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Identification of the biological targets of a compound is of paramount importance for
the exploration of the mechanism of action of drugs and for the development of
novel drugs. A concept of the Connectivity Map (CMap) was previously proposed to
connect genes, drugs, and disease states based on the common gene-expression
signatures. For a new query compound, the CMap-based method can infer its
potential targets by searching similar drugs with known targets (reference drugs)
and measuring the similarities into their specific transcriptional responses between
the query compound and those reference drugs. However, the availablemethods are
often inefficient due to the requirement of the reference drugs as a medium to link
the query agent and targets. Here, we developed a general procedure to extract
target-induced consensus gene modules from the transcriptional profiles induced
by the treatment of perturbagens of a target. A specific transcriptional gene module
pair (GMP) was automatically identified for each target and could be used as a direct
target signature. Based on the GMPs, we built the target network and identified some
target gene clusters with similar biological mechanisms. Moreover, a gene module
pair-based target identification (GMPTI) approach was proposed to predict novel
compound–target interactions. Using this method, we have discovered novel
inhibitors for three PI3K pathway proteins PI3Kα/β/δ, including PU-H71,
alvespimycin, reversine, astemizole, raloxifene HCl, and tamoxifen.

KEYWORDS

transcriptome, gene module pair, drug target prediction, drug discovery, drug–target
association

Introduction

When the sequencing of the human genome identifies risk-associated loci or genetic
mutation for diseases, understanding the biological function and effects of the corresponding
genes (proteins) is the top priority in the life science study. Similarly, for drugs with unknown
molecular mechanisms, identification of their mechanistic targets is of paramount importance
for the development of novel drugs. Truly understanding the biological effects of drugs requires
monitoring the molecular pathways targeted by drugs and the subsequent impacts, such as the
overall gene expression profiles. Evidently, omics techniques are naturally suited for capturing
these systemic effects, such as transcriptomics, proteomics, and metabonomics (Trapotsi and
Hosseini-Gerami, 2022). Until now, there have been many large-scale databases that integrate
different types of omics data induced by genetic or compound perturbation on biological
samples (Barrett et al., 2013; Sjöstedt and Zhong, 2020; Wishart et al., 2022). Among them, the
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low-cost transcriptomics is the most useful for detecting functional
associations between drugs and genes, as the constructed compendia
of comprehensive and uniform-quality genetic and compound-
induced gene expression data, such as the Connectivity Map
(CMap) (Lamb et al., 2006; Subramanian et al., 2017). The CMap-
based concept is a potential solution and has established systematic,
large-scale compendia of the cellular effects of pharmacological and
genetic perturbation. CMap-based approaches explore the actions of
compounds by comparing their induced gene-expression profiles with
the gene-expression profiles of perturbagens with knownmechanisms.
For example, if a query compound has expression profiles similar with
the landmarked compounds with known mechanisms of action or
genetic perturbagens, we can infer the compound has similar upstream
targets or pathways with the landmarked compounds and genetic
perturbagens (Qu and Rajpal, 2012; Musa et al., 2018).

Until now, two versions of CMap have been built. The pilot (old)
CMap database contains 6,100 gene-expression profiles obtained by
the treatment of a set of 1,309 different molecules (Lamb et al., 2006).
Since then, CMap-based methods have been widely used for
discovering the drug’s mode of action and drug repositioning. For
example, based on CMap, Brum et al. found that parbendazole can
induce osteogenic differentiation and explored withaferin A, calcium
folinate, and amylocaine as potential osteogenic drugs (Brum et al.,
2015; Brum et al., 2018). Manzotti et al. (2015) found that amantadine
is associated with monocyte–macrophage-like differentiation of
myeloid leukemia cell lines. Liu et al. (2015) explored celastrol as a
sensitization of leptin, and it can be used to treat obesity. In recent
years, in view of the small scale of the pilot CMap dataset, the
L1000 platform expands the CMap resource in different
dimensions including the number of perturbations, cell lines, doses,
and times (Subramanian et al., 2017). The new version CMap can
further accelerate the discovery of drug actions. For example, Chen
et al. (2021) used the L1000 platform to discover hyperforin as a
stimulator of thermogenesis by stimulating AMPK and PGC-1a via a
Ucp1-dependent pathway. van Leeuwen et al. (2022) integrated the
L1000 data and identified drugs that potentiate the anti-breast cancer
activity of statins. In addition, the large-scale transcriptomic data of
genetic and chemical perturbations from the CMap database also
provide opportunities for updating current computational
pharmacogenomics and drug design methodologies. For example,
Zhang and Gant (2008) proposed a novel pattern matching the
algorithm named statistically significant connectivity map
(ssCMap) to help reduce noise effects in CMap-based approaches.
Fortney et al. (2015) presented a method, CMapBatch, which adapted
parallelly processed multiple-gene signatures. The L1000CDS2 search
engine optimized CMap data and methods to improve the ability of
knowledge extraction from the CMap platform (Duan et al., 2016).

The CMap-based methods explored connections among drugs,
pathways, and diseases by measuring the gene-expression signature
similarity. However, the perturbagens as a medium are indispensable
for these efforts to discover the biological connections. If we want to
predict a potential drug–target interaction, the query drug has to be
linked to targets mediated by perturbagens in the CMap database.
Because of the diversity of treatment conditions, the same
perturbagens might connect to the query drug with sharply
different scores and make users hard to determine which one is
suitable. To solve this problem, we developed a general procedure
to capture target-induced consensus gene modules hidden in the
transcriptional profiles following the treatment of target’s

perturbagens across multiple cell lines and dosages. A specific
transcriptional gene module pair (GMP) was automatically
extracted for each target and can be used as a gene signature to
represent the target. Based on the GMPs of targets, we built the target
network by calculating the similarity among GMPs of all targets and
identified some target gene clusters with similar biological
mechanisms. Moreover, the gene module pair-based target
identification (GMPTI) approach was proposed to predict novel
compound–target interactions based on a compound-induced gene
expression profile.

Materials and methods

Data source and preprocessing

All LINCS-funded CMap L1000 data are available from GEO.
Both LINCS Phase 1 data in GEO Series GSE92742 and LINCS Phase
2 data in GEO series GSE70138 were combined. The L1000 platform
carries out a rigorous five-step data-processing pipeline to transform
raw data from Luminex scanners to replicate consensus signatures.
The final LEVEL 5 data were used in this work. It totally contains
594,697 signatures (118,050 in GSE70138 and 473,647 in GSE92742).
The L1000 assay directly measures 978 landmark genes and infers
additional 11,350 genes. Of the inferred genes, 9,196 are well inferred.
Our work only used the high-fidelity 10,174 genes, including
978 measured landmarks and 9,196 well-inferred genes.

We collated gene targets for all perturbagens from the cloud-based
computing environment termed CLUE (Connectivity Map Linked
User Environment), available at https://clue.io/. Genetic perturbagens
refer to two types of knockdown (KD) or overexpression (OE) on
targeted genes. The effects of compounds on targets were artificially
annotated. These perturbagens with clear targets were then mapped to
the LEVEL 5 data to extract corresponding signatures. As a result,
138,310 signatures for 5,852 perturbagens with 4,540 gene targets were
retained for this study.

Distance between two signatures

The distance between two signatures was measured by a modified
gene set enrichment analysis (GSEA)-based method (Iorio et al.,
2010). Given two signatures X and Y, following the work of Iorio
et al., we selected 250 upregulated genes up � g1,/, g250{ } and
downregulated genes dn � g1,/, g250{ } to represent each
signature. The distance between two signatures was defined as follows:

dX,Y � ITESX,Y + ITESY,X
2

,

where

ITESX,Y � 1 − abs ES
Xup

Y − ESXdn
Y( )

2
.

Here, ITESX,Y, defining the distance from X to Y, is the inverse total
enrichment score of the signature X gene sets {up, dn}, with respect to
the signature of Y. ESXr

Y (with r ∈ {up, dn}) is the enrichment score of
the signature of X (the upregulated part and the downregulated one)
with respect to the signature of Y. Similarly, ITESY,X describes the
distance from Y to X.
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ITESY,X � 1 − abs ES
Yup

X − ESYdn
X( )

2
.

Then, we performed a hierarchical cluster analysis for all
signatures using the calculated distances.

Cluster analysis of signatures for each target

For a target, its signatures denote all signatures of perturbagens of
this target. We clustered signatures for each target on their pairwise
distance values and plot the dendrogram. Then, signatures cut by a
pre-defined threshold of 0.8 in the dendrogram were considered
outliers and removed in the dendrogram of each target.

The distance threshold value (i.e., 0.8) was determined by the
following considerations. First, a significant threshold was
estimated by a multiple random sampling approach. In all
138,310 signatures, we randomly selected 1,000 signatures and
calculated pairwise distances between them, resulting in

1000
2

( ) = 499,500 distance values. The empirical probability

distribution function (pdf) of these data was used to estimate a
significance threshold for the distance. The upper bound of the 5%
quantile of this empirical pdf was chosen as the distance
significance threshold value. This procedure was repeated
1,000 times, and the mean of 1,000 threshold values
approximately 0.8 was retained as the significant threshold.
Based on the calculated threshold value, we manually inspected
each cluster tree of the 4,540 targets and selected 0.8 as the
threshold to remove outliers. Finally, 4,461 were retained with
at least three signatures.

Co-expression analysis

It was hypothesized that on-target gene expression effects of
different perturbagens for the same target should be similar and
co-expressed. To find co-expression module genes induced by one
target, we performed a co-expression analysis for signatures of each
target using the weighted correlation network analysis (WGCNA)
method (Langfelder and Horvath, 2008).

Target-specific gene modules

After the co-expression analysis, those genes that were not in any
co-expressed modules were removed from signatures of each target.
To extract the target-specific gene modules from co-expressed genes,
the Borda merging method implementing a majority voting system
was used to sort genes according to their values in each signature:

G � g1, g2, g3,/, gn,[ ],
vgi � ∑m

j�1
vjgi ,

where G is a ranked gene list of size n by sorting the corresponding
merging value vgi for each gene gi, in decreasing order. vgi denotes the
sum (merging value) of vjgi in signatures 1 tom. vjgi is the value of gene
gi in signatures j.

To this step, each target corresponds to a gene listG, among which
specific gene modules for this target can be extracted. We selected the
top 250 genes (tup) of each gene list and the bottom 250 ones (tdown) as
the target-specific gene module pair (tup, tdown).

Characterization of the target-specific gene
module pair in human gene networks

InWeb_Inbiomap (Inbiomap) focuses on a scored physical
protein–protein interactions (Li et al., 2017), available from https://
www.lagelab.org/resources/. Pathway commons (Pathcom) was
downloaded from http://www.pathwaycommons.org/. Pathcom
concentrates on biological pathways integrated from public
pathway and gene interactions (Rodchenkov et al., 2020). The
Search Tool for Recurring Instances of Neighboring Genes
(STRING; https://string-db.org) quantitatively integrates different
studies and interaction types into a single integrated score for each
gene pair based on the total weight of evidence (Snel et al., 2000). The
Genome-scale Integrated Analysis of gene Networks in Tissues
(GIANT; https://hb.flatironinstitute.org/) network covers functional
association genes and inferred functional relations (Huang et al.,
2018).

We analyzed the enrichment of the module gene members in the
network by calculating the ratio of protein–protein connections
among the fully connected network. When both top and bottom
modules were analyzed together, the fully connected network has

500
2

( ) � 124, 750 links. When the top and bottom modules were

analyzed, the fully connected network has
250
2

( ) � 31, 125 links. The

significance of the enrichment was measured by comparing the actual
ratio with that of a random model. In the random model, a collection
of genes with the same number as the module genes was randomly
selected from the network, and then the connection ratio was
calculated. This step was repeated 1,000 times, and a null
distribution was constructed.

Target network

The similarity between two targets is estimated by the number of
intersection genes between the two targets’ specific module pairs. The
more overlapping the genes are, the more similar the two targets are.
Then, we considered each target as a node in the network and
connected two nodes with a weighted edge, if their similarity is
below a significant threshold value. To evaluate the significance of
the linkage between targets, we generated a null distribution for each
target by randomly permuting top and bottom transcriptional
modules and repeated the calculation 1,000 times for target
connections. This null model uses the gene module-based
permutation test procedure and preserves gene–gene correlations of
the gene expression data, providing a more biologically reasonable
assessment of significance than would be obtained by permuting
genes. The edge weight is proportional to the similarity that is
intersection genes of two targets’ specific module pairs, where the
significant threshold is computed by the hypergeometric test
(p < 0.05).
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Target community identification

The affinity propagation algorithm is used to identify target
communities in the target network (Frey and Dueck, 2007;
Bodenhofer et al., 2011). This algorithm takes in the target pairwise
similarity matrix and outputs a set of clusters. Each cluster is
represented by a cluster center data point called exemplar, whose
features best interpolate the features of all the other points in the
cluster.

Specific gene module pair-based target
identification

GMPTI considers experiments with gene-expression profiles from
a collection of samples belonging to two classes, for example, drug
treated vs. control. The genes can be ordered in a ranked list L,
according to their differential expression between the classes. Given
the defined GMP for each target, the goal of GMPTI is to compare L to
each target-specific GMP using a similarity metric slightly adjusted
with that used in gene set enrichment analysis (Subramanian et al.,
2005). We defined the raw similarity score as follows:

TCStL � ES
up
L − ESdownL ,

where ESupL is the enrichment of tup for L, and ES
down
L is the enrichment

of tdown for L. TCS
t
L denotes the total correlation score of the GMP (tup,

tdown) of one target, with respect to signature L. The total correlation
score (TCS) ranges between −2 and 2. It measures the degree of
similarity between query L and target-induced gene-expression
profiles. It will be positive for targets that are positively related to
L, negative for those that are inversely similar, and near zero for
signatures that are unrelated. A zero value is assigned when both ESupL
and ESdownL are the same sign.

Normalization of similarity scores

To allow for the comparison of similarity scores across multiple
expression datasets, the scores are normalized to account for
differences in query ranked gene lists. GMPTI normalizes the
TCStL values within each ranked gene list as follows:

NCStL �
TCStL
μ

,

where NCStL and μ are, respectively, the normalized correlation score
and the absolute mean of TCStL (the mean of absolute values) for all
target-specific module pairs corresponding to the query gene list. By
normalizing TCS, GMPTI accounts for differences in correlations
between GMPs and the expression dataset; therefore, the normalized
correlation scores (NCS) can be used to compare the analysis results
across different expression profiles.

Estimating significance

We assess the significance of an actual NCS value by comparing it
with the set of scores NCSNULL computed with random permutations
of both top and bottom gene modules for each target. 1) We generated

a random GMP for each target by randomly permuting top and
bottom transcriptional modules in our target space. 2) Step 1 was
repeated for 1,000 permutations, and a histogram of the
corresponding similarity scores NCSNULL was created for a query
gene list. 3) A nominal p-value for the NCSi of a target i was estimated
by using the portion of the NCSNULL distribution above the actual
NCSi as follows:

P � N(abs(NCSNULL) ≥ abs(NCSi)
1000

,

where abs(NCSNULL is the absolute value of all correlation scores for
random GMPs with respect to a query gene list L. abs(NCSi) is the
absolute value of the similarity score of target i with respect to L.

PI3Kα/β/δ kinase assay

The test compounds including varenicline tartrate, PU-H71,
alvespimycin, reversine, astemizole, raloxifene HCl, and tamoxifen
were purchased from Shanghai Aladdin Biochemical Technology Co.,
Ltd. PI3Kα/β/δ were purchased from Carna Biosciences. This study
aims to determine the effect of test compounds on PI3Kα/β/δ enzyme
activity using ADP-Glo-based biochemical assay (Vendor: Promega,
Cat#: V9102), following the manufacturer’s instruction. The classical
PI3K inhibitor wortmannin was used as a positive control.
Luminescence signal (RLU) is detected for each well by using a
multimode plate reader (Vendor: BioTek, Cat#: Synergy4) and
converted to % inhibition. Then, the IC50s were calculated by
fitting % inhibition values and the log of compound concentrations
to the hill slope with the variable slope (called the variable slope model
or four-parameter dose-response curve), and the log (inhibitor) vs.
response curve was built by GraphPad Prism version 7.0 (GraphPad
Software). Data are presented as mean ± SEM, with n = 3 for each
drug dose.

Results

Target-specific gene module pair

It was hypothesized that on-target gene-expression effects of
different perturbagens for the same target should be similar and
co-expressed. For a gene target, its specific GMP indicates two
gene sets that are specifically expressed at the top and bottom of
the gene-expression profiles induced by perturbing this target. To
extract the GMP for each target, we exploited a library of gene
transcriptional responses to different perturbagens (e.g., small-
molecule compounds and shRNAs): the newly expanded
Connectivity Map (CMap) containing 476,251 gene expression
profiles (consolidating replicates) obtained by the treatment of
77 different human cell lines at different dosages with a set of
27,927 perturbagens (Subramanian et al., 2017). We collected gene
targets of all perturbagens from CLUE. Then, each target was mapped
to its transcriptional signatures that are the differential gene profiles
induced by the perturbagens of the target including both small-
molecule compounds and shRNAs. As a result, 138,310 signatures
for 5,852 perturbagens with 4,540 gene targets were retained.

Based on these data, we proposed a novel method to extract the
GMP for a target (Figure 1A). First, we integrated co-expression genes
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for each target by performing the WGCNA on its signatures. For a
target’s signatures, there may be some outliers that are distinct from
most signatures and are difficult to reflect transcriptional activities
induced by perturbing this target. To reduce the influence of these
outliers in the construction of GMPs, we clustered signatures for each

target on their pairwise distances and removed outlier signatures in the
dendrogram by a pre-defined threshold (see Materials and Methods).
The distance between two signatures was measured by a modified
GSEA-based method (Iorio et al., 2010). In order to equally weight the
contribution of all signatures to the co-expressed genes, the Borda

FIGURE 1
(A) Procedure to extract the gene module pair (GMP) of a target. (B) Characterization of the target-specific GMP in human gene networks. Four types of
gene networks were collected from Pathcom, Inbiomap, STRING, and GIANT. We evaluated the functional enrichment of module genes in each network by
calculating the ratio of protein–protein interaction numbers among the link numbers of fully connected networks (PPI ratio). The actual PPI ratio is compared
with that of a random model to assess the significance of the enrichment. In the random model, a collection of genes with the same number as the
module genes were randomly selected from the network, and then the PPI ratio was calculated. The distribution with blue and red colors is random and
observed data, respectively. Rows 1–4 rows correspond to the analysis of the Pathcom, Inbiomap, STRING, and GIANT networks, respectively. Columns
1–3 correspond to analysis of gene module pairs, top modules, and bottom modules, respectively.

Frontiers in Pharmacology frontiersin.org05

Li et al. 10.3389/fphar.2022.1089217

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1089217


merging method, implementing a majority voting system, was used to
sort the co-expressed genes according to their ranks in each signature.
The GMP including the two top/bottom gene sets was extracted from
the merged gene list by selecting the first 250 genes at the top of the
gene list (most overexpressed) and the last 250 ones at the bottom of
the gene list (most downregulated) following a previous work (Iorio
et al., 2010). Finally, the GMPs were successfully constructed for
3,505 targets. Out of these, we noted that the GMPs for 229 targets
were integrated from only a small number of multi-target
perturbagens. For example, the GMP of adiponectin receptor
protein 2 (ADIPOR2) was concluded by 70 signatures of the
compound parthenolide, which is not only an adiponectin receptor
agonist but also an NF-κB inhibitor. For these targets, it is hard to
judge the specificity of their GMPs; thus, they were removed from the
target space. The existing 3,275 targets were confidential, and their
GMPs capture the consensus transcriptional response of the targets
across different perturbations, reducing non-relevant effects due to
off-target, dosage, or cell line (Supplementary Table S1).

Characterization of the target-specific gene
module pair in human gene networks

To check the functional coherence of target-induced
transcriptional modules, we compared their gene members in four
genome-wide interaction networks with different gene interaction
types. Out of networks, Inbiomap focuses on a scored physical
protein–protein interactions (Li et al., 2017). Pathcom concentrates
on biological pathways integrated from public pathway and gene
interactions (Rodchenkov et al., 2020). STRING quantitatively
integrates different studies and interaction types into a single
integrated score for each gene pair based on the total weight of
evidence (Snel et al., 2000). The GIANT network covers functional
association genes and inferred functional relations (Greene et al.,
2015). These networks differing in both interaction type and coverage
(Supplementary Table S2) could systemically evaluate the function
relation of the target-induced gene modules in this study.

We first analyzed the gene members of both top/bottom modules
together. In the four networks, we observed that Pathcom enriched a
minimum of 758 (~22%) GMPs compared with its null model (nominal
p-value<0.05; Figure 1B), though this number is evidently less than that in
other networks. The three networks, Inbiomap, STRING, and GIANT,
significantly cover more gene relations than their corresponding null
models on at least 2,200 GMPs (49%), while 1,180 GMPs (26%) were
enriched in all the three networks (nominal p-value <0.05; Figure 1B).
Moreover, the top and bottommodules were analyzed. In agreement with
functional analyses of the combined co-expression modules, except
Pathcom, all networks enriched a large amount of modules (from
1,000 to 1,981 upregulated modules and from 1,000 to
2,331 downregulated modules) (nominal p-value <0.05; Figure 1B).
These results indicate that gene members in target-induced
transcriptional modules are mostly functionally relevant and cover a
diversity of molecular interaction types.

Gene module pair based-target gene map

GMPs reflecting the transcriptional response of targets’
perturbation can be used to relate different target genes. The

similarity between collections of GMPs allowed us to calculate a
target map connecting target genes together through sequential
linkage. The similarity was estimated by the quantity of
intersections between two GMPs. Then, we consider each target as
a node in the network and connected two nodes with a weighted edge,
if their similarity is below a significant threshold value. To evaluate the
significance of the linkage between targets, we generated a null
distribution for each target by randomly permuting top and
bottom transcriptional modules and repeated the calculation
1,000 times for target connections. This null model uses the gene
module-based permutation test procedure and preserves gene–gene
correlations of the gene expression data, providing a more biologically
reasonable assessment of significance than would be obtained by
permuting genes (See methods). It can be seen that 2,593 (~82.5%)
targets are connected in a map with 221,275 edges (permutation based
p-value < 0.05; Figure 2A; Supplementary Table S3), corresponding to
~4% of a fully connected network with all 3,275 targets
(5,361,175 edges).

To further detect the target relations, the affinity propagation
algorithm is used to identify target clusters in the target map. This
algorithm takes in the target pairwise similarity matrix and outputs a
set of clusters. Each cluster is represented by a cluster center data point
called exemplar, whose features best interpret the features of all the
other points in the cluster. We identified 225 clusters with at least two
target nodes in the target map (Figure 2A; Supplementary Table S4).
Each cluster was coded with a numerical identifier. As only gene
expression information is used to calculate the cross-target similarity,
each cluster should reflect a similar transcriptional regulatory activity
of biologically related targets. As expected, we observed that targets
with similar functions cluster together in the map. For example,
11 histone deacetylases gather in Cluster 96. Likewise, sodium/
potassium-transporting ATPase proteins stay together in Cluster
17. Also, target genes within a pathway should co-localize and
intra-connect in the map as their similar transcriptional regulatory
activity. Thus, PI3 and PI4 kinase sets localize with other kinases
including ATM, ATR, PLK1, PLK3, and MTOR.

Gene module pair-based target identification

GMPTI considers experiments with gene-expression profiles from
a collection of samples belonging to two classes, for example, drug-
treated vs. control cells. The agent-induced gene expression profiles
can be ordered in a ranked list, according to some metrics (e.g., the
differential expression values between the two classes). Given the
defined GMPs, the goal of our strategy is to compare the correlation of
the query gene list with the GMPs of targets (Figure 3A). A strong
correlation indicates a similar transcriptional response induced by the
agent and the target. The TCS is measured by a method adjusted from
that used in the GSEA (see Methods). A positive TCS indicated a
similar transcriptional response induced by the agent and the target,
and a negative TCS indicated a reversed transcriptional response
induced by the agent and the target. To allow for the comparison
of scores across multiple queries, we normalized them by dividing a
query’s score into absolute means of the raw scores for all GMPs and
calculated an NCS with respect to the query. The significance of the
normalized score was assessed by comparing it with a null distribution
of scores computed by random permutations of top and bottom
transcriptional modules in all target spaces.
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In addition, we manually tidied the effects of perturbagens for each
target including both inhibition and activation that signifies the GMPs
were concluded from the transcriptional profiles of inhibitors and agonists
of targets, respectively. Out of the 3,275 targets, we found that 3,119
(95.2%) were inhibited, 26 (0.8%) were stimulated, and 131 were
undetermined. From these data, we could determine how the query
agent induces the corresponding gene-expressional profile in GMPTI. For
example, when the transcriptional profile induced by an agent strongly
positively correlated with the GMP of a target labeled “inhibited” in the
target space, we speculated the agent might induce its gene expression by
inhibiting the mechanism related to the target.

The quality of GMPs for each target is of paramount importance
for prediction of targets by GMPTI. To assess the quality of GMPs, we
used L1000 data as queries to examine whether the GMP of a target
can be enriched into the transcriptional signatures of the target itself
more than other GMPs. This means the transcriptional signatures of
the target will have a greater NCS on its GMPs than other GMPs. We
observed that signatures of 3,137 targets (~95.8%) have maximal NCS
on its corresponding GMPs. The signatures of other 138 targets and
their own GMPs display slightly lower NCSs ranked from 2nd to 18th
in all NCSs (Figure 3B; Supplementary Table S1). Manual inspection
of these 138 targets indicated that GMPs with NCSs larger than their
own GMPs are mostly corresponding to those targets that have similar

biological mechanisms to their own targets. These results indicate that
the GMPs of most targets are more correlated with transcriptional
signatures of their own or other targets with similar biological
mechanisms, confirming the quality of GMPs.

When a drug-induced gene expression profile is known, GMPTI
can quantify the functional associations between the drugs and targets
with GMPs by using NCS values and the corresponding nominal p
values. For a drug–target association, the NCS absolute value measures
the extent of functional association between the drug and target. The
larger the NCS absolute value, the stronger the drug–target functional
association. The nominal p-value <0.05 means that more than 95%
NCS values from the randommodel are less than the real NCS.We can
find drug–target associations by both P and NCS values. Generally, a
nominal p-value <0.05 can be regarded as the minimum standard for
filtering potential drug–target associations, which can be further
refined by the ranked NCS values. To examine the influence of
NCS on the prediction, we regarded NCS as cutoff values and
monitored the distribution of the positive predictive value
(precision) and true positive rate (recall). As shown in Figures
3C,D, when raising the NCS values, the precision values sharply
increase to the maximum, and correspondingly, the recall values
gradually decrease, indicating the NCS values can be used to filter
drug–target associations.

FIGURE 2
Target network. Part of the target map with 5,000 links were displayed (see more details in Supplementary Table S4). Clusters 17, 96, 175, and 178 were
magnified (see more details in Supplementary Table S5).
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Discovery of novel targets of drugs

We focused on identifying ligands that act on the PI3K signaling
pathway, a key biological process involved in cancer and inflammatory
diseases by GMPTI. This pathway has three target genes PI3Kα/β/δ in
the target space and is suitable to be taken as an example of this test.
First, GMPTI was used to screen 5,520 small-molecular compounds

from the L1000 dataset. For each target, we assessed whether it
connected to the 5,520 compounds. When these compounds were
listed in descending order by NCS values, it was observed that most
known ligands for the three targets were top ranked with significant
scores. For PI3Kα, 308 compounds exhibited the expected interaction,
and out of all 15 known PI3Kα ligands in the L1000 dataset, 14 ligands
such as LY-294002, wortmannin, and NVP-BEZ235 were included in

FIGURE 3
Gene module pair-based target identification. (A) A ranked gene list between two classes is compared with GMPs of all targets. A total correlation score
(TCSi) is used to quantify the correlation between the gene list and each GMP by an adjusted gene set enrichment approach. Then, the TCS is divided by
absolute means of the TCS scores for all GMPs to get a normalized correlation score (NCSi) with respect to the query. (B)Mean of NCS for all transcriptional
signatures of each target is calculated for all GMPs and ranked. Because there may be multiple transcriptional signatures for a target in the
L1000 database, we calculated themean ofmultiple NCS values for each target relative to all GMPs. Then, for each target, NCSmean values for all GMPs were
ranked in descending order by the absolute values, and the order of the GMP the target itself is extracted and displayed. The horizontal axis displays the
3,275 targets. The vertical axis is the order of the NCSmean value for a target and theGMPof the target itself. (C) Precision at different NCS cutoffs. (D)Recall at
different NCS cutoffs.
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the top ranks (nominal p-value <0.05, Supplementary Table S6).
Similarly, 351 compounds exhibited the expected interaction for
PI3Kβ, and out of all 13 known PI3Kβ ligands in the
L1000 dataset, 11 ligands were included in the top ranks (nominal

p-value <0.05, Supplementary Table S6). For PI3Kδ, 321 compounds
exhibited the expected interaction, and out of all 14 known PI3Kδ
ligands in the L1000 dataset, 13 ligands were included in the top ranks
(nominal p-value <0.05, Supplementary Table S6). Based on the NCS

FIGURE 4
Experimental validation of interaction between the test compound and PI3Kα/β/δ. We used the classical PI3K inhibitor wortmannin as the positive
control. (A1–3): Wortmannin and PI3Kα/β/δ; (B1–2): Reversine and PI3Kα/δ; (C1–3): Alvespimycin and PI3Kα/β/δ; (D): PU-H71 and PI3Kδ; (E1–3): Astemizole
and PI3Kα/β/δ; (F1–3): Raloxifene HCL and PI3Kα/β/δ; (G1–3): Tamoxifen and PI3Kα/β/δ. Data are presented as mean ± SEM, with n = 3 for each drug dose.
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for the three kinases, we selected three potential compounds, PU-H71,
alvespimycin, and reversine, to measure their affinity by direct-
binding assay. In this test, we used the classical PI3K inhibitor
wortmannin as a positive control, and the results showed that
wortmannin inhibits PI3Kα, PI3Kβ, and PI3Kδ with IC50 of
1.2 nM, 1.2 nM, and 4.5 nM, respectively, confirming the
specifications of the binding assay (Figures 4A1-A3). Reversine has
been known as a novel class of ATP-competitive Aurora kinase
(Aurora A, Aurora B, and Aurora C) inhibitor and induces cell
cycle arrest and apoptosis. GMPTI showed that reversine might
also be a potential PI3K pathway inhibitor with IC50 of 12 µM and
3.5 µM for PI3Kα and PI3Kδ, respectively (Figures 4B1, B2). For
alvespimycin and PU-H71, it has been known that both compounds
are potent heat shock protein 90 (HSP90) inhibitors. Our model
demonstrated that they also have potential to inhibit the PI3K
pathway. Among them, alvespimycin slightly inhibited PI3Kα,
PI3Kβ, and PI3Kδ with IC50 of 93 µM, 69 µM and 28 µM,
respectively (Figures 4C1–C3). PU-H71 has IC50 of 20 µM to
antagonize the activation of PI3Kδ (Figure 4D).

The aforementioned prediction is based on the L1000 dataset and
might improve the prediction ability of GMPTI. To further test the
validity of GMPTI for predicting novel compound–target interactions on
external data, we collected the old version CMap dataset that includes
1,309 compounds and their induced gene expression profiles. For each
compound, its signature was created by differential genes and was used as
a query for GMPTI. For a better comparison, we also predicted the activity
of these compounds against the PI3K pathway. GMPTI predicted 410,
374, and 408 compounds were significantly related to PI3Kα, PI3Kβ, and
PI3Kδ, respectively (nominal p-value <0.05, Supplementary Table S7). In
the result, we can see the top three predicted compounds, LY294002,
sirolimus, and wortmannin, are known PI3K inhibitors. In addition, we
experimentally tested three well-known drugs, astemizole, raloxifene HCl,
and tamoxifen, that were repositioned to PI3K inhibitors by GMPTI.
Astemizole is known as a second-generation H1-receptor antagonist for
use in relieving allergy symptoms, including rhinitis and conjunctivitis.
The binding assay confirmed that astemizole inhibits PI3Kα, PI3Kβ, and
PI3Kδ with IC50 of 18 µM, 8.7 µM, and 6 µM, respectively (Figures
4E1–E3). Raloxifene is a selective estrogen receptor modulator and is
indicated for the treatment of osteoporosis in postmenopausal women
and corticosteroid-induced bone loss.We here verified its inhibitory effect
on PI3Kα, PI3Kβ, and PI3Kδ with IC50 of 16 µM, 8.4 µM, and 4.3 µM,
respectively (Figures 4F1–F3). Tamoxifen, a well-known competitive
inhibitor for the estrogen receptor, has been used to treat estrogen
receptor-positive metastatic breast cancer. It was also found to be a
PI3K inhibitor with IC50 of 19 µM, 14 µM, and 10 µM for PI3Kα, PI3Kβ,
and PI3Kδ, respectively (Figures 4G1–G3).

Discussion

Discovery of molecular mechanisms targeted by a compound is
a top priority for the development and application of novel drugs.
Direct prediction based on the chemical structure information of
drugs usually finds a large number of redundant targets that are
unrelated to the pharmacological effects of drugs. CMap-based
methods explored connections among drugs, pathways, and
diseases using a large collection of transcriptional responses
following compound treatments (Lamb, 2007). The
L1000 platform expands the CMap resource in different

dimensions including the number of perturbations, cell lines,
doses, and times (Subramanian et al., 2017). However, the
perturbagens as a medium are indispensable for the CMap
methods to discover the biological connections. This makes the
exploration of the drugs’ mode of action of fuzzy and sometimes
need more empirical judgment. We developed a general procedure
to capture target-induced consensus gene modules hidden in the
transcriptional profiles following the treatment of the target’s
perturbagens across multiple cell lines and dosages. Finally, a
specific transcriptional GMP was automatically extracted for
each target and can be used as a gene signature to represent the
target. Based on the GMPs of targets, we built the target network by
calculating the similarity among GMPs of all targets and identified
some target gene clusters with similar biological mechanisms.

Our approach has the ability to infer mechanisms of queries
with known gene-expression profiles. Three proteins PI3Kα/β/δ in
the PI3K pathway were taken as an example. We found novel
ligands of the three proteins not only in L1000 compounds but also
the external dataset. We have experimentally validated three
potential compounds PU-H71, alvespimycin, and reversine in
the L1000 dataset and three well-known drugs astemizole,
raloxifene HCl, and tamoxifen in the old CMap dataset by the
direct-binding assay. It should be noted that these drug–target
interactions have affinities in the micromolar range in the
experimental test and should be aspecific effects. However, the
analysis of the binding efficiencies of natural products and
marketed drugs indicates that therapeutic efficacy is not
necessarily associated with high binding affinity (Mestres and
Gregori-Puigjané, 2009). For instance, memantine, a drug for
Alzheimer’s disease, is an uncompetitive, low-affinity (in the
micromolar range), non-selective N-methyl-D-aspartic acid
(NMDA) receptor antagonist, and has less side effects than
high-affinity (nanomolar or higher) drugs (Lipton, 2007). In
addition, drugs to interact with multiple targets might also have
changed to improve efficiency (Hopkins et al., 2006; Ohlson, 2008).

The major limitation of our approach is the limited quantity and
quality of perturbagens for a target. The key of our approach is
concentrating on the commonalities reserved in the transcriptional
responses of different perturbagens for the same target. If the number
of perturbagens is too small to cover the most transcriptional features
of the target, the extracted GMPs were hardly sufficient to represent
the target. The L1000 platform made it possible as the comprehensive,
large-scale compendium of functional perturbations of the gene
expression resource at various conditions. Certainly, it should be
noted that the expression of most genes was not directly measured
but inferred in the L1000 assay, although the reliability of the inferred
transcripts were theoretically confirmed (Subramanian et al., 2017). In
addition, we should note that it is inevitable for a target having
perturbagens with inconsistent effects on different situations (for
example, different cell lines, doses, and times); merging gene
expression profiles from distinct perturbagens might dilute the
biological effects of the target. For example, it is well-known that
gene expression is drastically affected by drug dosages. The extraction
of GMPs from the LINCS level 5 data without considering the impact
of dosages could cause dose-dependent biases. Nevertheless, our
approach makes a unique identifier for each target by merging
profiles from multiple conditions, which give the opportunity to
directly build links between targets, drugs, and diseases from a
gene transcriptional level.
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