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Ovarian cancer is among the most common malignant tumors in gynecology

and is characterized by insidious onset, poor differentiation, high malignancy,

and a high recurrence rate. Numerous studies have shown that poly ADP-ribose

polymerase (PARP) inhibitors can improve progression-free survival (PFS) in

patients with BRCA-mutated ovarian cancer. With the widespread use of BRCA

mutation and PARP inhibitor (PARPi) combination therapy, the side effects

associated with BRCA mutation and PARPi have garnered attention

worldwide. Mutations in the BRCA gene increase KEAP1-NRF2 ubiquitination

and reduce Nrf2 content and cellular antioxidant capacity, which subsequently

produces side effects such as cardiovascular endothelial damage and

atherosclerosis. PARPi has hematologic toxicity, producing

thrombocytopenia, fatigue, nausea, and vomiting. These side effects not

only reduce patients’ quality of life, but also affect their survival. Studies have

shown that natural phytochemicals, a class of compounds with antitumor

potential, can effectively prevent and treat the side effects of chemotherapy.

Herein, we reviewed the role of natural phytochemicals in disease prevention

and treatment in recent years, including sulforaphane, lycopene, catechin, and

curcumin, and found that these phytochemicals have significant alleviating

effects on atherosclerosis, nausea, and vomiting. Moreover, these mechanisms

of action significantly correlated with the side-effect-producingmechanisms of

BRCA mutations and PARPi. In conclusion, natural phytochemicals may be

effective in alleviating the side effects of BRCAmutant ovarian cancer cells and

PARP inhibitors.
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1 Introduction

Ovarian cancer is among most common malignancies in

gynecology (Bookman et al., 2009). Two hundred thousand

women worldwide are diagnosed with ovarian cancer each

year, 70% of whom are intermediate to advanced cases, with a

mortality rate of 62.5%. High-grade plasmacytoma is a common

type of ovarian cancer that arises from ovarian epithelial cells. It

is poorly differentiated, highly malignant, and has a high

recurrence rate (Colombo et al., 2019). According to

treatment guidelines, ovarian cancer is treated chiefly with

platinum drugs in combination with paclitaxel or with the

anti-angiogenic drug bevacizumab alone (Perren et al., 2011).

Platinum drugs are key to treating platinum-sensitive recurrent

ovarian cancer; however, as the number of recurrences increases,

this type of ovarian cancer becomes resistant to platinum drugs

(Foley et al., 2013). The median progression-free survival (PFS)

for bevacizumab was 19.0 months, slightly higher than the

median PFS in the standard treatment group (17.3 months),

as noted by the European Society of Medical Oncology and

the International Society for Gynecologic Cancer meetings

(Perren et al., 2011). Although rational treatment significantly

prolongs patient survival, 7080% of patients experience relapse or

further disease progression after first-line treatment (Lorusso

et al., 2020). PARPi, an inhibitor of polyadenosine diphosphate

ribose polymerase, extends PFS to approximately 56 months in

patients with platinum-resistant, BRCA-deficient, or refractory

ovarian cancer by affecting the self-replication of ovarian cancer

cells, providing a new approach for the maintenance treatment of

ovarian cancer patients (Mirza et al., 2019; Vanacker et al., 2021).

Numerous studies have demonstrated that phytochemicals

extracted from foods have antitumor potential. Audesh et al.

found that some phytochemicals extracted from fruits have

significant inhibitory effects on human ovarian teratoma cells

(PA-1) at their respective IC50 concentrations (Li et al., 2021).

Phytochemicals have been extensively studied to inhibit the

development of ovarian cancer, and interfere with cancer cells

along with antioxidant and anti-inflammatory effects (Pundir

et al., 2021). Islam et al. demonstrated that the antioxidant and

anti-inflammatory effects of phytochemicals were effective in

preventing some side effects of chemotherapy (Islam et al., 2021).

Chemotherapy plays a very important role in ovarian cancer

treatment, but its side effects also seriously affect patients’ quality

of life, and symptomatic supportive treatment to alleviate these

side effects will further increase the burden on the patient’s body.

In contrast to drugs, various types of phytochemicals, such as

phenols, terpenoids, and sulfur-containing compounds, are

distributed in numerous fruits and vegetables consumed daily

(Roy and Datta, 2019). The use of phytochemicals as an

alternative to drugs would reduce the patient’s fear and

organismal burden of oncologic chemotherapy and improve

patient compliance.

This study reviewed the mitigating effects of phytochemicals

on PARPi side effects and the prevention of pathological changes

caused by BRCAmutations. We further clarified the mechanisms

by which phytochemicals alleviate the side effects of synergistic

lethal treatment regimens.

2 PARP, PARPi, and ovarian cancer

2.1 PARP and ovarian cancer

Poly (adenosine diphosphate ribose) polymerase (PARP) is a

cleavage substrate for the core members of apoptosis, caspases.

PARP is also involved in damage repair after DNA breaks (Wei

and Yu, 2016). PARP1 plays more than 90% of the total role of

the PARP family, and PARP1 is active in base excision repair

(BER) (Durkacz et al., 1980), DNA single-strand breaks (SSB)

(Haince et al., 2008), DNA double-strand breaks (DSBs), and

replication fork damage (Haince et al., 2008). After DNA

damage, PARP1 recognizes the damage through the zinc

finger structural domain and orientates to the nick for ADP

ribosylation based on nicotinamide adenine dinucleotide

(NAD+), forming PARP-1-ADP ribose branched chain, which

reduces the binding of PARP1 to DNA and dissociates from

DNA to participate in DNA repair (Bürkle, 2001; Lord and

Ashworth, 2017), PARP2 is similar to PARP1 in function, but

it acts on different substrates (Kutuzov et al., 2020), and PARP2 is

crucial in the repair of SSBs. It is by damaging DNA and thus

affecting mitosis that cisplatin treats ovarian cancer. Thus, PARP

plays a key role in apoptosis and repair of platinum-induced

DNA damage in ovarian cancer cells (Hoeijmakers, 2001; Damia

and Broggini, 2019).

2.1 PARPi and ovarian cancer

PARPi competes with NAD+ for the PARP active site,

thereby inhibiting the formation of poly (ADP-ribose)

polymers; when single-strand damage occurs in DNA

molecules, the repair is mainly accomplished by PARP and

DNA ligase IIIa (Murai et al., 2012; Murai et al., 2014).

PARPi can bind specifically to the NAD+ binding site of

PARP1 (and/or PARP2), resulting in a significant reduction in

DNA-PARP dissociation, maintaining PARP binding to DNA,

thus perpetuating the DNA-PARP complex and inhibiting

subsequent repair. This process is known as “trapping” of the

DNA-PARP complex (Murai et al., 2012). The persistence of the

complex on a single strand of DNA allows for the accumulation

of large amounts of single-stranded broken DNA and thus DSBs,

causing cell death. To resolve these barriers and restore the cell

cycle, functional homologous recombination (HR) must be

utilized (Bunting et al., 2010).
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3 BRCA gene mutation, PARPi, and
ovarian cancer

3.1 BRCA gene mutations and ovarian
cancer

Breast cancer susceptibility gene (BRCA) participates in

DNA repair and is present in the human body as a tumor

suppressor gene (Prakash et al., 2015). Carriers of BRCA1 and

BRCA2 germline mutations have a 54% and 23% risk,

respectively, of developing ovarian cancer (Ramus and

Gayther, 2009; Milne and Antoniou, 2011). First, BRCA

proteins act through the HR process to protect humans

(Bryant et al., 2005). HR ensures that the cellular repair of

DSBs in the S-phase is precise and error-free (Farmer et al.,

2005). The function of BRCA1 in HR is to cleave DSB 5′–3′,
leaving an overhanging 3′. HR is an essential method of DNA

double-strand break repair. The HR repair pathway is

purportedly blocked by BRCA (BRCA1/2) mutations. In

this case, the DSB repair mechanism is no longer stable

and the DNA damage repair function of the cell is greatly

reduced. Therefore, cancer cells damaged by platinum cannot

be repaired (Bryant et al., 2005; D’Andrea, 2018; Li et al.,

2020). This suggests that BRCA plays a role in the repair of

DSBs (Gudmundsdottir and Ashworth, 2006). The

application of platinum-based drugs after BRCA mutations

can inhibit DNA replication in ovarian cancer cells (Birkbak

et al., 2012).

3.2 Synergistic lethal effects of BRCA
mutations and PARPi in ovarian cancer

If PARPi is used in the presence of BRCA mutations in

ovarian or breast cancer cells, then, it will further inhibit DNA

break repair due to HR defects, and the cells will be unable to

repair DSBs leading to cell death, a synergistic lethal

phenomenon (Rottenberg et al., 2008; Srinivasan et al., 2017).

FIGURE 1
Schematic representation of the functions of PARP and BRCA in DNA repair. The left side shows base excision repair. Right side shows the
“trapping” of the DNA-PARP complex and DNA homologous recombination repair. Abbreviations: DSB, double-strand break; MRN/CTLP, DNA
damage sensor; NAD+, nicotinamide adenine dinucleotide; RAD51, restriction-associated site DNA51; RPA, replication proteinase A; SSB, single-
strand break.
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This phenomenon destabilizes the tumor genome, which can

counteract the tumor cell proliferation and effectively increase

the patients’ survival time. Therefore, PARPi induces cell death in

HR-deficient cells as a primary approach for the treatment of

ovarian cancer (Noordermeer and van Attikum, 2019; Curtin

and Szabo, 2020) as shown in Figure 1.

4Mitigation of adverse drug reactions
to PARPi by phytochemicals

4.1 Side effects of PARPi

The use of PARPi in patients with BRCA-deficient ovarian

cancer has had notable success, but the use of PARPi induces

discomfort in ovarian cancer patients. For example, the

hematologic toxicity produced by niraparib (ZEJULA), a

highly absorbed, highly permeable drug, should not be

underestimated. Berek observed in 553 patients who added

niraparib, that about 33% developed thrombocytopenia and

13% developed anemia (Berek et al., 2018). Meanwhile, data

published by LaFargue et al. (2019) showed that the probability of

fatigue in the first month after niraparib was approximately

32.4%, vomiting was about 19.6%, and nausea was up to

61.9%. Most of the fatigue was due to ischemia and decreased

platelet count. Olaparib (Lynparza), a low permeability, low

absorption drug, is highly susceptible to hypertension, with a

48% chance of nausea and vomiting. The side effects of PARPi

seriously affect patients’ quality of life (Munroe and Kolesar,

2016; Paik, 2021).

4.2 Mitigation of PARPi side effects by
phytochemicals

Phytochemicals have strong antioxidant properties and are

commonly used for skin care. However, numerous studies have

shown that saffron, cyclic adenosine phosphate, and curcumin

from ginger can reduce the incidence of some chemotherapy side

effects, such as nausea, vomiting, and anemia, at the sites shown

in Table 1.

4.2.1 Crocin
Crocin, a carotenoid present in the stigma of saffron,

improves collagen-induced platelet aggregation and

adhesion and A23187-mediated endogenous production of

ROS and H2O2 in platelet mitochondria (Thushara et al., 2013;

Yaribeygi et al., 2018). Pourmasoumi et al. (2019) reported

significant decreases in diastolic blood pressure, body weight,

and other factors associated with cardiovascular disease

(CVD) in 622 individuals taking Crocin. Javandoost et al.

(2017) found that adding Crocin was associated with a

significant increase in high-density lipoprotein (HDL)

levels during an 8-week Crocin intervention. The addition

of Crocin to PARPi not only reduces oxidative stress but also

prevents the reduction of platelets and increases blood

pressure. Crocin also reduces HDL production, which can

reduce the prevalence of CVD in several ways.

4.2.2 Adenosine cyclic phosphate
The high content of cyclic adenosine phosphate in jujube can

dilate blood vessels, provide nutrients to the heart muscle and

TABLE 1 The side effect loci of phytochemistry in the prevention of BRCA mutations and PARPi.

Category Name Mode of action Site of action

Sulfur-containing compounds

Sulforaphane Interferents Keap1, Nrf2

Allicin Supplements GSH, GPX

Terpenoids

Lycopene Regulatory proteins P62, Keap1, Nrf2

Lutein Regulatory proteins ERK, Nrf2

Polyphenols

Catechins Agonists CAT, GSH

Proanthocyanidins Ca+ regulation NO, SOD2, GPX, NOX4

Quercetin o-Diphenol hydroxyl -OH, O2-

Polyphenols

Anthocyanin For electronics Free radicals

Soy isoflavones For hydrogen atoms Free radicals

Curcumin Regulatory proteins miR-125b, HAT

Ginger Interferents 5-HT

Cyclic adenosine monophosphate Agonist Erythropoietin

Crocin Interferon Platelets
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increase its contractility, induce the expression of erythropoietin,

and stimulate hematopoiesis in the body (Chen and Tsim, 2020).

The increase in hematopoietic parameters after cancer treatment

in mice with jujube further suggests that jujube can ameliorate

anemia in cancer patients (Periasamy et al., 2020). Improvement

in anemia results in patients feeling less fatigued. The cyclic

adenosine phosphate in dates may reduce the discomfort

experienced by patients after niraparib administration.

4.2.3 Ginger active substance
The use of ginger as an antiemetic is well-known in China

and is used in traditional Chinese medicine, where ginger is rich

in curcumin, curcumin, gingerols, and curcuminoids (Ahmed

et al., 2021). These active substances influence gastrointestinal

motility and promote gastric emptying, while they affect the

central nervous system by mediating the 5-hydroxytryptamine-

3 of 5-hydroxytryptamine (5-HT), reducing nausea and vomiting

(Nocerino et al., 2021). Marx et al. (2017) conducted a double-

blind randomized intervention with ginger in 51 patients,

identifying less fatigue in the intervention group (p = 0.006)

from the three chemotherapy cycles, especially in the third cycle.

Subsequently, Crichton et al. (2019) found through a meta-

analysis that ginger supplementation not only had a

significant effect in suppressing nausea and vomiting but also

reduced the likelihood of fatigue by approximately 80%.

Therefore, the administration of ginger in the treatment of

ovarian cancer with PARPi can reduce PARPi side effects in

patients.

Saffron, cyclic adenosine phosphate, and curcumin have a

significant inhibitory effect on the side effects caused by

niraparib and olaparib, as shown in Figure 2. In the future,

a rational combination could reduce the pain associated with

treatment of ovarian cancer patients and increase their quality

of life.

FIGURE 2
Nrf2/Keap1 is a signaling pathway in which Nrf2 binds to Keap1 via ETGE and DLG, ubiquitinating it, which is then degraded by the proteasome.
Phytochemicals can promote nuclear translocation of Nrf2 by mediating the Keap1-Nrf2 complex. Binding ARE after forming a heterodimer with
sMAF activates transcriptional production of downstream antioxidant enzymes. Phytochemicals can also affect ROS production by acting directly on
ROS. Abbreviations: ARE, antioxidant response element; BRCA (1/2), breast cancer 1/2; CUL3, cullin3; DLG/ETGE, nrf2 structural domain; Keap1,
recombinant kelch like ech associated protein1; MCU, mitochondrial calcium uniporter; Nrf2, nuclear factor erythroid 2-related factor 2; PALB2,
partner and localizer of brca2; ROS, reactive oxygen species; SIRT3, silence regulatory protein3; sMAF, specific macrophage arming factor; SOD2,
superoxide dismutase.
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5 Phytochemicals attenuate adverse
effects in BRCA mutations
synergistically lethal with PARPi

5.1 BRCA mutations cause cardiovascular
disease

Mutations or deletions of BRCA in normal individuals

significantly increase the risk of developing cancers, such as

ovarian cancer (Sekine et al., 2021). However, diseases beyond

ovarian or breast cancer are associated with BRCA, and analysis

excluding causes of cancer death found that survival was also

significantly lower in individuals with mutations or deletions in

BRCA (Mai et al., 2009).

Many survival studies on BRCA gene deletions have

sufficiently demonstrated that cardiovascular-related

diseases are another critical cause of death in individuals

with BRCA mutations or deletions (Arts-de Jong et al.,

2014; Lammert et al., 2022). Sajjad et al. (2017) studied

401 cancer-free female BRCA1/2 mutation carriers and

found that BRCA mutation carriers were at increased risk

of cardiovascular disease compared to the general population.

Zhou et al. noted that BRCA gene deletion causes cardiac

diseases including ischemic heart disease, atherosclerosis, and

other myocardial diseases (Arts-de Jong et al., 2014).

Atherosclerosis is a major cause of aortic disease,

peripheral vascular-related diseases, coronary heart disease,

and cerebral infarction (Alexander et al., 2021; Shea et al.,

2021). Therefore, addressing atherosclerosis is key to

preventing cardiovascular diseases caused by BRCA defects.

Atherosclerosis has been extensively studied, and through the

analysis of causative factor ranking, endothelial dysfunction has

been established as the factor of atherosclerosis (Gimbrone and

García-Cardeña, 2016), and apoptosis of endothelial cells plays a

crucial role in the occurrence of endothelial dysfunction (Xu

et al., 2021), thus, can be suggested that endothelial cell injury

plays a driving role in atherosclerosis (Zheng et al., 2017).

Therefore, inhibiting endothelial cell apoptosis in

atherosclerosis can help prevent atherosclerosis development

(Gimbrone and García-Cardeña, 2016).

Low-density lipoprotein (LDL) represents the beginning

of the atherosclerotic response when it enters the

subendothelial space from the endothelium by cellular

action and is deposited in the subintima of the vessel where

it is oxidized by ROS (Porter et al., 2013). Oxidation of LDL by

ROS results in the formation of oxidized low-density

lipoprotein (Ox-LDL), which is accompanied by endothelial

destruction, binding of Ox-LDL to the scavenger receptors of

macrophages, and intracellular accumulation of Ox-LDL after

phagocytosis by vascular smooth muscle cells, resulting in the

formation of foam cells (Porter et al., 2013). ROS cause

endothelial cell apoptosis and atherosclerosis. Therefore,

ROS can be used as both a marker of early atherosclerosis

and as an entry point to control atherosclerosis (Panieri and

Santoro, 2015). In Korea, Lee et al. (2021) used zearalenone

(ZEN) to treat endothelial cells, and the rise of ROS after the

activation of cytoplasmic calcium by ZEN further accelerated

the apoptosis of endothelial cells, verifying that the difficulty

in solving atherosclerosis lies in the treatment of LDL

and ROS.

5.2 BRCA mutations affect atherosclerosis
through Nrf2-mediated reactive oxygen
species

BRCA1 regulates ROS as a newly identified Nrf2 (antioxidant

transcription factor) binding protein (Vurusaner et al., 2012). In

2006, PALB2 was identified as a protein that interacts with

BRCA2 (Xia et al., 2006). BRCA1, BRCA2, and PALB2 are

involved in regulating the activity of Keap1 (KELCH-like

ECH-associated protein 1)-mediated ubiquitination of Nrf2,

thereby regulating the amount of Nrf2, and E3 ubiquitin

ligase (cullin3) is a critical enzyme in the ubiquitination

reaction, with Keap1 as its recognition subunit (Song et al.,

2021). Japanese researchers have found that the ETGE and

DLG motifs in the Neh2 structural domain of Nrf2 can bind

to the Kelch structural domain of Keap1. ETGE of Nrf2 is bound

to the Keap1 dimer using what is known as a hinge, while the

Cul3-Rbx1 complex is stably bound to Keap1 using a DLG

latching motif (Tong et al., 2006), forming KEAP1-NRF2,

which lays the foundation for ubiquitination. Ubiquitinated

Nrf2 is then transported to the 26S proteasome to be

degraded and destroyed (Zhang et al., 2004). Laboratory

analysis of the transfected gene revealed that cells with

deletion of the BRCA1/2 gene are more sensitive to oxidative

stress (Fridlich et al., 2015). BRCA1 has an ETGE-like structure,

competitively inhibits KEAP1-NRF2 ubiquitination, and

increases Nrf2 content by binding to the ETGE-binding site of

Keap1 (Zhou et al., 2021). Amino acids 9-44 of PALB2 determine

its linkage to BRCA1 (Gardini et al., 2014). It was also found that

PALB2 is linked to BRCA2 in the N-terminal domain, and it is

worth noting that PALB2 has a highly conserved ETGE-type

Keap1 binding motif, which shares the same site of action as

Keap1 and Nrf2 (Xia et al., 2007). Thus, PALB2 can participate in

the binding process between Nrf2 and Keap1, compete with

Nrf2 for Keap1, inhibit KEAP1-NRF2, and stabilize Nrf2. As

Nrf2 mediates the antioxidant response, PALB2 causes Nrf2 to

remain in the nucleus to reduce the level of ROS in the cell and

the rate of exit from the nucleus (Ma et al., 2012; Gorrini et al.,

2013). In the absence of BRCA1/2 or PALB2, KEAP1-NRF2 is not

inhibited, ubiquitination of Nrf2 results in high ROS production,

and regulating the Keap1 pathway to inhibit endothelial

apoptosis and is an essential means of alleviating

atherosclerosis from the root (Kobayashi et al., 2004; Singh

et al., 2013).
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5.3 Modulation of BRCA mutation-
induced cardiovascular lesions by
phytochemicals

The prevention of cardiovascular-related diseases through

phytochemicals has garnered substantial public interest. Several

phytochemicals have been shown to act as cardiovascular disease

preventers in cells, animals, and human populations. Examples

include sulfur-containing compounds, terpenoids, and

polyphenols, the action points of which are listed in Table 1.

5.3.1 Sulfur-containing compounds
5.3.1.1 Sulforaphane

Sulforaphane (SFN), a natural isothiocyanate compound

with excellent antioxidant properties, is abundant in

cruciferous vegetables and is produced by the breakdown of

glucose by endogenous mustard enzymes (Kaiser et al., 2021).

Considering the antioxidant properties of SFN, Asif et al. (2022)

found that SFN preferentially acts on c151 in Keap1 cysteine

residues. In the cytoplasm, Nrf2 binds to Keap1 first due to high

ETGE binding, followed by partial binding of DLG, and

cullin3 recognizes Keap1 binding immediately, followed by

ubiquitination and degradation of Nrf2. If Nrf2 binds to

Keap1 and then SFN is added, SFN acts on c151 on Keap1,

disrupting the binding of Keap1 to cullin3. Immobilization is

prevented and Keap1 cannot continue to participate in the cycle

to bind newly generated Nrf2 (Kobayashi et al., 2009). The

reduction in Keap1 allows newly generated Nrf2 to enter the

nucleus, where it binds to antioxidant response elements (ARE)

to activate antioxidant responses, causing a reduction in ROS

(Dinkova-Kostova et al., 2017). The regulation of Nrf2 by SFN

effectively reduces endothelial cell injury, thus explaining its

reduction in atherosclerosis and its role in combating

cardiovascular disease (Dana and Alejandro, 2022).

5.3.1.2 Allicin

Glutathione is among the most studied cellular antioxidants.

However, orally supplemented glutathione is hydrolyzed and

oxidized by intestinal enzymes. Acetylcysteine (NAC) is a

precursor of glutathione, and oral supplementation with NAC

increases glutathione levels in the body after conversion in the

liver (Schmitt et al., 2015). After NAC supplementation,

glutathione peroxidase (GPX) activity is enhanced to convert

reduced glutathione (GSH) to oxidized glutathione (GSSG),

thereby protecting cells from ROS damage (Kwon, 2021).

Allicin, also known as diallyl thiosulfate, is a sulfur-containing

compound. When allicin was substituted for NAC in

intervention studies, researchers also found enhanced GPX

activity, which may indicate that allicin, a natural

phytochemical, has specific antioxidant effects that counteract

ROS production, and thus could be considered for the prevention

of atherosclerosis caused by BRCA deficiency (Hasan et al., 2006;

Catanzaro et al., 2022).

5.3.2 Terpenoids
5.3.2.1 Lycopene

Lycopene (LYC), a terpene fat-soluble natural pigment

widely found in tomatoes, watermelon, carrots, and other red

fruits and vegetables, can be an effective antioxidant because of its

powerful ability to scavenge free radicals LYC induces autophagic

degradation of Keap1 by increasing the expression of autophagic

protein p62 (Ulasov et al., 2021). When Nrf2 dissociates from

Keap1, then nuclear ectopic and binds to ARE in the nucleus to

induce the expression of antioxidants downstream of the

pathway to avoid oxidative cell death (Baird and Yamamoto,

2020; Wang et al., 2020). Since LYC intervention in rats results in

a decrease in LDL and triglycerides and an increase in HDL, it

was demonstrated that LYC is an anti-atherogenic

phytochemical (Bentzon et al., 2014; Wong, 2014). ROS

production was significantly decreased by LYC

supplementation, which inhibited endothelial cell injury

caused by BRCA deletion or mutation (Roy and Datta, 2021).

This further demonstrated that LYC is essential for preventing

atherosclerosis caused by BRCA deficiency.

5.3.2.2 Luteolin

Luteolin, also known as phytoalexin, is among the more

common terpene antioxidants in nature that reduces free radical

activity, prevents ROS damage to cells, and has a surprising effect

on BRCA-deficient cancers (Gong et al., 2018). Lutein is an

essential nutrient and one of the most common antioxidants

found in egg yolks. Furthermore, Mitra et al. (2021) recently

noted that dark-colored greens are usually high in luteins, such as

kale, spinach, and lettuce. A recent study reconfirmed that the

two parts of the carbon chain of lutein are hydrophilic (HO-) and

hydrophobic (CH2−), respectively (Nakamura and Sugiura,

2022). Moreover, the hydrophilic part of lutein remains on

both sides of the cell membrane, whereas the hydrophobic

part is in the phospholipid molecule layer, which allows lutein

to bind tightly to the cell membrane lipids and increase the

stability of the cell membrane (Algan et al., 2022). Conversely,

luteolin activates extracellular regulated protein kinase (ERK),

allowing Nrf2 phosphorylation and cleavage of the Nfr2/

Keap1 complex. This causes nuclear translocation of Nrf2 to

bind to the DNA regulatory region of ARE. It induces the

expression of antioxidant genes and reduces intracellular ROS

levels (Ahn and Kim, 2021). Luteolin can be expressed as an

antioxidant that reduces the oxidative response of LDL and

inhibits the development of atherosclerosis (Hajizadeh-

Sharafabad et al., 2021; Ramanna and Somu, 2021). This

suggests that luteolin can inhibit atherosclerosis, thereby

preventing the development of CVD.

5.3.3 Polyphenols
Polyphenols significantly impact human health and are

known as the “seventh nutrient.” Their role in lowering

antioxidant LDL and blood cholesterol has been extensively
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studied (Abdal Dayem et al., 2016). Vegetables such as spinach,

broccoli, and cabbage have high polyphenol contents (Zeb, 2021).

Cherries, blueberries, and other dark fruits also have relatively

high polyphenol contents. Polyphenols are a natural component

of cocoa beans, and the high polyphenol content in black beans

contributes to their unique flavor (Yang et al., 2018).

Interestingly, Khan et al. (2021) reported that polyphenols not

only prevent CVD, but also mediate BRCA1/2 expression.

Polyphenols can be divided into flavonoids and phenolic

compounds, the most common of which are catechins,

proanthocyanidins, quercetin, soy isoflavones, anthocyanins,

and curcumin.

5.3.3.1 Catechins

The antioxidant capacity of catechins is even higher than that

of vitamin E. Numerous studies have demonstrated that

catechins can increase the activity of antioxidant enzymes

(SOD2 and GPX), thus inhibiting the oxidation of LDL to

Ox-LDL (Chen et al., 2020; Ahmadi et al., 2022; Dal and

Yilmaz, 2022). Japanese researchers observed that LDL

oxidation was prolonged in the catechin group by

administering 1 g of catechin in capsule form to 19 healthy

men in a double-blind crossover trial (Suzuki-Sugihara et al.,

2016). The reduction in Ox-LDL levels led to a significant

decrease in the probability of atherosclerosis and effectively

prevented CVD caused by BRCA mutations.

5.3.3.2 Proanthocyanidins

Proanthocyanidins comprise varying amounts of catechins,

epicatechin, and gallic acid, which are abundant in grapes and are

converted into anthocyanins in plants. Proanthocyanidins play a

role in CVD by preventing lipid peroxidation through calcium-

dependent NO release, vasorelaxation, and the inhibition of Ox-

LDL production (de la Iglesia et al., 2010). Proanthocyanidins

reduce intracellular ROS production by increasing the NRF2/

Keap1 ratio, increasing SOD2 expression, and inhibiting oxidase

expression (NOX4 and iNOS) (Kowalska et al., 2021). In

addition, proanthocyanidin supplementation can prevent ROS

production from BRCA defects (Xian et al., 2019). This reduces

the risk of atherosclerosis due to BRCA defects.

5.3.3.3 Quercetin

Quercetin is found at high levels in daily life in sea buckthorn,

hawthorn, and buckwheat sticks. Its antioxidant capacity is

20 times that of vitamin C and 50 times that of vitamin E.

This is due to the good scavenging ability of the o-diphenol

hydroxyl group for superoxide anion (O2-) and hydroxyl radical

(-OH), reducing the production of oxidative stress ROS because

the action of the o-diphenol hydroxyl group maintains biofilm

integrity (Chu, 2022), and reduces necrosis of vascular

endothelial cells. The reduction in ROS leads to the inhibition

of LDL oxidation, reducing the risk of atherosclerosis and other

cardiovascular diseases (Deng et al., 2020). Concurrently,

quercetin inhibits the production of platelet lipoxygenase and

cyclooxygenase, which leads to the release of thrombolytic and

vascular membrane-protective mediators from the endothelium

to counteract thrombosis.

5.3.3.4 Anthocyanins

Anthocyanins are glycosylated anthocyanins that are widely

distributed in black, red, and purple plant foods, such as black

rice, mulberry, and eggplant, which have powerful antioxidant

capacity (Bagchi et al., 2004). Anthocyanins are more substantial

than common antioxidants, such as vitamin E, catechins, and

quercetin, in scavenging free radicals. They have many phenolic

hydroxyl groups, which can directly scavenge many free radicals

by oxidizing and releasing electrons to maintain redox balance

(Dangles and Fenger, 2018). At the same time, anthocyanins

reduce the production of ROS by further activating the activity of

SOD2 and GPX to reduce oxidative stress damage (Tian et al.,

2019). In addition, it prevents the death of vascular endothelial

cells and improves arterial blood-vessel stiffness. In patients with

cardiovascular diseases deficient in BRCA, supplementation with

anthocyanins may improve the risk of related diseases (Speciale

et al., 2020).

5.3.3.5 Soy isoflavones

Estrogen secretion increases in ovarian cancer patients

(Langdon et al., 2020). When estrogen levels are elevated, the

structure of soy isoflavones becomes similar to that of estrogen.

Therefore, soy isoflavones prevent estrogen from binding to the

receptor, thus acting as estrogen antagonists (Kim, 2021).

Moreover, soy isoflavones, similar to quercetin, can contribute

to the antioxidant response by providing hydrogen atoms to

inhibit the production of reactive oxygen radicals and reduce the

level of ROS (Syamala et al., 2021). Su et al. conducted a logistic

regression analysis of 500 patients with ovarian cancer and

500 normal subjects (mean age, 59 years) in southern China.

They found that moderate intake of soy foods activated cellular

autophagy, reduced the risk of ovarian cancer, and increased the

sensitivity to carboplatin (Runlin et al., 2022). A Korean study

investigated 5509 people at high risk of ovarian cancer and found

a relationship between metabolism and soy isoflavone intake,

with soy isoflavones being inversely associated with LDL in men

and women and negatively associated with the incidence of

metabolic syndrome in women. From these data, it can be

concluded that soy isoflavone supplementation can inhibit

metabolism-induced ROS and LDL production (Woo et al.,

2019). Therefore, it is necessary to provide soy isoflavone

supplementation to people with BRCA mutations, especially to

patients with BRCA ovarian cancer.

5.3.3.6 Curcumin

Curcumin is a representative phenolic compound and, as a

natural compound that can be extracted from the ginger family,

deserves our attention as it mediates histone acetyltransferase
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activity to regulate acetylation of DSB sites, thus reducing the

aggregation of critical non-homologous end-joining factors to

DSB sites and achieving PARPi sensitization (Ogiwara et al.,

2013). Surprisingly, curcumin promotes the increase of ROS in

tumor cells, causing tumor cell death (Mortezaee et al., 2019);

however, in normal cells, curcumin downregulates the

antioxidant response of miR-125b to reduce cell death

(Schwertheim et al., 2017). When treating ovarian cancer

patients with BRCA mutations, adjuvant treatment with

curcumin can be considered, not only to increase synergistic

lethality, but also to prevent the side effects of PARPi and CVD

caused by BRCA mutations.

Phytochemicals, such as sulfur-containing compounds,

terpenoids, and polyphenols, which regulate the production of

ROS and the levels of HDL and LDL in different ways to prevent

atherosclerosis caused by BRCA mutations and thus prevent

CVD, are shown in Figure 2.

6 Conclusion and outlook

PARPi and BRCA mutations play a significant role in the

treatment of ovarian cancer. Clinicians are increasingly

concerned about the side effects associated with PARPi and

BRCA mutations. Phytochemicals, mostly derived from fruits

and vegetables, have a high safety profile and are easily accessible,

and therefore, patients have high compliance. In this study, we

sorted out the principles of phytochemicals in antioxidants and

maintenance of metabolic substance balance. We found that

phytochemicals such as sulfur-containing compounds,

polyphenols, and terpenoids can modulate the development of

atherosclerosis, a key pathological change in the process of CVD

caused by BRCA mutations, by mediating Keap1-Nrf2, free

radicals, and LDL. In addition, phytochemicals can reduce the

common clinical side effects of phytochemicals in reducing

nausea and vomiting, relieving fatigue, and reducing

hematotoxicity by modulating 5-HT, stimulating

erythropoietin secretion, and antioxidant substances. We

conclude that phytochemicals can inhibit the pathological

changes caused by BRCA mutations and alleviate the side

effects caused by PARPi by summarizing the relevant

mechanisms. However, studies on phytochemicals that reduce

the side effects of ovarian cancer treatment in animals are

lacking, and natural phytochemicals are expected to gain wide

usage in the clinical treatment of ovarian cancer.
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