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Background: TGF-β signaling pathway plays an essential role in tumor

progression and immune responses. However, the link between TGF-β
signaling pathway-related genes (TSRGs) and clinical prognosis, tumor

microenvironment (TME), and immunotherapy in gastric cancer is unclear.

Methods: Transcriptome data and related clinical data of gastric cancer were

downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases, and 54 TSRGs were obtained from the Molecular

Signatures Database (MSigDB). We systematically analyzed the expression

profile characteristics of 54 TSRGs in 804 gastric cancer samples and

examined the differences in prognosis, clinicopathological features, and TME

among different molecular subtypes. Subsequently, TGF-β-related prognostic

models were constructed using univariate and least absolute shrinkage and

selection operator (LASSO) Cox regression analysis to quantify the degree of risk

in each patient. Patients were divided into two high- and low-risk groups based
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on the median risk score. Finally, sensitivity to immune checkpoint inhibitors

(ICIs) and anti-tumor agents was assessed in patients in high- and low-risk

groups.

Results: We identified two distinct TGF-β subgroups. Compared to TGF-β
cluster B, TGF-β cluster A exhibits an immunosuppressive microenvironment

with a shorter overall survival (OS). Then, a novel TGF-β-associated prognostic

model, including SRPX2, SGCE, DES, MMP7, and KRT17, was constructed, and

the risk score was demonstrated as an independent prognostic factor for gastric

cancer patients. Further studies showed that gastric cancer patients in the low-

risk group, characterized by higher tumor mutation burden (TMB), the

proportion of high microsatellite instability (MSI-H), immunophenoscore

(IPS), and lower tumor immune dysfunction and exclusion (TIDE) score, had

a better prognosis, and linked to higher response rate to immunotherapy. In

addition, the risk score and anti-tumor drug sensitivity were strongly correlated.

Conclusion: These findings highlight the importance of TSRGs, deepen the

understanding of tumor immune microenvironment, and guide individualized

immunotherapy for gastric cancer patients.

KEYWORDS

gastric cancer, TGF-β, molecular pattern, prognosis, tumor microenvironment,
immunotherapy

Introduction

Gastric cancer is a highly heterogeneous malignant tumor of

the digestive system, ranking fifth in incidence and third in

mortality worldwide (Smyth et al., 2020). As the early symptoms

of gastric cancer are not obvious, some patients have already

entered the middle and late stages with poor prognostic when

diagnosed (Wei et al., 2020). In recent years, with the application

of targeted drugs such as trastuzumab in clinical treatment, the

prognosis of HER-2-positive patients with advanced gastric

cancer has improved (Zhu et al., 2021). However, the overall

prognosis of gastric cancer is still disappointing (Patel and

Cecchini, 2020).

Immune checkpoint inhibitors (ICIs) bring new hope to

tumor patients due to their significant efficacy and low side

effects. However, the response rate of immunotherapy for

patients with advanced gastric cancer is less than 30% (Chen

et al., 2022), which limits their use in clinical treatment. Studies

have shown that the tumor microenvironment (TME) plays a

vital role in tumor development and can influence the response

rate of ICIs(Zhang and Zhang, 2020). Several biomarkers

reflecting the TME, such as tumor mutation burden (TMB),

microsatellite instability (MSI), the density of tumor-infiltrating

lymphocytes (TILs), and PD-L1 expression, have been found to

correlate with the therapeutic efficacy of ICIs(Rizzo et al., 2021;

Niu et al., 2022). Tumor cells with high microsatellite instability

(MSI-H) have an increased TMB and generate new antigens due

to unrepaired mis-replicated DNA, which allows more TILs to

infiltrate and thus respond better to ICIs(Lizardo et al., 2020). In

addition, patients with high PD-L1 expression have higher

response rates to ICIs and longer survival time in most

tumors (Ni et al., 2021). Most biomarkers reflect only one

aspect of the TME. Recently, some investigators have used

transcriptomic data to systematically assess the TME with the

help of bioinformatics approaches to screen for different immune

phenotypes and thus predict the response rate to ICIs. For

example, Zhang et al. (2020) used transcriptomic data from

multiple m6A regulators to identify three m6A modification

patterns associated with immune phenotypes and to construct an

m6A scoring system to predict immunotherapy response.

TGF-β can be produced by most cells through autocrine and

paracrine forms, such as tumor cells, stromal cells, and immune

cells (Ungefroren, 2019). TGF-β signaling pathway plays a vital

role in embryonic development, tumor progression, and immune

response (Morikawa et al., 2016; Kim et al., 2021). In early tumor

cells, the TGF-β signaling pathway can inhibit proliferation,

induce cell cycle arrest and apoptosis, and is considered a

tumor suppressor (Colak and Ten Dijke, 2017; Garcia-

Rendueles et al., 2017). However, in advanced tumor cells, the

TGF-β signaling pathway regulates tumor recurrence and

metastasis through mechanisms such as promoting

angiogenesis, inducing epithelial-mesenchymal transition

(EMT), regulating genomic instability, and immune escape

(Colak and Ten Dijke, 2017; Garcia-Rendueles et al., 2017). In

addition, the collagen fibers induced by activation of the TGF-β
signaling pathway in fibroblasts in the TME restrict the

infiltration of T cells into tumor cells, which in turn inhibits

the body’s anti-cancer immune response and is regarded as an

immunosuppressive cytokine (Batlle and Massagué, 2019; Zhao

et al., 2020a). Currently, most studies focus on only one or two
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genes in the TGF-β signaling pathway, while tumor development

is often the result of a large number of genes interacting together.

Therefore, it is necessary to systematically analyze the

relationship between multiple genes in the TGF-β signaling

pathway and the TME to discover new and different immune

phenotypes and screen people sensitive to immunotherapy for

more precise treatment.

In this study, 804 gastric cancer samples were obtained from

TCGA and GEO databases, and 54 TSRGs were collected from

MSigDB. We analyzed the expression levels and gene mutation

characteristics of 54 TSRGs in gastric cancer and classified gastric

cancer patients into two distinct TGF-β subgroups based on the

expression levels of the 54 TSRGs. Subsequently, three gene

subgroups were identified based on the differentially expressed

genes (DEGs) between the two distinct TGF-β subgroups. Next,

we constructed and validated a prognostic model, which can

predict the prognosis of gastric cancer patients, paint a picture of

immune infiltration, and predict ICIs response rates and

antitumor drug sensitivity.

Materials and methods

Data collection

Gene expression data, somatic mutation data, copy number

variation (CNV) data, and corresponding clinicopathological

information of gastric cancer patients were downloaded from

the TCGA database (https://portal.gdc.cancer.gov/). The

GSE84337 dataset was obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). After excluding patients

with missing survival time, 804 samples were included in this

study, 371 from the TCGA-STAD dataset and 433 from the

GSE84437 dataset. To eliminate batch effects of different

datasets, we converted fragments per kilobase million (FPKM)

values of the TCGA-STAD dataset to transcripts per kilobase

million (TPM) and merged two datasets using the ComBat

algorithm of the R package sva (Leek et al., 2012). 54 TSRGs

were obtained from the MSigDB (HALLMARK_TGF_BETA_

SIGNALING) (Supplementary Table S1) (Yu et al., 2022).

Differential expression and mutational
analysis of TSRGs

We performed differential expression analysis of 54 TSRGs

in gastric cancer samples and normal samples using R package

limma with the adjusted p < 0.05 and | log2 FC)|>1 (Ritchie et al.,
2015). The protein-protein interaction network of 54 TSRGs was

constructed in the STRING database (https://string-db.org/). R

package maftools was utilized to map the somatic mutation

waterfall of 54 TSRGs in gastric cancer patients (Mayakonda

et al., 2018). Lastly, we calculated the CNV gain or loss

percentage of 54 TSRGs in gastric cancer patients and

analyzed the chromosomal location using the R package

RCircos (Zhang et al., 2013).

Consensus clustering analysis of TSRGs

We first extracted the expression of 54 TSRGs in 804 samples

and then performed consensus unsupervised clustering analysis

based on 54 TSRGs expression levels using the R package

ConsensusClusterPlus (Wilkerson and Hayes, 2010). PCA was

performed to visualize the distribution between the two different

TGF-β subgroups. To explore the clinical significance of different
TGF-β subgroups, we performed Kaplan–Meier survival analysis

using the R package survival and survminer (Wang et al., 2020).

In addition, we mapped the expression heat map of 54 TSRGs

using the R package pheatmap in conjunction with the

clinicopathological features of the patients.

TGF-β-based subtype TME analysis

To explore the differences in TME between TGF-β
subgroups, we first analyzed the stromal score, immune score,

and ESTIMATE score between two subgroups using the

ESTIMATE algorithm. We analyzed the differences in the

expression of critical immune checkpoints such as PD-1, PD-

L1, and CTLA-4 between the two subgroups. Subsequently, we

calculated the infiltration level of 22 immune cells in each sample

using the CIBERSORT algorithm (Newman et al., 2015) and

analyzed the abundance of immune cell infiltrates between the

two subgroups using the single sample gene set enrichment

analysis (ssGSEA) algorithm (Zeng et al., 2022). In addition,

gene set variation analysis (GSVA) was performed with the

hallmark gene set (h.all.v7.5.1.symbols) to investigate the

differences in TGF-β subgroups in signaling pathways

(Hänzelmann et al., 2013).

Gene consensus clustering analysis of
TGF-β pattern-related DEGs

To identify DEGs in the distinct TGF-β subgroups, R

package limma was utilized with |log2-fold change (FC)| ≥
1 and adjusted p < 0.05. Based on the DEGs, we performed

gene ontology (GO) enrichment analysis and kyoto

encyclopedia of genes and genomes (KEGG) signaling

pathway analysis. We performed a clustering analysis based

on the expression of DEGs and performed a Kaplan–Meier

survival analysis among gene subgroups. In addition, we

combined TGF-β subgroups, gene subgroups, and

clinicopathological features of patients to map the

expression heat map of DEGs.
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Construction and validation of the risk
model for gastric cancer

To quantify the degree of risk for each patient, we constructed a

riskmodel based onDEGs. First, we performed univariate regression

analysis to screen DEGs associated with the prognosis of gastric

cancer patients. Second, we randomly divided the patients into

training and testing sets in a 1:1 ratio (Qing et al., 2022). The training

set is used to construct the risk model, and the testing set and the

entire set are used to validate the risk model. Third, the LASSO Cox

regression analysis was executed in the training set to reduce

overfitting genes with 10-fold cross-validation and 1000 repeated

times (Tibshirani, 1997). Finally, we performed a multivariate

regression analysis using the genes screened by the LASSO

regression analysis and calculated the risk score for each patient

according to expression levels and regression coefficients of genes.

The formula was as follows: Risk score = β gene1 × exp gene1 + β gene2 ×

exp gene2 + . . . + β genen × exp genen (Qing et al., 2022). Patients were

divided into high- and low-risk groups based on the median risk

score. Furthermore, we analyzed the relationship between the TGF-β
cluster, gene cluster, risk score, and survival status using the R

package ggalluvial and the differences in risk scores between distinct

subgroups (Zeng et al., 2022). In the training and validation sets, we

performed Kaplan-Meier survival analysis with the R package

survminer and survival (Wang et al., 2020) and ROC curve

analysis with the R package timeROC (Zeng et al., 2022),

respectively.

Subgroup analysis based on available
clinicopathological characteristics

To explore the performance power of the risk score among

different subgroups of clinicopathological characteristics, we first

analyzed the correlation between risk scores and clinicopathological

characteristics using the Student’s t-test. In addition, Kaplan–Meier

survival analysis was performed in different subgroups stratified by

age (≤65 years or >65 years), sex (female or male), T stage (T1-2 or

T3-4), and N stage (N0 or N1-3).

Independent prognostic and nomogram
analysis

Univariate and multivariate Cox regression analyses were

performed to explore whether the risk score could be an

independent prognostic factor for gastric cancer patients in the

training, testing, and entire set, respectively. Age, gender, tumor size

(T), lymph node metastasis (N), and risk score were included for

analysis. In addition, we constructed a nomogram integrated the risk

score and clinicopathological factors to predict the survival of gastric

cancer patients at 1-, 3-, and 5-year using R package rms in the

training set, testing set, and entire set, respectively (Zeng et al., 2022).

Calibration curves were plotted to determine the performance of the

nomograms in predicting OS.

Investigation of the immune landscape

To explore the differences in the tumor immune

microenvironment between high- and low-risk groups of

gastric cancer patients based on the risk model, we first

analyzed the stromal score, immune score, and ESTIMATE

score between the two groups using the ESTIMATE

algorithm. Then, we analyzed the Spearman correlation

between the risk score and immune cells using seven

methods, including the XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT

algorithms (Zeng et al., 2022). We further analyzed the

Spearman correlation between the expression of 5 genes in

the model and immune cells. In addition, the ssGSEA was

subjected to calculate the infiltrating immune cells’ scores and

assess the activity of immune-related pathways between high-

and low-risk groups using the R package gsva (Hänzelmann et al.,

2013). Finally, we analyzed the expression levels of immune

checkpoint-related genes between high- and low-risk groups.

Immunotherapy response and antitumor
drug sensitivity

TMB(Rizzo et al., 2021), MSS(Rizzo et al., 2021), IPS(Wu

et al., 2021), and TIDE (Zeng et al., 2022) scores were considered

markers to predict immunotherapy response. First, we

downloaded the mutation data of gastric cancer patients in

MAF format from the TCGA database and annotated them

using the R package maftools (Mayakonda et al., 2018), and

subsequently analyzed the correlation between the risk score and

TMB as well as the mutated genes common to patients in high-

and low-risk groups. Second, we downloaded IPS and MSS data

from the TCIA database (http://tcia.at/) for gastric cancer

patients and analyzed the differences between patients in

high- and low-risk groups. Finally, we analyzed the response

rate of gastric cancer patients to immunotherapy based on the

TIDE website (http://tide.dfci.harvard.edu/).

Next, we used the R package pRRophetic to calculate the half

inhibitory centration (IC50) of antitumor drugs for each patient and

analyzed the differences in sensitivity to antitumor drugs between

patients in high- and low-risk groups (Geeleher et al., 2014).

Statistical analysis

R software (version 4.1.2) and related R packages were

utilized for statistical analyses. The Wilcoxon test was used to

compare clinicopathological characteristics, immune status,
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FIGURE 1
Genetic mutational characteristics of TSRGs in gastric cancer, (A)Differential expression analysis of TSRGs in gastric cancer and normal tissues.
(B) Protein-protein interaction network analysis of TSRGs in the STRING database. (C) Mutation frequency analysis of TSRGs in gastric cancer. (D)
Frequencies of CNV gain, loss, and non-CNV among TSRGs. (E) Locations of CNV alterations in TSRGs on chromosomes. TSRGs, TGF-β signaling
related genes; CNV, copy number variant; *p < 0.05; **p < 0.01; ***p < 0.001.
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TMB, IPS, TIDE scores, and IC50 values between different

groups. Kaplan-Meier curves were used to compare OS

between different groups. Univariate and multivariate Cox

regression analyses were used to analyze independent

prognostic factors. ROC curves and nomograms were used to

evaluate the predictive power of the risk model. p < 0.05 was

considered statistically significant. *p < 0.05; **p < 0.01;

***p < 0.001.

Results

Differential expression and genetic
variation landscape of TSRGs in gastric
cancer

The design idea of this study is shown in Supplementary

Figure S1. We first performed differential expression analysis of

54 TSRGs in gastric cancer tissues and normal gastric tissues. We

obtained 43 DEGs with the adjusted p < 0.05 and | log2 FC)|>1, of
which JUNB, ID1, CDKN1C, ID3, and BCAR3 were lowly

expressed in gastric cancer tissues, and the remaining DEGs

were highly expressed in gastric cancer tissues (Figure 1A).

Protein-protein interaction network analysis based on the

String database revealed a close linkage between most genes

(Figure 1B). Next, we explored the somatic mutation levels and

the frequency of CNVs alteration in 54 TSRGs in gastric cancer

patients. The waterfall plot in Figure 1C shows that 197 (45.5%)

of the 433 samples had TSRG mutations. Among them, APC

(11%) had the highest mutation frequency, followed by CDH1

(8%) and NCOR2 (6%). Missense mutations are the most

common form of mutation in TSRGs. We also investigated

the frequency of CNVs alterations of TSRGs and found that

FURIN, SKIL, and ARID4B had the most significant copy

number increase, while HIPK2, ID3, and BMPR1A had the

most significant copy number deletion (Figure 1D). Figure 1E

shows the site of CNVs of TSRGs on chromosomes.

Identification of TGF-β subgroups in
gastric cancer

To understand the expression pattern of TSRGs involved in

tumorigenesis, data from 804 gastric cancer samples from

TCGA-STAD and GSE84437 datasets were enrolled in our

study for further analysis (Supplementary Table S2). To

explore the characteristics of 54 TSRGs expression profiles in

gastric cancer, we performed unsupervised clustering analysis to

identify gastric cancer subtypes based on 54 TSRGs expression

levels. The results showed that K = 2 was the most appropriate

cluster, and 804 gastric cancer patients were classified into TGF-β
cluster A (n = 443) and TGF-β cluster B (n = 361) (Figures 2A–C

and Supplementary Table S3). The PCA results further

demonstrate the excellent grouping effect (Figure 2D).

Kaplan-Meier survival analysis showed a more significant

survival advantage for TGF-β cluster B (p < 0.001, Figure 2E).

In addition, we combined TGF-β subgroups and

clinicopathological features of gastric cancer patients to map

54 TSRGs expression heatmaps and found that 54 TSRGs were

expressed at higher levels in TGF-β cluster A compared to TGF-β
cluster B (Figure 2F).

Characteristics of the TME in two distinct
TGF-β subgroups

To explore the correlation between TSRGs and TME in

gastric cancer, we first performed an ESTIMATE analysis. The

results showed that patients in TGF-β cluster A had a higher

stromal score, immune score, and ESTIMATE score (Figures

3A–C), suggesting that gastric cancer patients in the TGF-β
cluster A have higher immune activity and lower tumor

purity. Then, expression analysis of three crucial immune

checkpoint genes (PD1, PD-L1, and CTLA4) showed higher

expression levels of PD1, PD-L1, and CTLA4 in gastric

patients in the TGF-β cluster A compared to patients in TGF-

β cluster B (Figures 3D–F). We further analyzed the level of

infiltration of 23 immune cells in patients with two distinct TGF-

β clusters using the CIBERSORT algorithm. As shown in

Figure 3G, the infiltration levels of activated B cell, activated

dendritic cell, CD56 bright natural killer cell, eosinophil, gamma

delta T cell, immature B cell, immature dendritic cell, MDSC,

macrophage, mast cell, natural killer T cell, natural killer cell,

plasmacytoid dendritic cell, regulatory T cell, T follicular helper

cell, type 1 T helper cell, and type 2 T helper cell were higher in

the TGF-β cluster A than those in the TGF-β cluster B, while

activated CD4 T cell and neutrophil had significantly lower

infiltration in TGF-β cluster A than those in the TGF-β
cluster B. In addition, GSVA enrichment analysis revealed

multiple tumor-associated signaling pathways enriched in

TGF-β cluster A, including KRAS, IL2/STAT5, inflammatory

response, hypoxia, apoptosis, and wnt/β-catenin signaling

pathways (Figure 3H).

Identification of gene clusters based on
TGF-β pattern-related DEGs

To further explore the potential biological functions of the

TGF-β clusters, we obtained 202 TGF-β clusters-related DEGs

(Supplementary Table S4) using R package limma and performed

functional enrichment analysis. These TGF-β cluster-related

DEGs are mainly enriched in biological processes associated

with the extracellular matrix (Figure 4A). KEGG analysis

showed that DEGs were associated with metastasis and

tumor-related signaling pathways (Figure 4B), suggesting that
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FIGURE 2
Overall survival and clinicopathological characteristics of two different TSRG subgroups. (A) Consensus matrix heatmap defining two clusters
(k=2). (B) The cumulative distribution function (CDF) from k= 2 to 9. (C) Relative variation of the area under the CDF region at k=2–9. (D) PCA shows
different distributions between the two subgroups. (E) Kaplan-Meier survival analysis between two different TSRG subgroups. (F) Differences in
clinicopathologic characteristics and expression levels of TSRGs between the two distinct TSRG subgroups. TSRGs, TGF-β signaling related
genes; CDF, cumulative distribution function; PCA, principal components analysis.

Frontiers in Pharmacology frontiersin.org07

Zeng et al. 10.3389/fphar.2022.1069204

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1069204


TSRGs play an essential role in tumorigenesis and metastasis.

Then, 202 TGF-β cluster-related DEGs were subjected to

univariate Cox regression analysis to screen for genes

associated with OS in gastric cancer. We obtained 199 genes

related to the prognosis of gastric cancer patients at p < 0.05

(Supplementary Table S5). To further explore the potential

mechanisms of prognosis-related DEGs in gastric cancer,

based on the expression level of 199 prognostic genes,

unsupervised consensus clustering analysis was utilized to

classify gastric cancer patients into three different gene

clusters, namely gene cluster A, gene cluster B, and gene

cluster C (Supplementary Table S6). Kaplan-Meier survival

analysis showed that patients in gene cluster A had the worst

OS, whereas patients in gene cluster C showed a superior OS

FIGURE 3
Analysis of the tumor immunemicroenvironment between two different TGF-β subgroups. (A–C) Stromal score, immune score, and ESTIMATE
score analyses between two subgroups. (D–F) Expression levels of PD-1, PD-L1, and CTLA-4 in the two subgroups. (G) The abundance of
23 infiltrating immune cell types in the two different TGF-β subgroups. (H) GSVA of biological pathways between two subgroups. GSVA, gene set
variation analysis; PD-1, programmed cell death 1; PD-L1, programmed cell death 1 ligand 1; CTLA-4, cytotoxic T-lymphocyte associated
protein 4; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4
Identification of gene subgroups based on DEGs among two TGF-β subgroups. (A,B) GO and KEGG enrichment analyses of DEGs among two
TGF-β subgroups. (C) Kaplan-Meier survival analysis between three different gene subgroups. (D) Heatmap of clinicopathologic characteristics and
DEGs expressions among the three gene subgroups. (E) Differences in the expression of 54 TSRGs among the three gene subgroups. DEGs,
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TSRGs, TGF-β signaling related genes;
*p < 0.05; **p < 0.01; ***p < 0.001.
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(Figure 4C). In addition, we combined the TGF-β cluster, gene

cluster, and clinicopathological features of gastric cancer patients

to map heat maps and found significant expression differences

among gene clusters (Figure 4D). The three gene clusters showed

significance in TSRGs expression, as expected from the TGF-β
clusters (Figure 4E).

Construction and validation of the risk
model

To quantify the risk of each gastric cancer patient, we

constructed a prognostic risk model based on TGF-β cluster-

related prognostic DEGs. First, the R package caret was used

to randomize patients into a training set (n = 402)

(Supplementary Table S7). And a testing set (n = 402)

(Supplementary Table S8) at a ratio of 1:1. Second, in the

training set, LASSO and multivariate Cox regression analyses

were used to construct an appropriate risk model. Based on

the minimum partial likelihood deviance, 12 potential

candidate genes were screened by LASSO regression

analysis (Figures 5A,B; Supplementary Table S9).

Subsequent multivariate Cox regression of 12 prognosis-

related genes yielded five genes used to construct the risk

model, namely SRPX2, SGCE, DES, MMP7, and KRT17. We

calculated the risk score for each patient based on the formula.

Risk score= (0.1586×expression of SRPX2) +

(0.1438×expression of SGCE) + (0.0728×expression of DES)

+ (0.0554×expression of MMP7) + (0.0754×expression of

KRT17) (Figure 5C). The Sankey diagram showed the

correlation between risk score and TGF-β clusters, gene

clusters, and survival status (Figure 5D). In addition, we

observed an obvious difference in the risk score of the

TGF-β clusters and gene clusters (Figures 5E,F). The

previous survival analysis showed shorter OS in the TGF-β
cluster A and gene cluster A groups, and our model showed

FIGURE 5
Construction of the TGF-β cluster-related DEGs prognostic model. (A,B) Twelve optimal TGF-β cluster-related DEGs were found using the
LASSO cox regression. (C) Five optimal TGF-β cluster-related DEGs were found using the multivariate Cox analysis. (D) Sankey diagram of TGF-β
cluster, gene cluster, risk score, and survival status. (E) Differences in risk score between two TGF-β clusters. (F) Differences in risk score between
three gene clusters. DEGs, differentially expressed genes; LASSO, least absolute shrinkage and selection operator; Coef, coefficient.
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the highest risk scores in TGF-β cluster A and gene cluster A

groups, which further demonstrated the excellent

performance of our risk model.

Next, we divided gastric cancer patients into high- and

low-risk groups based on the median risk score. The risk

score curve and survival status scatter plots show that the

number of deaths in gastric cancer patients increases as the

risk score increases (Figures 6A,B). Kaplan-Meier survival

analysis showed that patients in the high-risk group had

worse OS than those in the low-risk group (Figure 6C). The

risk score’s 1-, 3-, and 5-year AUC values were 0.612, 0.668,

and 0.694, respectively (Figure 6D). Meanwhile, we did

the same analysis in two validation sets (the testing set

and the entire set), respectively, and we obtained

similar results (Figures 6E–L). In the

IMvigor210 cohort, patients in the high-risk group had

significantly lower survival than the low-risk group

(Supplementary Figure S2A), which further validates the

accuracy of our constructed prognostic model. Taken

together, our established risk model has an excellent

performance in predicting the survival outcome of gastric

cancer patients.

FIGURE 6
Prognosis value of the TGF-β cluster-related DEGs prognostic model. (A) The distribution of risk score, (B) survival status, (C) Kaplan–Meier
survival curves, (D) the 1-, 3-, and 5-year ROC curves. (E–L) The validation sets, including the testing set and the entire set, were analyzed similarly.
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Clinical correlation analysis and
stratification analysis of the risk model

To explore the correlation between the risk score and

available clinicopathological characteristics, we first analyzed

differences in risk scores across clinical subgroups. The

subgroups were divided by age (≤65 years or >65 years), sex
(female or male), T stage (T1-2 or T3-4), and N stage (N0 or

N1-3). The results showed that the risk scores were not

statistically different across age and gender subgroups

(Figures 7A,B), while patients in the T3-4 and N1-3

subgroups had higher risk scores (Figures 7C,D). In

addition, we performed Kaplan-Meier survival analysis for

different subgroups. We found that in the age ≤65 years
(Figure 7E), age >65 years (Figure 7F), female (Figure 7G),

male (Figure 7H), T3-4 (Figure 7J), N1-3 (Figure 7L)

subgroups of gastric cancer patients, the OS of patients in

the high-risk group was significantly lower than that of low-

risk patients, while no significant differences were seen for T1-

2 (Figure 7I), N0 (Figure 7K) subgroups.

Independent prognostic and nomogram
analysis

To explore whether the risk score is an independent

prognostic factor for patients with gastric cancer, we

performed univariate and multivariate Cox regression analyses

in the training set and two validation sets (testing set and entire

set) in combination with clinicopathological characteristics. In

the training set, univariate Cox regression analysis displayed that

age (HR = 1.025, 1.011–1.039, p < 0.001), T stage (HR = 1.233,

1.011–1.505, p = 0.039), N stage (HR = 1.472, 1.256–1.725, p <
0.001), and risk score (HR = 2.122, 1.675–2.690, p < 0.001)

predicted worse OS (Figure 8A). Multivariate Cox regression

analysis showed that the age (HR = 1.028, 1.018–1.038, p <
0.001), N stage (HR = 1.392, 1.181–1.604, p < 0.001) and risk

score (HR = 2.005, 1.562–2.574, p < 0.001) were independent

prognostic factors in gastric cancer patients (Figure 8B). In the

testing set, univariate Cox regression analysis displayed that age

(HR = 1.027, 1.012–1.042, p < 0.001), T stage (HR = 1.276,

1.051–1.550, p = 0.014), N stage (HR = 1.633, 1.387–1.923, p <

FIGURE 7
Prognostic model-based clinicopathological characteristics and survival subgroup analysis, Differential analysis of the risk score for (A) age, (B)
gender, (C) T stage, and (D)N stage subgroups. Kaplan-Meier survival analysis for (E) age ≤65 years, (F) age >65 years, (G) female, (H)male, (I) T1-2, (J)
T3-4, (K) N0, and (L) N1-3 between high- and low-risk groups.
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0.001), and risk score (HR = 1.722, 1.337–2.217, p < 0.001)

predicted worse OS (Figure 8C). Multivariate Cox regression

analysis showed that the age (HR = 1.033, 1.018–1.048, p <
0.001), N stage (HR = 1.576, 1.334–1.863, p < 0.001) and risk

score (HR = 1.674, 1.293–2.166, p < 0.001) were independent

prognostic factors in gastric cancer patients (Figure 8D). In the

entire set, univariate Cox regression analysis displayed that age

(HR = 1.026, 1.016–1.036, p < 0.001), T stage (HR = 1.255,

1.093–1.442, p = 0.001), N stage (HR = 1.549, 1.383–1.735, p <
0.001), and risk score (HR = 1.922, 1.617–2.285, p < 0.001)

predicted worse OS (Figure 8E). Multivariate Cox regression

analysis showed that the age (HR = 1.028, 1.018–1.038, p <
0.001), N stage (HR = 1.475, 1.312–1.659, p < 0.001) and risk

score (HR = 1.819, 1.519–2.179, p < 0.001) were independent

FIGURE 8
The independent prognosis analysis of the risk score and clinicopathological variables in gastric cancer. (A,B) Univariate and multivariate Cox
regression analyses of clinicopathological variables and risk scores with OS in the training set, (C,D) testing set, and (E,F) entire set.
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FIGURE 9
Construction and validation of a nomogram for predicting OS in gastric cancer. (A,B) The nomogram combining gender, age, T stage, N stage,
and risk score for predicting gastric cancer patient OS at 1-, 3-, and 5- years in the training set, (C,D) testing set, and (E,F) entire set. *p < 0.05; **p <
0.01; ***p < 0.001.
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FIGURE 10
Differential analysis of tumor immune microenvironment between high- and low-risk groups. (A) TME score between high- and low-risk
groups. (B) Spearman correlation analysis of immune components and risk scores based on XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
CIBERSORT-ABS, and CIBERSORT algorithms. (C) Spearman correlations between the abundance of immune cells and five genes in the prognostic
model. (D) 16 immune cells and (E) 13 immune-related functions between the high- and low-risk groups by ssGSEA. (F) The expression of
immune checkpoint-related genes between the high- and low-risk groups.
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prognostic factors in gastric cancer patients (Figure 8F). Taken

together, the risk score is an independent prognostic factor for

patients with gastric cancer.

Given the close correlation between the risk score and

prognosis of gastric cancer patients, we integrated gender, age,

T stage, N stage, and risk score to plot a nomogram to predict the

1-, 3-, and 5-year survival rates in the training set and two

validation sets (testing set and entire set) (Figures 9A,C,E).

Furthermore, the 1-, 3-, and 5-year calibration curves showed

great accuracy between the nomogram-predicted OS and the

actual observed OS (Figures 9B,D,F).

Analysis of tumor immune
microenvironment between high- and
low-risk groups

To explore the differences in tumor immune

microenvironment between high- and low-risk groups of

gastric cancer patients, we first performed ESTIMATE

analysis. The results showed that gastric patients in the high-

risk group had a higher stromal score, immune score, and

ESTIMATE score (Figure 10A). Subsequently, seven

algorithms were used to assess the correlation between the

level of immune cell infiltration and the risk score. As shown

in Figure 10B, the risk score was positively correlated with

myeloid dendritic cell, CD4+ T cell, CD8+ T cell, cancer-

associated fibroblast, hematopoietic stem cell, neutrophil, and

macrophage M2, while negatively correlated with T cell CD4+

memory activated, T cell follicular helper, NK cell resting, and

mast cell resting (Supplementary Table S10). We also performed

a correlation analysis between the five genes in our prognostic

model and the immune cells. We found that DES, KRT17, SGCE,

and SRPX2 were significantly correlated with most immune cells,

while MMP7 only correlated with macrophages M1 and

eosinophils (Figure 10C). In addition, we further explored the

difference of 16 immune cells and 13 immune-related pathways

between the two subgroups using ssGSEA. We found that B cells,

DCs, iDCs, macrophages, mast cells, neutrophils, TIL, CCR,

HLA, parainflammation, type I IFN response, and type II IFN

response were more enriched in the high-risk group, while the

Th1 cells, Th2 cells, APC co inhibition, and MHC class I is less

enriched in the high-risk group (Figures 10D,E). Finally, we

analyzed the expression levels of immune checkpoint-related

genes between two subgroups. Figure 10F showed that

24 immune checkpoint-related genes were differentially

expressed in the high- and low-risk groups.

Immunotherapy response analysis

TMB and MSI are considered biomarkers of tumor

immunotherapy response rate (Rizzo et al., 2021), and

patients with high TMB and MSI-H benefit from

immunotherapy and have more prolonged survival. Therefore,

we first analyzed the correlation between the TMB and risk score.

The results showed a negative correlation between the TMB and

risk score (Figure 11A), and the TMB of gastric cancer patients in

the low-risk group was significantly higher than that of gastric

cancer patients in the high-risk group (Figure 11B). Kaplan-

Meier survival analysis showed that the risk score diminished the

prognostic advantage of patients with gastric cancer in the high

TMB group (Figure 11C). We further analyzed the somatic

mutations in the high- and low-risk groups of gastric cancer

patients. The results showed that the most common form of

mutation was missense mutation, and the top five mutated genes

were TTN, TP53, MUC16, ARID1A, and LRP1B, and the

frequency of mutations was higher in the low-risk group

(Figure 11D), which was consistent with the results of the

above study. In addition, we analyzed the correlation between

the MSI and risk scores and showed that patients in the low-risk

group had a higher proportion of MSI-H and that patients with

MSI-H had lower risk scores (Figure 11E).

IPS and TIDE scores are novel tumor immunotherapy

response rate biomarkers that better assess the efficacy of

anti-PD1 and anti-CTLA4 therapies. A high IPS score

represents higher immunogenicity, and a high TIDE score

represents a greater likelihood of tumor immune escape (Wu

et al., 2021; Zeng et al., 2022); therefore, the higher the IPS and

the lower the TIDE score, the better the patient’s outcome to

immunotherapy. Our results showed that gastric cancer patients

in the low-risk group had higher IPS (Ips_ctla4_neg_pd1_neg,

ips_ctla4_pos_pd1_neg, and ips_ctla4_pos_pd1_pos scores)

than those in the high-risk group, but there was no

statistically significant difference between the two groups in

the ips_ctla4_neg_pd1_pos score (Figures 11F–I).

Furthermore, the TIDE, dysfunction, and exclusion scores of

gastric cancer patients in the low-risk group were lower than

those in the high-risk group (Figures 11J–L). In addition, analysis

of immunotherapy response based on the IMvigor210 cohort

showed that patients in the immunotherapy-responsive group

(complete response (CR)/partial response (PR) group) had

significantly lower risk scores than the immunotherapy non-

responsive group (stable disease (SD)/progressive disease (PD)

group) (Supplementary Figure S2B). The above results suggest

that patients with gastric cancer in the low-risk group may be

may be more sensitive to immunotherapy.

Antitumor drug sensitivity analysis

To explore the potential role of our established risk model for

clinical treatment, we analyzed the differences in IC50 of

common antitumor drugs between high- and low-risk groups.

We found that gastric cancer patients in the low-risk group were

more sensitive to ATRA, cytarabine, gefitinib, gemcitabine,
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FIGURE 11
Analysis of immunotherapy response rates between high- and low-risk groups. (A) Spearman correlation analysis of the risk score and TMB. (B)
Analysis of TMB differences between high- and low-risk groups. (C) Kaplan-Meier survival analysis among four subgroups stratified by both TMB and
risk score. (D) The waterfall plot of somatic mutation landscape high- and low-risk groups. (E) Relationships between risk score and MSI. (F) The
ips_ctla4_neg_pd1_neg, (G) ips_ctla4_neg_pd1_pos, (H) ips_ctla4_pos_pd1_neg, and (I) ips_ctla4_pos_pd1_pos analyses between the high-
and low-risk groups. (J–L) The TIDE, dysfunction, and exclusion score analyses between the high- and low-risk groups. TMB, tumor mutation
burden; IPS, immunophenoscore; TIDE, tumor immune dysfunction and exclusion; ***p < 0.001.
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methotrexate, metformin, paclitaxel, rapamycin, sorafenib,

tipifarnib, and vorinostat than those in the high-risk group,

while gastric cancer patients in the low-risk group were less

sensitive to axitinib, bleomycin, bortezomib, docetaxel,

doxorubicin, erlotinib, imatinib, lapatinib, and pazopanib than

those in the high-risk group (Figure 12). The above results

FIGURE 12
Antitumor drug sensitivity analysis of gastric patients in high- and low-risk groups, IC50 analysis of ATRA (A), axitinib (B), bleomycin (C),
bortezomib (D), cytarabine (E), docetaxel (F), doxorubicin (G), erlotinib (H), gefitinib (I), gemcitabine (J), imatinib (K), lapatinib (L), methotrexate (M),
metformin (N), paclitaxel (O), pazopanib (P), rapamycin (Q), sorafenib (R), tipifarnib (S), and vorinostat (T) in the high- and low-risk groups, which
were classified by the prognostic model. IC50, half-maximal inhibitory concentration.
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suggest that our prognostic model can be an essential indicator of

antitumor drugs for patients with gastric cancer.

Discussion

Numerous studies have shown that the TGF-β signaling

pathway plays an essential role in the tumor immune

microenvironment and can exert both pro- and anti-tumor

effects (Morikawa et al., 2016; Colak and Ten Dijke, 2017;

Garcia-Rendueles et al., 2017; Batlle and Massagué, 2019; Kim

et al., 2021). However, most studies focus on one or two TGF-β
signaling pathway genes or a single TME cell, and the overall

TME infiltration characteristics mediated by the multiple TGF-β
signaling pathway genes have not been comprehensively

understood. Discovering the role of different TGF-β-related
subtypes in the TME will help improve our understanding of

the antitumor immune microenvironment and guide more

precise individualized immune therapy.

In this study, we first analyzed the differential expression

levels and genetic mutation characteristics of 54 TSRGs using the

TCGA-STAD dataset. Although the mutation frequency of

54 TSRGs was low, most were highly expressed and closely

related in gastric cancer. Subsequently, we identified two

distinct TGF-β subgroups, TGF-β cluster A and TGF-β cluster

B, based on 54 TSRGs transcriptome expression levels using an

unsupervised clustering approach. Compared to gastric cancer

patients with TGF-β cluster B, gastric cancer patients with TGF-β
cluster A had shorter OS, higher expression levels of 54 TSRGs,

higher stromal scores, immune scores, ESTIMATE scores, higher

levels of PD1, PD-L1, CTLA4 expression levels, and higher

infiltration levels of MDSC, macrophage, and regulatory

T cells. The above results imply that TGF-β cluster A has a

more active immunosuppressive TME. Tumor cells in the

immunosuppressive TME can evade the killing effect of

immune cells and have a high degree of malignancy, which in

turn leads to a shorter survival of patients (Lei et al., 2020). And

the patients with TGF-β cluster A in this study had shorter

survival, which is consistent with this phenomenon. Next, we

identified the DEGs between two distinct TGF-β subgroups and

further identified three gene subgroups based on DEGs. There

was a significant difference in OS between the three gene

subgroups. In addition, 41 of the 54 TSRGs were significantly

differentially expressed among the three gene subgroups. This

demonstrated a close association between gene subgroups and

TGF-β subgroups.

Next, we constructed a TGF-β-related prognostic model to

calculate the risk score for each patient. We first screened

prognosis-related genes by univariate Cox regression analysis

for differentially expressed genes between two TGF-β subgroups.
Next, LASSO Cox regression analysis was used to construct a

prognostic model containing five genes, and each patient’s risk

score was calculated. We found that TGF-β cluster A and gene

cluster A were mainly concentrated in the high-risk group, while

TGF-β cluster B and gene cluster C were primarily concentrated

in the low-risk group. Patients in the high-risk group had a poor

prognosis, consistent with the previous results of poor prognosis

in the TGF-β cluster A and gene cluster A groups. The five genes

in the prognostic model were SRPX2, SGCE, DES, MMP7, and

KRT17. Studies have shown that SRPX2 is highly expressed in

gastric cancer and can promote migration and adhesion of gastric

cancer cells, which is closely associated with poor prognosis of

gastric cancer patients (Tanaka et al., 2009). The present study

showed that SRPX2 is a risk factor for the prognosis of gastric

cancer patients, which is consistent with the above findings.

SGCE has a hazard ratio greater than 1 in gastric cancer and is

considered a poor prognostic marker (Hou et al., 2017), which is

consistent with the results of this study. SGCE is a sponge

molecule of EGFR and its E3 ubiquitination ligase (c-Cbl).

High expression of SGCE inhibits EGFR degradation via the

ubiquitin lysosomal pathway, increases tumor cell drug

resistance, and promotes metastasis (Zhao et al., 2020b).

Studies have shown that desmin (DES) protein is more

advantageous than elastin protein in detecting vascular

invasion in gastric cancer and is considered one of the

markers of tumor invasion (Ekinci et al., 2018; Shin et al.,

2020). MMP7 expression was significantly associated with

poor clinicopathological features of gastric cancer patients,

including vascular invasion, undifferentiated histological types,

higher TNM stage, and high CEA levels (Wattanawongdon et al.,

2022), and was considered one of the prognostic markers of

gastric cancer (Chang et al., 2014). It was shown that silencing

KRT inhibited the proliferation, migration, and invasion of

gastric cancer cells, induced apoptosis, and stalled the gastric

cancer cell cycle at the G1/S phase by decreasing the expression of

cyclin E1 and cyclin D (Hu et al., 2018). In addition, Zhou et al.

constructed a prognostic signature based on multiple gastric

cancer datasets in the GEO database, including MMP7 and

KRT17 (Zhou et al., 2021), which indirectly demonstrated the

reliability of our prognostic model. Next, we performed a survival

analysis between high- and low-risk groups, which showed that

OS was worse in the high-risk group of gastric cancer patients.

This result was also confirmed in both validation sets (testing set

and entire set). The risk scores also had excellent performance

across clinicopathological characteristics subgroups. Univariate

and multifactorial Cox regression analyses demonstrated that the

risk score was an independent prognostic factor for patients with

gastric cancer. In addition, the nomograms constructed by the

risk score combined with clinicopathological characteristics also

excelled in predicting the overall survival of gastric cancer

patients at 1-, 3-, and 5-year. Overall, the TGF-β-related
prognostic model we constructed could excellently predict the

prognosis of gastric cancer patients.

The TME is the internal environment on which tumor cells

depend for survival. Under normal circumstances, immune cells in

the TME can recognize and remove tumor cells on time, but tumor
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cells can create an immunosuppressive TME through a complex

regulatory network to produce immune escape (Joyce and Fearon,

2015; Jiang et al., 2019). The immunosuppressive TME consists of

immunosuppressive cells such as regulatory T cells (Tregs), tumor-

associated macrophages (TAMs), tumor-associated neutrophils

(TANs), myeloid-derived suppressor cells (MDSCs), tumor-

associated fibroblasts (CAFs), extracellular matrix, suppressive

cytokines such as interleukin 10, interleukin 17, TGF-β exosomes

and immune checkpoint molecules such as PD1, PD-L1, and

CTLA4 (Zhang et al., 2019; Li et al., 2020; Nakamura and

Smyth, 2020). Studies have shown that increased MDSCs in

tumor tissues promote the production of Tregs and deplete

activated T cells (Davis et al., 2016). Furthermore, Tregs can

inhibit CD80 and CD86 co-stimulatory signaling via CTLA4,

secrete suppressive cytokines, and kill effector T cells (Tekguc

et al., 2021). TAMs can enhance the immunosuppressive TME in

several ways. In gastric cancer, TAMs promote PD-L1 expression

through the secretion of CXCL8, thereby suppressing the antitumor

effects of CD8+ T cells (Lin et al., 2019). TAMs can also recruit Tregs

through the secretion of chemokines such as CCL2, CCL3, CCL20,

and CCL22, which in turn form immunosuppressive

TMEs(Cassetta and Pollard, 2020; Pan et al., 2020). In addition,

TAMs-derived TGF-β can promote its secretion of CCL22 to recruit

Tregs, which in turn can secrete IL-8 to promote TGF-β secretion by
TAMs, thereby enhancing immunosuppressive TME (Wang et al.,

2019). This study showed higher MDSC, macrophage, and

regulatory T cell infiltration levels and more active signaling

pathways such as TGF-β, and Wnt/β-catenin signaling pathways

in the TGF-β cluster A, suggesting a more active

immunosuppressive microenvironment. Spearman correlation

analysis of immune cells and risk scores showed a positive

correlation between risk scores and myeloid dendritic cells,

M2 macrophages, and CAFs, suggesting that the TME of

patients in the high-risk group was immunosuppressive. Patients

with gastric cancer of TGF-β cluster A were mainly concentrated in

the high-risk group, and the results of the before-and-after study

were consistent.

ICIs offer new hope for patients with advanced cancer due to

their significant efficacy and fewer side effects. However, only a

small number of patients can benefit from them. Therefore, there

is an urgent need to screen the population with a high response

rate for more precise treatment. Currently, common biomarkers

to predict the efficacy of ICIs include TMB, microsatellite status,

IPS, and TIDE score. Tumor cells with MSI-H have an increased

TMB and generate new antigens due to unrepaired mis-

replicated DNA, which allows more TILs to infiltrate and thus

respond better to ICIs (Lizardo et al., 2020). This study showed

that the low-risk group had a higher TMB and a higher

percentage of MSI-H than the high-risk group, suggesting that

low-risk gastric cancer patients may have a better treatment effect

on ICIs. IPS and TIDE scores are novel immunotherapy

biomarkers with good predictive power for response rates to

ICIs (Wu et al., 2021). A high IPS represents higher

immunogenicity, and a high TIDE score represents a greater

likelihood of tumor immune escape (Wu et al., 2021; Zeng et al.,

2022); therefore, the higher the IPS and the lower the TIDE score,

the better the patient’s outcome to ICIs. This study showed that

patients with gastric cancer in the low-risk group had higher IPS

scores and lower TIDE scores, suggesting that patients in the low-

risk group are highly immunogenic, again demonstrating that

patients in the low-risk group are a potentially highly beneficial

population for ICIs treatment. In addition, we analyzed the

differences in sensitivity of common antitumor drugs between

high- and low-risk groups to provide a new perspective on

clinical antitumor drug combination strategies.

Our study also has some limitations. This study is a

retrospective study based on public data and needs to be

further validated in a large, multicenter prospective study.

Second, this study needs to incorporate more

clinicopathological features for a more comprehensive analysis

of the clinical value of the risk model. In addition, in vivo and

in vitro experiments are needed to further explore the specific

mechanisms of risk scores in the TME.

Conclusion

In this study, we found that TGF-β cluster A presented an

immunosuppressive microenvironment with shorter OS. Second,

we constructed a risk model associated with TSRGs to predict the

prognosis of gastric cancer patients. In addition, gastric cancer

patients in the low-risk group, characterized by higher TMB, the

proportion of MSI-H, IPS, and lower TIDE score, may be more

sensitive to immunotherapy.
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