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Background: Ferroptosis is a novel process of programmed cell death driven by

excessive lipid peroxidation that is associated with the development of lung

adenocarcinoma. N6-methyladenosine (m6a) modification of multiple genes is

involved in regulating the ferroptosis process, while the predictive value of N6-

methyladenosine- and ferroptosis-associated lncRNA (FMRlncRNA) in the

prognosis of patients remains with LUAD remains unknown.

Methods: Unsupervised cluster algorithmwas applied to generate subcluster in

LUAD according to ferroptosis-associated lncRNA. Stepwise Cox analysis and

LASSO algorithm were applied to develop a prognostic model. Cellular location

was detected by single-cell analysis. Also, we conducted Gene set enrichment

analysis (GSEA) enrichment, immune microenvironment and drug sensitivity

analysis. In addition, the expression and function of the LINC01572 were

investigated by several in vitro experiments including qRT-PCR, cell viability

assays and ferroptosis assays.

Results: A novel ferroptosis-associated lncRNAs-based molecular subtype

containing two subclusters were determined in LUAD. Then, we successfully

created a risk model according to five ferroptosis-associated lncRNAs

(LINC00472, MBNL1-AS1, LINC01572, ZFPM2-AS1, and TMPO-AS1). Our

nominated model had good stability and predictive function. The expression

patterns of five ferroptosis-associated lncRNAs were confirmed by polymerase

chain reaction (PCR) in LUAD cell lines. Knockdown of LINC01572 significantly

inhibited cell viability and induced ferroptosis in LUAD cell lines.

Conclusion: Our data provided a risk score system based on ferroptosis-

associated lncRNAs with prognostic value in LUAD. Moreover,

LINC01572 may serve as a novel ferroptosis suppressor in LUAD.
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Introduction

Lung cancer (LC) is the leading cause of cancer-related deaths

globally (Bray et al., 2018). The number of patients with LUAD

accounts for about 50% of all LC cases (Coudray et al., 2018; Chen

et al., 2021). Most patients re at an advanced stage at the time of

diagnosis, with dismal survival outcome. (Denisenko et al., 2018).

LUAD is treated by surgery, radiotherapy and targeted therapy.

Targeted therapy with its precise and efficient characteristics has

played central part in clinical treatment (Imielinski et al., 2012).

Therefore, it is crucial to find new therapeutic targets to improve the

treatment of LUAD.

Long non-coding RNAs (lncRNAs) are transcripts ofmore than

200 nucleotides, and according to current reports, lncRNAs have no

direct transcriptional ability to encode proteins (Peng et al., 2017;

Geng et al., 2022). However, essential effects of lncRNAs in

regulating RNA transcription, translation and protein dynamics

have now been identified, and there is increasing evidence that

lncRNAs have different roles in the pathogenesis of cancer (Ma

et al., 2018; Song et al., 2021a). Researchers have recently used

lncRNA microarrays, lncRNA sequencing, and qRT-PCR to

identify lncRNAs that are differentially expressed in tumor

tissues. Long non-coding RNA MALAT1 was upregulated in

gastric carcinoma and positively regulates autophagy in multiple

cancers (Wang et al., 2021; Gu et al., 2022). The levels ofHOTAIR in

metastatic breast cancer tissues were higher than normal breast

epithelium and primary breast cancer foci, and high HOTAIR

expression was associated with poorer prognosis in patients and

with metastasis in the course of the disease (Gupta et al., 2010; Liu

et al., 2022a).

N6-methyladenosine (m6A) is the most abundant epigenetic

modification in eukaryotic mRNA and non-coding RNA, and this

chemical modification process is dynamic and reversible (Ma et al.,

2019; Liu et al., 2022b). It is generally accepted that m6A

modifications are regulated by three proteins, including “writers,”

“erasers,” and “readers” (He et al., 2019). LncRNA-PACERR, a

crucial regulator of TAMs in the PDAC microenvironment, could

enhance the expression of KLF12 in an m6A-dependent manner,

thereby promoting cell viability and metastasis (Liu et al., 2022c).

FTO mediates the m6A modification of LINC00022 and boost

ubiquitination-mediated degradation of p21 to promote tumor

growth in ESCC in vivo (Cui et al., 2021).

Ferroptosis, a subtype of programmed cell death, can be

regulated through m6A methylation to maintain cell cycle and

tissue homeostasis (Song et al., 2021b; Shen et al., 2021).

Ferroptosis is mainly characterized by iron accretion and lipid

peroxidation (Mou et al., 2019). Ma et al. (2021) found that m6A

reader YTHDC2 can inhibit LUAD tumorigenesis by SLC7A11-

dependent antioxidant function (Liu et al., 2021). In gastric

cancer, lncRNA CBSLR interacts with YTHDF2, which

reduces the expression of CBS mRNA, contributing to iron

death resistance (Yang et al., 2022). In this study, we

identified a group of specific lncRNAs associated explicitly

with the prognostic status of LUAD. Moreover, these

lncRNAs can further evaluate the guiding value of immune

efficacy, immune infiltration, drug sensitivity, and biological

function for clinical treatment.

Materials and methods

Data collection

The transcriptome data of LUAD cases were obtained from

TCGA (https://portal.gdc.cancer.gov/). Patients with missing

survival information were excluded. The FRGs were

downloaded from FerrDb (http://www.zhounan.org/ferrdb/

current/). In addition, we extracted the gene set for m6A

regulators from previous literature (Du et al., 2021).

Determination of ferroptosis and m6A
related lncRNA (FMRlncRNA)

Pearson correlation analysis was used to screened out

lncRNAs related to PRGs or m6A regulators The association

was considered significant if the correlation coefficient |R2| > .4 at

p < .001. Differentially expressed lncRNAs (DElncRNAs) were

selected by the “limma” package (Ritchie et al., 2015).

Unsupervised gene clustering

Consensus clustering was applied with

“ConsensusClusterPlus” package (Wilkerson and Hayes,

2010). To identify the favorable cluster value, the Delta area

and cumulative distribution function (CDF) were estimated.

Then we compared the clinical outcomes among subtypes

using survival analysis.

Development of FMRlncRNA model

We randomly classified the included cases (n = 500) into

training and validation cohorts at a 1:1 ratio. The model was

generated by stepwise Cox regression and LASSO algorithm. The

risk score of each case with LUADwas evaluated according to the

following formula: ∑n

i�1coeffi*expression level of lncRNAi,
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where coef is the coefficient of the model generated by Cox

analyses.

All patients were classified by the median risk score into

high- and low-risk groups.

Survival analysis

The discrepancies in clinical outcome between groups were

examined by Kaplan-Meier survival analysis. The reliability of

model in outcome assessment was investigated by drawing ROC

curves. The independent value of model in LUAD was verified

via Cox relevant analyses.

Single-cell analysis

The single-cell data set GSE123904 of LUAD was collected

from the GEO database. We applied “Seurat” package to conduct

data quality control and integration (Mangiola et al., 2021). The

PCA analysis and t-SNE algorithm were utilized to determine cell

subclusters. Using “FindAllMarkers” to obtain the specific

biomarker of different cell population.

Gene set enrichment analysis (GSEA)

We chose the Hallmark and KEGG as the reference gene sets.

Then 1000 enrichment analyses were done with the default

weighted method. Any gene set with FDR < .25 and p <
.05 was regarded as significant.

Immune activity analysis

Five bioinformatics algorithms (CIBERSORT, ESTIMATE,

MCPcounter, ssGSEA, and TIMER) were applied to detect

immune responses between two group. Additionally, we

employed ssGSEA to evaluate the immunocyte infiltrating as

well as immune function between two groups.

Drug sensitivity analysis

The effect of chemotherapy was evaluated by Genomics of

Drug Sensitivity in Cancer (GDSC8). The half-maximal

inhibitory concentration (IC50) was estimated which

represented the drug response.

Cell culture and transfection

The LUAD cell lines (A549 and NCI-H2009) and bronchial

epithelioid cells (HBE) were obtained from shanghai. The LUAD

cells were cultured in RPMI-1640 medium and maintained in a

humidified incubator at 37°C in 5% CO2. The silencing RNA

against LINC01572 (si-LINC01572) were synthesized and

purchased from RIBBIO (Guangzhou, China). The sequences

of si-LINC01572 were shown as Supplementary Table S1.

Lipofectamine 3000 (Invitrogen) was used to transfect siRNA

and its negative control.

CCK8 assay

5,000 cells per well were seeded in a 96-well plate to measure

cell viability. Each well was replaced with fresh DMEM

containing 10 µl of Cell Counting Kit-8 (CCK8) reagent. After

4 h of incubation at 37°C, the absorbance of each well was

measured at 450 nm.

EdU assay

We utilized Ribobio’s Edu staining kit to assess cell

proliferation. 5000 cells were seeded in a 96-well plate. EdU

solution (25 μM) was added to the well plate for 2 h the next day.

Afterward, cells were fixed in 4% paraformaldehyde for 30 min,

followed by 50 μl, 2 mg/ml glycine for 5 min. After incubation

with 100 μl .5% Triton X-100, cells were incubated with 100 μl 1×

Apollo® 567 fluorescent staining solution for 30 min in a dark

environment. The nuclei of the cells were stained with DAPI.

Finally, the images were observed with an inverted fluorescence

microscope.

Reverse transcription-polymerase chain
reaction (PCR)

Total RNA was extracted from cells using Trizol reagent

according to the manufacturer’s instructions. RNA was then

reverse-transcribed to cDNA with Primer-script Master Mix

(Takara Bio, RR0236-1, Kusatsu, Japan). Quantitative PCR

was performed with SYBR Green I Master Mix (Takara Bio,

Q34-02, Kusatsu, Japan). Supplementary Table S1 displays

primer sequences of all genes. The 2−ΔΔCt method was

adopted for calculating relative gene expression, with GAPDH

being the endogenous control.
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Determination of lipid peroxidation and
iron content

Lipid peroxidation detection kits (Abcam) were used to

evaluate the concentrations of the lipid peroxidation products

MDA and 4-HNE. To investigate the degree of iron deposit, an

iron assay kit (Abcam) was used for detection in cell lysates

according to the manufacturer’s instructions. The results were

measured using a microplate reader.

Statistical analysis

All statistical data were analyzed using GraphPad 9.4 and the

R software version 4.0.

Results

Ferroptosis and m6A-related lncRNA
(FMRlncRNA) identification and
unsupervised cluster analysis

The workflow of our research is shown in Figure 1.

Firstly, a total of 3219 DElncRNA were determined

between LUAD specimens and normal control. Then, we

screened 601 intersecting DEFMRlncRNAs for the next

analysis (Figure 2A). Based on the 601 DEFMRlncRNAs,

unsupervised cluster analysis suggested the ideal value of

subcluster was two (Figure 2B). Survival analysis indicated

that cluster1 had a notably better survival outcome than

cluster2 (Figure 2C). Besides, there were also large

differences in immunocytes between the two clusters

(Figure 2D). We also tested whether the four immune

checkpoints (PD-L1, CD276, CTLA4, LAG3), which differ

in tumor and normal tissues, differed in two clusters,

showing that CD276 expression was higher in cluster2 than

in cluster1, while CTLA4 expression was lower than in

cluster1. PD-L1 and LAG3 showed no significant difference

in expression between the two clusters (Figure 2E).

Establishment of FMRlncRNA model
(FMRLM)

All LUAD samples were equally divided into the training

(n = 250) and validation groups (n = 250). In the training

group, based on univariate Cox, we found 37 FMRlncRNAs

associated with survival outcome on the basis of univariate

Cox (Figure 3A). To avoid over-fitting prognostic features, we

performed LASSO regression (Figure 3B). Finally, a risk score

system containing (LINC00472, MBNL1-AS1, LINC01572,

ZFPM2-AS1, and TMPO-AS1) was generated by

multivariate analysis. The risk model equation was:

(1.754 × LINC01572) + (2.131 × TMPO-AS1) + (1.142 ×

ZFPM2-AS1) + (−2.366 × LINC00472) + (−1.351 ×

FIGURE 1
Flow chart.
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MBNL1-AS1). According to GEPIA2 portal, we found that

there was a remarkable difference in expression between

tumor and normal samples (Figure 3C). In addition, the

expression of LINC01572 and TMPO-AS1 differed

significantly between tumor stages, with higher expression

associated with higher tumor stage (p < .05) (Figure 3D).

Survival curves illustrated the prognostic value of each

signature FMRlncRNAs (Figure 3E).

FIGURE 2
Determination of FMRlncRNA molecular subtype in LUAD (A) The Venn plot of intersection DElncRNAs. (B) Consensus clustering results. (C)
Kaplan–Meier survival analysis, (D) immune cell differential analysis for patients between two subclusters. (E) Immune checkpoint analysis (ns > .05,
*p < .05, ***p < .001).
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Single-cell RNA analysis

There were 26 FRGs and 6 MRGs associated with the

5 lncRNAs involved in the signature (Supplementary Table

S2). Survival curves revealed the prognostic value of 11 genes.

Among them, patients with high expression of ARNTL, IL33,

TUBE1, YTHDC2 displayed a favorable outcome, while cases

with high expression of AURKA, BACH1, FANCD2, HELLS,

RRM2, HNRNPA2B1, RBM15 had a dismal clinical outcome

(Figure 4).

In order to unearth the cellular location of above 11 genes,

single-cell RNA analysis was applied. The GSE123904 dataset

FIGURE 3
Creation process of the FMRLM (A) Univariate Cox regression analysis. (B) LASSO regression for avoiding overfit of the signature. (C) Analysis of
differential expression of 5 lncRNAs in tumor and normal tissues, (D) relationship with patient tumor stage, and (E) impact on survival
prognosis (*p < .05).
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was first divided into 33 cell clusters (Figure 5A). In Figure 5B, a

total of eight types of cell subpopulation were determined based

on cell markers. In addition, we analyzed the malignancy of the

epithelial cells (Figure 5C). The cellular location landscape of

11 genes in all cell population and epithelial cells was shown as in

Figures 5D, E.

Prognostic performance of FMRLM

In Figure 6A, the high-FMRLM group presented a dismal

outcome in three LUAD cohorts (Figure 6A). In terms of AUC,

the 1-, 3-, and 5-year AUCs were .781, .830, and .875 for the train

set, .702, .601, and .664 for the test set, and .748, .718 and .783 for

the whole group, respectively (Figure 6B), and our risk scores

distinguish patients well (Figure 6C).

Independent prognosis analysis of FMRLM

Univariate Cox regression disclosed that FMRLMwas greatly

meaningful in three cohorts (Figure 7A). After employing

multivariate regression, the FMRLM was also an independent

prognostic index of LUAD (Figure 7B). ROC curves illustrated

the FMRLM had better predictive ability than other clinical

variables (Figure 7C).

Immune microenvironment analysis

We analyzed the infiltration level of immunocytes of two

groups using data from several platforms (Figure 8A). The

results showed that B cells memory and Macrophages

M0 were enriched in low-FMRLM group, while dendritic

cells resting, Macrophages M2, Monocytes, and NK cells

activated were enriched in high-FMRLM group

(Figure 8B). Also, we observed that the low-FMRLM

group had more prosperous immune functions such as

cytolytic activity, HLA, T cell co-stimulation, and type II

IFN response (Figure 8C), and several genes associated with

sensitivity to radiotherapies such as FLT3, EZH2, TBX5,

MET, and KIT had different expression between two

subgroups (Figure 8D). CD160 and CTLA4 are highly

expressed in the low-FMRLM group, while CD276 and

FIGURE 4
Survival curve of clinical survival for patients between groups based on 11 ferroptosis and m6A related genes.
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TNFSF9 are more highly expressed in the high-FMRLM

group (Figure 8E), and the expression of several m6A

regulators (YTHDF2, FTO, HNRNPC, YTHDC2, and

METTL3) differed between two subgroups (Figure 8F).

Drug sensitivity analysis

As revealed in Figure 9, Cisplatin, Docetaxel, Gemcitabine,

Lapatinib, and Paclitaxel had a higher IC50 in low-FMRLM

group, and their IC50 values were negatively correlated with the

risk score, suggesting that patients with high risk were more

sensitive to them. Rapamycin, on the other hand, had a higher

IC50 in high-FMRLM group (Figures 9A, B).

GSEA of FMRLM

To unearth the underlying function and pathways of

signature, GSEA enrichment was conducted. In Figure 9C, we

observed that cell cycle, DNA repair and ubiquitination were

greatly enriched in high-risk cohort. In terms of Hallmark in

tumor, glycolysis, hypoxia and PI3K/AKT/MTOR were activated

in high-risk cohort (Figure 9D).

Downregulation of LINC01572 induced
cell ferroptosis

PCR results suggested that LINC00472 and MBNL1-AS1

presented lower expression in LUAD cell lines, whereas

LINC01572, ZFPM2-AS1, and TMPO-AS1 were highly

expressed in A549 and H2009 cell lines (Figure 10A).

Figure 10B illustrated favorable knock-down efficiency of

LINC01572 in two cell lines. CCK8 assay indicated a

remarkable decline in the cell viability with si-LINC01572

compared to the NC group (Figure 10C), with the same

similar results for EdU assay (Figure 10D). Based on the

cellular MDA, 4HNE and iron assays, we observed that

silencing LINC01572 could promote cell ferroptosis of

A549 and H2009 cell lines (Figures 10E–H).

Discussion

Iron ions play a central part in the facilitation of the process

of ferroptosis as the most essential nutrient for tumor cell

survival. Consequently, anti-tumor by inducing cellular

ferroptosis has become a hot research topic in recent years.

RNA methylation has recently been reported to regulate

FIGURE 5
Single cell sequencing analysis. (A) Dimensionality reduction and cluster analysis. (B) Cell population annotation. (C) Classification of epithelial
cells into benign and malignant epithelial cells. (D) Cellular location of FRGs and MRGs in all cells and in (E) epithelial cells.
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ferroptosis in gastric cancer, suggesting combination of

methylation modification and ferroptosis might be therapy

target in tumor management (Yang et al., 2022).

The risk signature established in this study consists of

5 lncRNAs, among which LINC01572, TMPO-AS1 and

ZFPM2-AS1 are risk lncRNAs, and LINC00472 and

MBNL1-AS1 are protective lncRNAs. There is a lack of

systematic studies of LINC01572 in LUAD. As suggested by

Chen et al. (2017), LINC01572 is upregulation in LC and its

expression level can distinguish between early and advanced

stage. The expression of LINC01572 in the blood of cisplatin

resistant gastric cancer patients is significantly increased, and

it may produce chemotherapy resistance through the

mechanism of inducing autophagy (Song et al., 2020).

Numerous reports demonstrated that TMPO-AS1 has been

revealed to be a key biomarker for evaluating the prognosis of

LUAD (Li et al., 2016; Wang et al., 2019). ZFPM2-AS1 is an

oncogene in gastric cancer (Sasa et al., 2022), but it has also

been shown to be involved in the regulation of LUAD cell

growth, which can be used as a new potential target for LUAD

treatment (Han et al., 2020). As a potential lncRNA in human

LUAD, LINC00472 has been proved to be a tumor suppressor,

which could suppress LUAD cells viability (Sui et al., 2016).

MBNL1-AS1 is a crucial tumor regulator and plays a negative

regulatory role in a variety of tumors including lung cancer

(Cao et al., 2020).

FIGURE 6
Predictive ability of the FMRLM. (A) Survival analysis between two risk groups in the train, test, and all sets, respectively. (B) ROC curves analysis.
(C) Exhibition of FMRLM on risk score and survival status between two groups in three cohorts.
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Immunosuppressive cells such as tumor-associated

macrophages (TAM), cancer-associated fibroblasts (CAF), and

neutrophils can be tumor-modified to produce a tumor-

supportive microenvironment (Quail and Joyce, 2013; Chu

et al., 2021). In our research, patients with high risk had

significantly higher proportions of immunosuppressive cells.

Macrophages act as scavengers, regulating the immune

response to pathogens and maintaining tissue homeostasis.

Immunotherapies and therapeutic strategies aimed at reducing

the proportion of M2 macrophages or converting

M2 macrophages to M1 macrophages have been proposed to

suppress tumor survival (Sica et al., 2006). Several studies have

shown that CAFs can promote tumor growth in several ways:

secreting ECM proteins, inducing inflammation and

angiogenesis, altering the metabolism and epigenome of

cancer cells, establishing immunosuppression, conferring

therapeutic resistance, and radiation protection (Mhaidly and

Mechta-Grigoriou, 2021). Neutrophils are important intrinsic

immune cells for the body’s antibacterial defense. In recent years,

an elevated neutrophil-to-lymphocyte ratio has been recognized

as a poor prognostic indicator of overall survival in cancer

patients. Neutrophils form a sticky reticulum called neutrophil

extracellular trap (NET) that has been shown to be involved in

tumor metastasis (Erpenbeck and Schön, 2017).

One extremely promising approach to achieving tumor

immunotherapy is to block the immune checkpoint by which

tumor disguise themselves as normal cells. To date, immune

checkpoint blocking drugs targeting CTLA-4 and PD-L1

have been used in the clinic and represent a milestone in

antitumor therapy (Topalian et al., 2016). In the present

study, CD27 was significantly less expressed in the low-

FMRLM group. CD27 is a member of the tumor necrosis

factor receptor superfamily and, in combination with its

natural ligand CD70, activates the differentiation of T cells

FIGURE 7
Independent prognosis analysis. (A) Univariate and (B) multivariate Cox regression analysis of clinical factors and risk score with survival
outcome. (C) ROC curves analysis.
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into effector and memory T cells and thus has potential as an

immunomodulatory target in cancer therapy (Starzer and

Berghoff, 2020). Moreover, among the immune checkpoints

we examined, CD276 and CD28 belong to the B7 and

CD28 families, representing immune signaling of tumors

and immune cells, respectively.

The human leukocyte antigen (HLA) is a highly genetically

polymorphic group of closely linked genes that control intercellular

recognition and regulate the immune response. As an independent

factor in tumor-associated antigen presentation, HLA-I plays an

important role in antitumor immune response and neoplastic

tumor progression. CD8+T cell-dependent killing of cancer cells

FIGURE 8
Immune microenvironment analysis. (A) The immune cell differential expression analysis of risk groups. (B) The correlation between risk score
and immune cells. (C) Analysis of differences in immune functions, (D) chemosensitivity-related genes, (E) immune checkpoints, and (F) m6A
regulators between risk groups (ns > .05, *p < .05, **p < .01, ***p < .001).
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requires HLA-I molecules for efficient tumor antigen presentation

(Chowell et al., 2018). The absence of HLA class I molecules on the

tumor cell surface is a major obstacle to the success of T cell-

mediated immunotherapy (Garrido, 2019). The interferon-

stimulated response element (ISRE) of all classical HLA-I genes

mediates IFN-γ-induced transactivation, and of the non-classical

HLA-I molecules, only the ISRE of HLA-F mediates IFN-γ
induction (Gobin et al., 1999).

FIGURE 9
Drug sensitivity analysis and GSEA enrichment. (A) Differences and (B) correlation analysis between risk score and drug IC50. (C) KEGG and (D)
Hallmark enrichment.
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FIGURE 10
Downregulation of LINC01572 induced cell ferroptosis. (A) Expression patterns of five lncRNAs in different cell lines by qRT-PCR. (B)
LINC01572 A was successfully knocked down in LUAD cell lines (C) CCK8 assay, (D) EdU assay, (E)MDA assay, (F) 4HNE assay and (G,H) cellular iron
assay in different treatment groups (*p < .05, ***p < .001).
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As is known, m6A modification is one of the emerging

frontiers of research, and its modifying function has been

linked to the development and progression of many human

diseases, including lung cancer (Wang et al., 2020). In our

m6A regulator expression analysis, METTL3, FTO, and

YTHDC2 were significantly differentially expressed among

two groups. It has also been shown that these three m6A

regulators are associated with LUAD growth and prognosis.

METTL3, YTHDC2 are upregulated in LUAD and promote

LUAD growth (Zhang et al., 2020; Zhang et al., 2022a; Xu

et al., 2022). Downregulation of YTHDC2 is associated with

poor clinical outcome (Ma et al., 2021). As revealed by Ning et al.

(2022), FTO is lowly expressed in poor prognosis LUAD samples

and has predominantly antitumor activity.

To further test the speculation, we analyzed the pattern of

Chemoradiotherapy sensitivity genes. Our data suggested

FLT3 and KIT were upregulated in low-FMRLM group. It has

been shown that Imatinib mesylate treatment of advanced

melanoma yielded significant clinical responses in patients

with KIT gene mutations (Carvajal et al., 2011).

SNHG17 epigenetically represses LATS2 expression by

recruiting EZH2 to the promoter region of LATS2,

exacerbating the malignant phenotype of gefitinib-resistant

LUAD cells (Zhang et al., 2022b). CAPN1 could inhibit the

stability of c-Met, which in turn confer chemotherapy resistance

to LUAD cells (Chen et al., 2020).

In GSEA enrichment studies between two groups were

enriched for the characteristics of malignancy: Glycolysis,

Hypoxia, PI3K/AKT/MTOR signaling. PI3K signaling

pathway is essential for cell growth Overactivated in many

cancer types, possible mechanisms by which the PI3K/AKT/

mTOR axis promotes oncogenic transformation include

stimulation of proliferation, survival, metabolic

reprogramming, invasion, metastasis, inhibition of

autophagy and senescence (Liu et al., 2022d). Glycolysis is

increasingly being revealed as a marker of tumor progression.

The possible pro-cancer mechanism is that induced glycolysis

and increased glucose uptake promote lipid, protein, and

nucleotide production, thereby promoting tumor cell

proliferation and division. Multiple genes associated with

glycolysis have been reported to be involved in cancer

progression and LUAD is no exception (Zhou et al., 2019).

Similarly, hypoxia has been identified as a factor in tumor

progression and poor prognosis. Interestingly, hypoxia

induces a metabolic shift from oxidative phosphorylation to

glycolysis and increases glycogen synthesis, and this metabolic

reprogramming favors tumor growth (Li et al., 2020).

Nevertheless, there are still several issues to be addressed.

First, the signature was created according to patient information

downloaded from public databases, which has the disadvantage

of being limited and incomplete, and the restriction of selection

bias. Second, our study lacks further validation with wet lab

experiments.

Conclusion

In summary, we successfully created a robust risk score

system based on FMRncRNAs. Our data highlights the

prognostic value and possible clinical potency of FMRLM,

which may serve as the therapeutic target for LUAD.
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