to reduced apoptosis of intestinal

ganglion cells and increased cell viability, and the upregulation of

the MEG3 downstream gene miR-211-5p will counteract this

effect. Further studies found that the increased expression of

GDNF reversed the upregulation effect of miR-211-5p. In

summary, hypoxia induced intestinal ganglion cell apoptosis

through the MEG3/miR-211-5p/GDNF axis (Xia et al., 2019).

MEG3 was found to be highly expressed in the blood and

placental villus tissues of gestational diabetes mellitus (GDM).

MEG3 knockdown significantly increased the viability of human

chorionic trophoblast HTR-8/SVneo cells and reduced cell

apoptosis. Inhibition of miR-345-3p negates all observed

physiological effects of MEG3 downregulation on HTR-8/

SVneo cells (Zhang, 2019). In HCC cells,

MEG3 overexpression can sponge out miR-9-5p and

upregulate the expression of SOX11, and then observe

apoptosis-related changes of Bcl-2 and caspase-3, suggesting

that MEG3 can promote the apoptosis of HCC cells (Liu

et al., 2019b). For thyroid cancer cells resistant to 131I, low

MEG3 expression is not good news. Downregulated MEG3 can

promote cell apoptosis by upregulating miR-182 expression and

reducing the therapeutic effect of 131I in TC cells (Liu et al.,

2018). miR-205-5p has been identified as the downstream gene of

MEG3 and is negatively regulated by MEG3, promoting cell

apoptosis (Tao et al., 2020). MEG3 inhibition negatively regulates

miR-145-5p, resulting in a decreased apoptosis ability of

macrophages (Sun et al., 2020). In summary, MEG3, as a

ceRNA, mostly has a negative regulatory effect on miRNA

and then positively regulates cell apoptosis through the

downstream signaling pathway of miRNA.

MEG3 inhibition significantly increases the expression of

miR-424-5p, reduces the expression of Sema3A, increases cell
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viability, reduces cell apoptosis, inhibits the function of miR-223,

and increases the expression of NLRP3. Overexpression of

MEG3 can inhibit miR-141-3p, activate RBMS3, and promote

cell apoptosis. MEG3 promotes cell apoptosis through the

MEG3/miR-195-5p/FGFR2 signaling axis. MEG3 can regulate

miR-21, target Caspase-8 to regulate cell proliferation and

apoptosis, and inactivate the PI3K/Akt pathway to promote

cell apoptosis. Bcl-2 overexpression was detected in the

siRNA-MEG3 and miR-361–5P inhibitor groups.

MEG3 regulates miR-361–5p and promotes apoptosis.

MEG3 overexpression and negative regulation of miR-23a

activate APAF-1, thereby activating caspase-9 and caspase-3,

leading to cell apoptosis. MEG3 gene knockout significantly

increased the viability of HTR-8/SVneo cells and reduced cell

apoptosis. MEG3 overexpression can sponge miR-9-5p and

upregulate the expression of SOX11, and changes related to

apoptosis of Bcl-2 and Caspase-3 were observed.

Downregulation of MEG3 can promote cell apoptosis by

upregulating the expression of miR-182 (Figure 2).

2.3 Cell autophagy

Autophagy refers to the transport of intracellular

components to lysosomal chambers for degradation and

circulation. To date, autophagy has been defined as three

types: macrophage, microphage and chaperone-mediated

autophagy, which can be “body autophagy” with nonselective

degradation of autophagosome content and “selective

autophagy” with elimination of single cell components (Saftig

et al., 2008; He and Klionsky, 2009; Galluzzi et al., 2017; Dikic

and Elazar, 2018; Gohel et al., 2020). Autophagy is an important

function for maintaining cell and body homeostasis, and the

basal level of autophagy is important for maintaining normal

cellular homeostasis. Therefore, strict regulation of autophagy to

induce it when needed plays a crucial role in health and disease

(Botti et al., 2006; Meijer and Codogno, 2006; Yorimitsu and

Klionsky, 2007; Cheng, 2019). The regulation of LncRNA

MEG3 on autophagy is mainly positive regulation, and this

effect has been verified in a variety of diseases and multiple

pathways. FOXO1 belongs to the forkhead box protein family,

which can regulate a variety of biological characteristics

including apoptosis, autophagy, proliferation (Kitamura et al.,

2005; Kobayashi et al., 2012; Zhang et al., 2016; Li et al., 2021).

Downregulation of MEG3 or FOXO1 can lead to decreased

autophagy of INS-1 cells induced by high glucose.1During

pulmonary fibrosis, downregulation of MEG3 activates the

Hedgehog (Hh) signaling pathway and inhibits autophagy

activity of A549 cells (Gao et al., 2022). Autophagy exists in

tumor cells, and downregulation of MEG3 can partially inhibit

autophagy in lung cancer cells and can also regulate

ATG3 activity to inhibit autophagy in epithelial ovarian

cancer cells. (Xia et al., 2018), (Xiu et al., 2017). MiR-7-5p

was found to play an active role in autophagy in

cardiomyocytes of patients with ventricular septal defects, the

binding sequence of MEG3 was found in the 3′UTR of miR-7-5p,

and the predicted binding site of miR-7-5p was also found in the

3′UTR of EGFR. Upregulated MEG3 reverses myocyte

autophagy through the miR-7-5p/EGFR axis (Kitamura et al.,

2005; Kobayashi et al., 2012; Zhang et al., 2016; Li et al., 2021).

Low expression of lncRNA MEG3 upregulates miR-543 to

regulate autophagy in the IDO signaling pathway (Wang

et al., 2021c). continued downregulation of MEG3 leads to

IFN-γ induction of autophagy in infected macrophages

(Pawar et al., 2016). LncRNA MEG3 enhances TNF-α-
induced autophagy by inhibiting the PI3K/AKT/mTOR

signaling pathway while inhibiting autophagy through the

Beclin-1 signaling pathway (Pu et al., 2019; Tang et al., 2021).

2.4 Inflammation

Inflammation is a double-edged sword with many functions

that can be seen everywhere in the process of injury and the

repair of disease. MEG3 regulates inflammation in a number of

ways. KLF4, an important regulator of macrophage polarization,

was decreased in M1 macrophages and significantly increased in

M2 macrophages, and the expression of macrophage

proinflammatory genes with KLF4 knockout was increased

(Liao et al., 2011). Inhibition of MEG3 can regulate the

secretion of microglia inflammatory cytokines by inhibiting

M1 polarization and promoting M2 polarization through

KLF4 (Li et al., 2020a). M2 macrophages themselves have

certain anti-inflammatory activity. MEG3 can regulate the

miR-20b-5p/CREB1 axis and induce M2 macrophage-derived

extracellular vesicles (M2-EVs) to reduce the inflammatory

response (Wang et al., 2021d). Upregulation of MEG3 in

ulcerative colitis (UC) can enhance the protective effect of

M2-macrophage-derived extracellular vesicles (M2-evs) against

UC and reduce inflammation (Wang et al., 2021d).

MEG3 upregulation in methylene blue (MB)-induced

peripheral nerve axons alleviates pain and inflammation

associated with obstructive sleep apnea by inhibiting

P2X3 protein expression (Li et al., 2018b).

Inflammasomes are multimeric protein complexes that are

assembled in the cytosol upon sensing pathogen-associated

molecular patterns (PAMPs) and danger-associated molecular

patterns (DAMPs) (Strowig et al., 2012). AIM2 is one of the key

proteins that regulates the formation of the inflammasome.

Overexpression of MEG3 regulates the action of AIM2 on

caspase1 signaling to trigger an inflammatory response (Liang

et al., 2020). After sensing multiple molecular patterns, the

n-terminal pyrin fragment (PYD) of NLRP3 serves as a

scaffold to nucleate apoptosis-associated spotted proteins and

recruit caspase preproteins to the inflammasome (Cai et al., 2014;

Lu et al., 2014). MEG3 increases NLRP3-induced inflammation
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by inhibiting miR-223 or miR-7A-5p (Zhang et al., 2018; Meng

et al., 2021). Upregulated MEG3 increases the CXCL12/CXCR4/

Rac1 axis and TLR4/NF-κB pathway by inhibiting miR130A-5P,

aggravating neuroinflammation (Dong et al., 2021b). Under the

condition that IL-1β induces chondrocytes to simulate OA,

MEG3 regulates the miR-93/TGFBR2 axis to regulate the

inflammatory response and delay the OA process (Chen et al.,

2021). miR-181b is an important gene in many human diseases.

Experiments verified that lncRNA MEG3 directly regulates the

level of miR-181b by binding the 3′UTR of miR-181B and

reduces the levels of TNF-α and IL-1B in the serum and

cerebrospinal fluid of ICH rats (Xie et al., 2021).

MEG3 upregulation inhibits the expression of miR-146a and

LET-7I, and the inflammatory factors IL-1β, IL-6 and TNF-α
decrease synchronously, alleviating the inflammatory response in

ankylosing spondylitis (Li et al., 2020b), (Ma et al., 2020). Acute

pancreatitis (AP) is marked by severe inflammation. In the In

vitromodel of AP, the expression levels of MEG3 and FGFR2 are

decreased, while the expression levels of miR-195-5p are

increased. MEG3 promotes inflammatory responses through

the MEG3/miR-195-5p/FGFR2 signaling axis (Chen and Song,

2021). MEG3 overexpression can downregulate miR-34a,

enhance SIRT1 protein expression, inhibit the secretion of the

inflammatory factors IL-1β, IL-6 and TNF-α, and inhibit liver

inflammation by targeting SIRT6 with EZH2 (Tong et al., 2019;

Zou et al., 2022).

2.5 Endoplasmic reticulum

During a large amount of genetic and environmental

damage, the er of the cell is hindered in its ability to

properly fold and translate postmodified proteins, leading to

misfolding of proteins in the organelles, known as “er stress”.

When a large number of misfolded proteins are present, an

intracellular signaling pathway called the “unfolded protein

response” (UPR) performs transcription and translation

functions, restoring homeostasis. Endoplasmic reticulum

stress and UPR defects are increasingly becoming key factors

in human diseases, and the regulatory role of MEG3 in this

aspect has begun to emerge (Sevier and Kaiser, 2002; Tu and

Weissman, 2004; Ron and Walter, 2007; Wang and Kaufman,

2012). After MEG3 is downregulated in rectal cancer cells and

MEG3 is restored, UPR response-related proteins, including

GRP78, ATF6 and CHOP, are highly induced, and the cell

apoptosis rate increases. The above reactions can be alleviated

by simulated administration of miR-103A-3p. It can be

concluded that MEG3 induces ER stress to promote the

apoptosis of rectal cancer cells, and the interaction between

miR-103A-3p and MEG3 negatively regulates this process

(Wang et al., 2021e). At the same time, MEG3 upregulation

activates NF-κB signaling to initiate ERS (Bao et al., 2020). As

also mentioned above, MEG3 is involved in ER stress in HCC

cells and cardiomyocytes by activating the p53 signaling

pathway.

2.6 Cell proliferation, migration and
invasion

Genomic deletion of QKI-5, a member of the RNA (STAR)

signal transduction activator protein family, promotes

proliferation and dedifferentiation of cancer cells (Fu and

Feng, 2015; He et al., 2016). Overexpression of MEG3 inhibits

the expression of miR-9-5p and then upregulates QKI-5 to

inhibit the proliferation, migration and invasion of prostate

cancer cells (Wu et al., 2019). MEG3 overexpression inhibits

the proliferation, invasion and migration of pituitary tumor cells,

which is achieved by negatively regulating miR-23b -3p andmiR-

23b -3p negatively regulating FOXO4 (Wang et al., 2021b).

MEG3, miR-376B-3p and HMGA2 form a signaling axis to

regulate the invasion of pituitary tumor cells (Zhu et al.,

2020). MEG3 and miR-361-5p regulate FoxM1 in vitro and

inhibit the proliferation, migration and invasion of

osteosarcoma cells (Shen et al., 2019). In a study of gastric

cancer, MEG3 overexpression inhibits the expression of miR-

21 and inhibits cell proliferation andmetastasis (Dan et al., 2018).

For thyroid cancer cells resistant to 131I, low expression of

MEG3means increased expression of miR-182 and promotion of

cell proliferation, which is detrimental to the treatment effect of

131I for thyroid cancer (Liu et al., 2018).

2.7 EMT

EMT was originally defined as the developmental program of

epithelial cells during gastrula formation or movement of various

cell types from the neural crest to distant sites in the embryo

(Nieto et al., 2016; Dongre and Weinberg, 2019). In adult

epithelial tissue, EMT is involved in the physiological process

of wound repair and can be activated under certain pathological

conditions, such as fibrosis and cancer (Nieto et al., 2016). In

principle, cell phenotypic transitions engineered by EMT are

reversible, so that individual cells previously activated by the

EMT program can and often do revert to an epithelial state

through mesenchymal to epithelial transition (MET) (Lu and

Kang, 2019). EMT programs are initiated in cells by paracrine

signaling factors to which they are exposed, most notably

transforming growth factor-β (TGFβ). In addition, there are

various other signals, such as WNT proteins, cytokines,

growth factors, and extracellular matrix (ECM)-integrin

interactions (Lambert and Weinberg, 2021). In reports on

U251 cells, MEG3 overexpression resulted in decreased EMT,

decreased expression of n-cadherin, vimentin, snail-1 and β-
catenin, and increased expression of e-cadherin in U87 and

U251 cells (Gong and Huang, 2020). MEG3 silencing also
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promotes EMT by regulating the miR-377/PTEN axis (Wang

et al., 2019b). Yang et al. reported that the expression of

MEG3 induced more mesenchymal cell morphology and

increased zeb1/2 expression. Notably, autophagy inhibition

can inhibit MEG3-induced EMT (Gao et al., 2018).

3 lncRNA MEG3 plays a role in
cardiovascular disease

3.1 Cardiac fibrosis

Cardiac fibrosis is a pathologic process involved in almost all

cardiac diseases. Cardiac fibroblasts (CFs) are the main

coordinators of extracellular matrix (ECM) remodelling after

left ventricular pressure overload and play a key role in

maintaining cardiac ECM integrity and homeostasis. Upon

injury, CFs are activated into myofibroblasts that produce

matrix metalloproteinases (MMPs) (Eghbali et al., 1989;

Spinale, 2007; Travers et al., 2016; Frangogiannis, 2021). As a

member of the MMP family, the increase in MMP-2 leads to the

aggravation of fibrosis. LncRNA MEG3 was significantly

enriched in myocardial fibroblasts. MEG3 silencing inhibits

transforming growth factor (TGF-βI), interferes with the

binding of p53 to sites −843 and −825 on the MMP-2

promoter, inhibits the activity of MMP-2, and subsequently

decreases the expression of the fibrosis marker Ctgf. Thus,

lncRNA MEG3 is coupled with p53 and plays a role in

myocardial fibrosis (Piccoli et al., 2017) (Figure 3A).

3.2 Myocardial cells

3.2.1 Cardiomyocyte hypertrophy
In the process of cardiac hypertrophy, the role of lncRNA

MEG3 cannot be ignored. Jingchang Zhang et al. found that the

expression of MEG3 was abundant in cardiomyocytes treated

with 150 nMANG-II, and SH-MEG3 reversed the increase in the

surface area of cardiomyocytes induced by ANG-II. Meanwhile,

the expression of atrial natriuretic factor (ANF), brain natriuretic

peptide (BNP) and β-myosin heavy chain (β-MHC) were

decreased. This result preliminarily indicates that

MEG3 positively regulates cardiac hypertrophy. After further

research, Jingchang Zhang et al. found the promoter of MEG3-

STAT3 with a binding relationship at site 2. Activated by STAT3,

MEG3 competitively binds and inhibits miR-361-5p, upregulates

downstream HDAC9 protein, and has a negative effect on

cardiac hypertrophy (Zhang et al., 2019a).

3.2.2 Cardiac autophagy
Several studies have demonstrated that multiple upstream

signals can regulate mTOR activity by regulating the

phospholipid inositol three kinase protein (PI3K)/kinase B

(AKT) signaling pathway (Nishimoto, 2000; Sun et al., 2017b;

Wang et al., 2018). Hou et al. (2014) reported that advanced

glycation end products inhibited the PI3K/Akt/mTOR pathway

to promote cardiac autophagy. miR-7-5p is an important

regulator of autophagy in a variety of cells (Song et al., 2016;

Cai et al., 2017; Gu et al., 2017). Yinyin Cao et al. reported that

MEG3 directly targets miR-7-5p and regulates downstream

mTOR signal activation, thus regulating cardiac autophagy

(Cao et al., 2019).

3.2.3 Myocardial cell apoptosis
Hongchun Wu et al. reported that in hypoxic

cardiomyocytes, p53 affects the expression of Meg3 by directly

binding upstream of the Meg3 gene. Meg3 is upregulated by

P53 and promotes cell apoptosis by directly binding to FUS

protein. At the same time, after MEG3 inhibition, the expression

of the pro-apoptotic gene Caspase-3 was decreased, and the

expression of the anti-apoptotic gene Bcl-2 was increased,

thus inhibiting myocardial cell apoptosis.23Ya Zhao et al.

demonstrated that MEG3 regulates the expression of Bcl-2

and Caspase-3 proteins through miR-325 3p mediation,

negatively regulating the expression of TRPV4 and thus

alleviating myocardial cell injury and apoptosis (Zhou et al.,

2021). In the study of Bin Yang et al., Bax expression was

downregulated in H9C2 cells after oxygen and glucose

deprivation (OGD) induction, caspase-3 and Caspase-9 were

cleaved, and apoptosis occurred. In this process,

MEG3 expression is increased, MDM2 depletion is increased,

and the production of p53 is promoted, while the

phosphorylation level of AMPK is reduced (Yang et al.,

2019b). In the study of Yiwei Chen et al., lncRNA

MEG3 expression was significantly increased in

AC16 cardiomyocytes induced by high glucose (HG).

Meanwhile, downregulation of MEGers.

Three could restore the effects of decreased expression of Bcl-

2/Bax and increased expression of Caspase-3, which had

beneficial effects on cell viability and apoptosis. Further

studies showed that miR-145 directly acted on MEG3 and

targeted PDCD4 protein at the 3′UTR binding site, and

inhibition of miR-145 would offset the beneficial effects of

downregulated MEG3 on HG-treated AC16 cardiomyocytes

(Chen et al., 2019). Through the study of

H9C2 cardiomyocytes after I/R injury, it was confirmed that

downregulation of MEG3 can directly and negatively regulate

miR-7-5p, regulate the downstream PARP1 protein and caspase-

3 protein of miR-7-5P, and save cell apoptosis (Zou et al., 2019).

ERS induced by myocardial ischemia can induce myocardial

cell apoptosis (Wei et al., 2016). In vivo experimental studies have

shown that inhibition of lncRNA MEG3 can reduce the

upregulation of endoplasmic reticulum stress-related proteins

after ischemia, including BIP/GRP78, ATF4, and C-EBP

homologous proteins (CHOP) (Li et al., 2019). Decreased

levels of reactive oxygen species (ROS) are downstream events
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of endoplasmic reticulum stress after ischemia, and lenti-Si

lncRNA MEG3 pretreatment can reduce ROS levels.

Superoxide dismutase (SOD), an important antioxidant

enzyme, is significantly reduced in ischemic myocardium, and

downregulation of the MEG3 gene can negatively regulate this

effect (Li et al., 2019). Previous studies have shown that the

PERK-eIF2α and Caspase 12 pathways play a dominant role in

stress-mediated apoptosis (Groenendyk et al., 2013), and

downregulation of lncRNA MEG3 can inhibit ER stress

through this pathway. In conclusion, downregulation of

MEG3 can inhibit endoplasmic reticulum stress in

cardiomyocytes and protect cardiomyocytes (Li et al., 2019).

According to L.-Y. Zhao et al., lncRNA MEG3 can also

promote the apoptosis of hypoxic cardiomyocytes through the

FoxO1 signaling pathway. FoxO1 is activated in the form of

phosphorylation, which affects cell stability, leads to cell disorder,

and promotes apoptosis of cardiomyocytes (Liu et al., 2017a;

Kinyua et al., 2018). However, MEG3 upregulation in hypoxic

cardiomyocytes not only upregulates FoxO1 but also increases

the expression of FoxO3a in the same family. The combination of

the two can enhance autophagy of cardiomyocytes and aggravate

apoptosis of cardiomyocytes (Zhao et al., 2019).

3.2.4 Survival and proliferation of
cardiomyocytes

Jinwen Su et al. found that the survival and proliferation of

cardiac progenitor cells (CPCs) were inhibited under hypoxia,

and the level of MEG3 significantly increased. Moreover, the cell

viability and proliferation potential of cardiomyocytes increased

after MEG3 inhibition. With the inhibition of MEG3, the

expression level of miR-22 is increased, the expression level of

HMGB1 protein, the next level target of MEG3, is decreased, and

cell viability and proliferation are restored. In summary, MEG3/

miR-22/HMGB1 has been confirmed to play a role in the survival

and proliferation of cardiomyocytes after hypoxia (Su et al., 2018)

(Figure 3B).

3.3 lncRNA MEG and vasculature

3.3.1 Angiogenesis
Liu et al. showed that MEG3 silencing can negatively regulate

the Notch pathway to promote endothelial cell proliferation and

angiogenesis (Liu et al., 2017b). In line with this, Chao He et al.

found in their study that MEG3, as a ceRNA, inhibits miR-9,

affects the phenotype of MEG3-mediated vascular endothelial

cells (VECs), and inhibits cell proliferation and in vitro

angiogenesis. However, the restoration of miR-9 can only

rescue part of the angiogenesis inhibition caused by MEG3,

which means that other microRNAs are also involved in this

process (He et al., 2017). The experiment of Liu, H. Z et al.

reported that the interaction between MEG3 and miR-150-5p

was also involved in the angiogenesis of endothelial progenitor

cells (Liu et al., 2016), which confirmed this point. In a report on

anisomycin inhibition of angiogenesis, the spongy action of

lncRNA MEG3 was inhibited and angiogenesis was inhibited

via the miR-421/PDGFRA axis (Ye et al., 2019).

3.3.2 DNA damage of endothelial cells
DNA double-strand breaks (DSBs) are a serious form of

DNA damage. Tail length and tail moment of DNA are positively

correlated with DSB burden (Olive and Banáth, 2006; Ribas-

Maynou et al., 2012). MEG3 is a DNA damage response gene

mediated by the p53 pathway. 5According to a report, in

endothelial cells, after Meg3 was knocked out by 10 nM

GapmeRs (chemically modified antisense oligonucleotides),

tail length and tail camber were increased by 1.9 times and

2.7 times, respectively. After Meg3 is reduced by 2 nM GapmeRs,

tail length and tail camber are increased by 2.4 times and

2.9 times, respectively (Shihabudeen Haider Ali et al., 2019).

Phosphorylation of histone H2AX at Ser-19, a marker of DSB

damage and repair (Mah et al., 2010; Sharma et al., 2012;

Turinetto and Giachino, 2015), also increases. These data

suggest that MEG3 protects DNA from damage in endothelial

cells. Further studies have found that knocking down

PTBP3 induces the expression of the target gene p53, leading

to cell apoptosis, while MEG3 can participate in the DSB process

by regulating PTBP3’s action on p53 or directly acting on p53,

thus protecting endothelial function (Shihabudeen Haider Ali

et al., 2019).

3.3.3 Endothelial cell senescence
LncRNA MEG3 also plays a role in endothelial cell

senescence. It has been detected that the competitive

adsorption of MEG3 in aging endothelial cells decreases,

leading to the upregulation of miR-128 and the targeting of

Girdin protein, reducing the expression of Girdin protein. In

addition, these processes inhibit platelet phagocytosis of

endothelial cells (Lan et al., 2019) (Figure 3C).

4 Conclusion

lnc1. The diseases involving lncRNA MEG3 mainly include

osteosarcoma, laryngeal cancer, prostate cancer, lung cancer,

liver cancer, breast cancer, endometrial cancer, oral squamous

cell carcinoma, gastric cancer, pancreatic cancer, colorectal

cancer, and other malignant tumors. Metabolic diseases such

as diabetic retinopathy; rheumatoid arthritis, ankylosing

spondylitis, systemic lupus erythematosus and other immune

system diseases; heart failure, hypertension, stroke and other

cardiovascular and cerebrovascular diseases. A comprehensive

understanding of its mechanism is essential for its safety and

efficacy in clinical application.

lncRNA MEG3 plays a preventive and/or therapeutic role in

cardiovascular diseases by reducing inflammatory injury,
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apoptosis and endoplasmic reticulum stress. lncRNA MEG3 is

closely related to various pathologic effects of cardiomyocytes,

fibroblasts and endothelial cells, and has great clinical application

potential in the prevention and treatment of AS, MIRI,

hypertension and HFLnc. Although some knowledge has been

gained about the benefits of lncRNA MEG3 for cardiovascular

disease from experimental data, it is worth noting that its specific

underlying mechanisms are still relatively unknown. Therefore,

available clinical and pharmacological data are insufficient to

evaluate its efficacy.

In addition, lncRNA MEG3 has a profound research

foundation in tumor diseases, first showing biomarker value

in straight-colon cancer (Wang et al., 2019c), gastric cancer

(Ghaedi et al., 2019), breast cancer (Ali et al., 2020) and other

cancers (Duan et al., 2016; Zhao et al., 2018; Ali et al., 2020).

Further research and technology development are needed to

improve its bioavailability and overcome the challenges of its

clinical application. Second, MEG3 expression is associated with

WHO grade of tumor, old age at diagnosis, Karnofsky

performance score (KPS), wild-type isocitrate dehydrogenase

(IDH), tumor recurrence and overall survival, which is of

prognostic value (Gong and Huang, 2017; Zhao et al., 2018;

Buccarelli et al., 2020). Third, enhanced MEG3 expression can

increase chemotherapy sensitivity to cisplatin, while SI-RNA

silencing of MEG3 can induce cisplatin resistance (Ma et al.,

2017), which can be used to measure therapeutic response. At the

same time, MEG3 has gradually gained attention in

cardiovascular disease, a major human public health problem.

It can be a worthy object of study. Based on the research basis of

lncRNA MEG3 in cancer diseases, we boldly speculate that

MEG3 will play a role in the emerging discipline of cancer

heart disease (Momtazmanesh and Rezaei, 2021).
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