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Leukotrienes are important pro-inflammatory lipid mediators derived from the arachidonic
acid metabolism. In particular, cysteinyl leukotrienes, namely LTC4, LTD4, and LTE4 are
involved in many of the principal features of asthma, while more recently they have also
been implicated in cardiovascular diseases. COVID-19 is characterized by an
overwhelming state of inflammation, sometimes resulting in an acute respiratory
distress syndrome. Furthermore, severe COVID-19 patients present an endothelial cell
damage characterized by a hyperinflammatory/procoagulant state and a widespread
thrombotic disease. Leukotriene receptor antagonists, such as montelukast, have long
been proven to have an efficacy in asthma, while more recently they have been suggested
to have a protective role also in cardiovascular diseases. As elevated levels of LTE4 have
been detected in bronchoalveolar lavage of COVID-19 patients, and montelukast, in
addition to its anti-inflammatory properties, has been suggested to have a protective role in
cardiovascular diseases, we decided to investigate whether this drug could also affect the
platelet activation characteristic of COVID-19 syndrome. In this contribution, we
demonstrate that montelukast inhibits platelet activation induced by plasma from
COVID-19 patients by preventing the surface expression of tissue factor (TF) and
P-selectin, reducing the formation of circulating monocyte– and granulocyte–platelet
aggregates, and, finally, in completely inhibiting the release of TFpos-circulating
microvesicles. These data suggest the repurposing of montelukast as a possible
auxiliary treatment for COVID-19 syndrome.
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INTRODUCTION

Leukotrienes (LTs) are important pro-inflammatory lipid mediators derived from the metabolism of
the arachidonic acid. In particular, cysteinyl leukotrienes (cysteinyl-LTs), namely LTC4, LTD4, and
LTE4 are synthesized in vivo by immunocompetent cells such as mast cells, eosinophils, basophils,
and monocytes/macrophages (Haeggstrom and Funk, 2011). They are involved in many principal
features of asthma, such as bronchoconstriction, hyperresponsiveness, and inflammatory cell
recruitment (Sokolowska et al., 2021); more recently, they have also been implicated in other
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inflammatory conditions, including immune and
neurodegenerative disorders, cancer, and particularly in
cardiovascular diseases (Capra et al., 2013; Hoxha et al., 2017;
Bäck et al., 2019). The biological actions of cysteinyl-LTs are
mediated by two officially recognized G-protein-coupled
receptors: CysLT1 and CysLT2. They differ in localization and
binding affinities for the different cysteinyl-LTs as well as in their
biological activities (Back et al., 2014).

Leukotriene receptor antagonists (LTRAs), such as
pranlukast (Onon™), zafirlukast (Accolate™), and
montelukast (Singulair™), have long been proven to have an
efficacy in asthma therapy. LTRAs have been in use for the last
20 years to treat the airway inflammatory symptoms of mild-to-
moderate asthma and allergic rhinitis (Capra et al., 2006; Trinh
et al., 2019). In particular, montelukast, the most prescribed
drugs among LTRAs in asthma, has been shown to have an
excellent safety profile both in adults and children (Virchow and
Bachert, 2006).

The SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) is the cause of the coronavirus disease 2019
(COVID-19) and, while the vast majority of the infected
patients range from asymptomatic to mild symptoms, a
minority of the patients will eventually develop severe
symptoms leading rapidly to hypoxia and acute respiratory
distress syndrome (ARDS) requiring hospitalization and
oxygen supplementation (Wu and McGoogan, 2020). This
severe form is prevalent in the elderly with underlying
comorbidities such as hypertension, diabetes, or cardiovascular
diseases (Nishiga et al., 2020). COVID-19 is characterized by an
overwhelming state of inflammation with an elevated level of
circulating chemokines (e.g., MCP-1 and RANTES) and
cytokines, such as IL-6, IL-8, and TNF-α eventually leading to
a multi-organ dysfunction that has been called COVID-19
cytokine storm syndrome (CSS) (England et al., 2021).
Furthermore, an increasing amount of clinical data has
documented how SARS-CoV-2 may also predispose patients to
endothelial cell damage particularly in the pulmonary vessels
(Ackermann et al., 2020), leading to a unique vascular
hyperinflammatory/procoagulant state and a widespread
thrombotic disease, both in the venous and arterial vascular
beds (Teuwen et al., 2020).

In addition to mitigate airway inflammatory symptoms, over
the years, a number of in vitro and animal studies have suggested
LTRAs to have a protective role in cardiovascular diseases (Funk,
2005; Hoxha et al., 2017). Furthermore, in two separate
observational studies, a nationwide cohort study in the all
Swedish population (Ingelsson et al., 2012) and a retrospective
study in 800 asthmatic adults in Albania (Hoxha et al., 2021),
exposure to montelukast seems to protect patients from major
cardiovascular events. This leads us to speculate on a potential
effect of LTRAs on platelet activation, a well-established player in
ischemic events. Of note, platelets from COVID-19 patients are
characterized by a sustained activation status (Canzano et al.,
2021), with cytokines, chemokines, and growth factors released in
significantly large amounts upon their stimulation (Taus et al.,
2020). Furthermore, we have recently provided evidences that the
addition of COVID-19 plasma to plasma-depleted blood from

healthy subjects (HS) reproduced the platelet activation,
especially in terms of the prothrombotic phenotype, observed
in vivo in COVID-19 patients (Canzano et al., 2021).

Considering that the elevated levels of LTs have been
previously detected in aspirates of patients with ARDS (Sala
et al., 1991), while high levels of LTE4, a biomarker of total
body cysteinyl-LT production, have been detected in
bronchoalveolar lavage (BAL) of hospitalized patients with
severe COVID-19 syndrome (Archambault et al., 2021),
suggesting a role for eicosanoids in the pathological response
to SARS-CoV-2 infection, we decided to investigate whether
montelukast, in addition to its anti-inflammatory properties,
could also affect the expression of the major markers of
platelet activation such as tissue factor (TF) and P-selectin as
well as the formation of platelet–leukocyte aggregates and
microvesicle (MV) release observed in COVID-19 syndrome.

METHODS

Antibodies and Reagents
Antibodies were obtained from the following sources: mouse
anti-human P-selectin APC (CD62P), mouse anti-human CD14
PerCP, mouse anti-human CD41 PerCP Cy5.5, mouse IgG FITC,
and mouse IgG APC were from Becton Dickinson; mouse anti-
human TF BV421 (clone HTF-1) and mouse anti-human CD41
PE were from Beckman Coulter; and mouse anti-human tissue
factor FITC (clone VIC-7) was from Biomedica. Calcein AM was
from Invitrogen.

Patient Selection
The study took advantage from an existing biobank of plasma
samples prepared from a cohort of 46 consecutive COVID-19
patients, whose characteristics are reported in Supplementary
Table S1 (Canzano et al., 2021).

Patients with a positive SARS-CoV-2 polymerase chain
reaction test and requiring oxygen supplementation were
included. The criteria for hospital admission were defined
as those requiring inpatient care as a result of the severity of
illness based on laboratory and radiological parameters as
well as clinical findings. Following admission, all patients
received supportive care in line with best international
practice. Biochemical variables, including inflammatory
and thrombotic parameters (IL-6, C-reactive protein
(CRP), lactate dehydrogenase (LDH), fibrinogen, D-dimer,
and procalcitonin) and arterial blood gas analysis (pO2/FiO2

ratio and oxygen saturation) were recorded at hospital
admission and immediately before or soon after oxygen
supplementation, concomitantly with the blood sampling.

Blood Collection and Plasma Preparation
Whole blood (WB), sampled at initiation of mechanical
ventilation or low-flow oxygen therapy, was drawn using a 19-
gauge needle without venous stasis into citrate (1/10 volume of
0.129 M sodium citrate)- and K2-EDTA-containing tubes
(Vacutainer, Becton Dickinson) and processed within 15 min.
For citrate plasma preparation, WB was centrifuged at 1,700 g for
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10 min at 4°C. Absence of blood cells in plasma samples was
evaluated using a cell counter (Sysmex XS-1000i).

In Vitro Studies
To test the effect of COVID-19 patient plasma on platelet
activation, three pools made with plasma from 12 patients
were prepared (4 patients/pool). The characteristics of the 12
patients are reported in Supplementary Table S1. Blood from
healthy subjects (HS, n = 4–6, comparable for blood cell counts)
was plasma-depleted by centrifugingWB at 1000×g for 10 min, at
room temperature (RT). The plasma-free sample obtained after
centrifugation was analyzed using a cell counter (Sysmex XS-
1000i) to verify that all cellular components were left in the
pelleted fraction. Healthy plasma was then replaced with the
COVID-19 plasma pools or with autologous plasma as control.
To assess the effect of montelukast on cell activation, blood from
healthy subjects was preincubated with the drug (at the indicated
concentrations) for 30 min, at room temperature. Blood was then
centrifuged at 1000×g for 10 min, at room temperature, and
plasma was replaced with the COVID-19 plasma pool or with
autologous plasma. The effect of LTE4 (0.1–30 nM, 15 min, RT)
on platelet-associated TF- and P-selectin-expression was also
investigated.

Platelet Activation and Microvesicle
Characterization
Circulating cell-associated TF expression, platelet activation
markers, and MV release were analyzed by flow cytometry as
previously described (Canzano et al., 2021). In brief, WB (5 µL for
platelet and 100 µL for leukocyte analysis) was labeled for 15 min
at room temperature in the dark with saturating concentration of
αTF and αP-selectin MoAbs together with αCD41 and αCD14 or
αCD66 to identify platelets, monocytes, and granulocytes,
respectively. Leukocyte–platelet aggregates were identified as
double positive events for platelet and leukocyte population
markers (CD14pos/CD41pos or CD66pos/CD41pos for
monocyte–platelet or granulocyte–platelet aggregates,
respectively). The gating strategies are reported in the
Supplementary Figure S1. A total of 10,000 CD41 pos events
and 3,000 CD14pos events per sample were acquired on a Gallios
flow cytometer (Beckman Coulter). Fluorochrome-conjugated
isotype controls were used in order to quantify the
background labeling and to set the dot plot quadrant marker
for data analysis (Kaluza Analysis software v1.5; Beckman
Coulter). The results are reported as percentage ± SD of
positive cells.

For MV characterization, 50 μL of WB was diluted in 150 μL
of 0.22 µm-filtered buffer [Hepes (10 mM), NaCl (140 mM), and
CaCl2 (2.5 mM); pH 7.4] containing phe-pro-arg chloromethyl
ketone (PPACK, 15 µM)) to prevent clot formation. To identify
intact MVs, excluding cell debris, samples were incubated with
calcein AM (10 µM) at 37°C in the dark for 25 min followed by
the addition of saturating concentrations of αTF and αCD41
MoAbs. Fluorescence minus one (FMO) control was used to
correct gating. The samples were immediately analyzed on a
Gallios flow cytometer equipped with four solid-state lasers and

enhanced wide forward angle light scatter optimized for MV
detection. Flow-check Pro Fluorospheres were daily used to
monitor cytometer performance. Megamix-FSC Plus beads
(0.5, 0.9, and 3 µm) were used to define the analysis gate and
BD Trucount tubesTM to have the absolute count of MVs.

Statistics
The results are expressed as mean ± standard deviation (SD).
Continuous variables among groups were compared by repeated
measure one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparisons test. A p-value of 0.05 was
considered statistically significant. Analyses were performed
using SPSS statistical package (v9.4).

RESULTS

In order to reproduce the platelet activation observed during
COVID-19, blood from HS was plasma-depleted and
reconstituted with plasma pools from COVID-19 patients or
from the same HS blood donors. As expected, plasma from
COVID-19 patients significantly increased the number of
TFpos- and P-selectinpos-platelets (Figure 1) and the formation
of total and TFpos platelet–monocyte and platelet–granulocyte
aggregates (Figure 2) as well as the release of total and platelet-
derived TFpos circulating MVs (Figure 3), highlighting the
marked prothrombotic phenotype associated with both TF-
bearing cells and MVs.

Interestingly, preincubation of HS platelets with montelukast
concentration dependently prevented the induction of TFpos- and
P-selectinpos-platelets by COVID-19 plasma, being both
completely inhibited at 1 µM (Figure 1). It also significantly
reduced the effect of COVID-19 plasma on the formation of
circulating monocyte–platelet and granulocyte–platelet
aggregates (Figure 2, panel A and B), decreasing the number
of those TFpos by 4-times (Figure 2, panel C and D). Finally,
montelukast was effective in completely preventing the release of
TFpos-circulating MVs induced by COVID-19 plasma, reducing
by more than 2-times those derived from platelets (Figure 3).

Overall, these data point to an involvement of LTs in the
platelet activation induced by COVID-19 plasma. Indeed, in vitro
stimulation of platelets from HS with LTE4, the most stable of
cysteinyl-LTs (Sokolowska et al., 2021), concentration
dependently induced TF and P-selectin expression (Figure 4).

DISCUSSION

The present study reports, for the first time, that montelukast
significantly inhibits platelet activation induced by plasma from
COVID-19 patients, suggesting its use as a possible auxiliary
treatment in this syndrome.

There is now a wide consensus in the literature that COVID-
19 is associated not only with a CSS characterized by an
hyperimmune or hyperinflammatory response (England et al.,
2021) but also with endothelial cell damage ultimately leading to
micro- and macro-thrombosis in the pulmonary vessels as well as
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in other organs (Ackermann et al., 2020; Teuwen et al., 2020).
Despite several different drugs/strategies are available to treat
COVID-19 patients today, from antiviral drugs to SARS-CoV-2-
neutralizing antibodies, from IL-6 receptor monoclonal
antibodies to corticosteroids or aspirin, and while several new
approaches are tested in ongoing clinical trials, an unanimous

consensus to treat this disease has not yet been achieved
(COVID-19 Treatment Guidelines Panel, NIH. Available at
https://www.covid19treatmentguidelines.nih.gov/).

Cysteinyl-LTs, in addition to being the most potent broncho-
constrictors known in man, have a well-recognized role in
immune cell and macrophages activation as well as cytokine

FIGURE 1 | In vitro effect of montelukast on platelet-associated tissue factor (A) and P-selectin (B) expression induced by COVID-19 plasma. Whole blood (WB)
from healthy subjects (HS; n = 4), pre-incubated with montelukast (0.01–1 µM), was plasma-depleted and reconstituted with COVID-19 plasma pools (n = 3 for each HS,
dark gray bars) or autologous plasma (light gray bars). The percentage of TFpos- and P-selectinpos-platelets was assessed by flow cytometry. Data are reported as
mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001 (TF, tissue factor; Psel, P-selectin; PLT, platelets).

FIGURE 2 | In vitro effect of montelukast on platelet–leukocyte aggregate formation induced by COVID-19 plasma. Whole blood (WB) from healthy subjects (HS;
n = 6), pre-incubated with montelukast (1 µM) as indicated, was plasma-depleted and reconstituted with COVID-19 plasma pools (dark gray bars) or autologous plasma
(light gray bars). Total (A,B) and TFpos(C,D)-platelet–leukocyte aggregates was measured by flow cytometry. Data are reported as mean ± SD. ***p < 0.001 (TF, tissue
factor; plt, platelets; mono, monocytes; gran, granulocytes).
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(IL-6, IL-8, TNF-α, and MIP-1β) or chemokine (MCP-1 and
RANTES) release (Back et al., 2014). Accordingly, LTRAs
significantly inhibited pro-inflammatory cytokine production
mostly through inhibition of NF-kB (Maeba et al., 2005;
Tahan et al., 2008), a transcription factor that is known to
control several genes involved in inflammation including IL-6,
IL-8, and TNF-α, all of which would enhance the hyperimmune/
inflammatory response. Of note, the severity of pulmonary
complications in COVID-19 seems to be closely related to IL-
6 and TNF-α peak levels (Chen et al., 2020). For these reasons,
largely speculative until now, eicosanoids have been hypothesized
to be involved in various aspects of COVID-19 pathology
(Arnardottir et al., 2020; Hammock et al., 2020). In particular,
the use of montelukast has been proposed as a possible therapy,
particularly due to its anti-inflammatory activities (Aigner et al.,
2020; Barré et al., 2020; Funk and Ardakani, 2020; Sanghai and
Tranmer, 2020). Accordingly, the first phase III clinical trial
testing the cysteinyl-LT receptor antagonist montelukast in
COVID-19 patients has already been planned (https://
clinicaltrials.gov/ct2/show/NCT04389411).

Despite LT levels cannot be reliably measured in plasma
(Heavey et al., 1987; Sokolowska et al., 2021), as mentioned
before, the elevated levels of LTE4, the only sufficiently stable

LT to be prominent in biologic fluids (Sokolowska et al., 2021),
have been detected in BAL of patients with severe COVID-19
(Archambault et al., 2021), while elevated levels of LTs have been
previously detected in aspirates of patients with ARDS (Sala et al.,
1991). Here we demonstrate that, indeed, exogenous LTE4 is able
to induce expression of known markers of platelet activation at
concentrations comparable to those obtained in BAL of COVID-
19 patients (Archambault et al., 2021). Thus, the data presented
here suggest that montelukast, if administered in the early phase
of the disease, not only has the potential to limit the acute and
chronic lung tissue damage in COVID-19 patients by treating the
hyperimmune/hyperinflammatory response and taming the CSS,
but it may also limit the massive platelet activation and
prothrombotic phenotype, thus serving as a potential “single”
approach for the two most prominent aspects of COVID-19
syndrome. To this point, two very recent retrospective analyses
demonstrated that either asthmatic patients receiving
montelukast had fewer episodes of confirmed COVID-19 or
experienced significantly fewer events of clinical deterioration
(Bozek and Winterstein, 2020; Khan et al., 2021).

Another interesting aspect may involve the thrombotic
complications of SARS-CoV2 vaccination. In fact, while the
exact mechanism by which adenovirus-vectored COVID-19

FIGURE 3 | In vitro effect of montelukast on microvesicle (MV) release induced by COVID-19 plasma. Whole blood (WB) from healthy subjects (HS; n = 3), pre-
incubated with montelukast (1 µM) as indicated, was plasma-depleted and reconstituted with the COVID-19 plasma pool (dark gray bars) or autologous plasma (light
gray bars). The number of TFpos (A) and platelet-derived TFpos-MVs (B)was measured by flow cytometry. Data are reported as mean ± SD. **p < 0.01; ***p < 0.001 (TF,
tissue factor; plt, platelets).

FIGURE 4 | In vitro effect of LTE4 on platelet-associated tissue factor (A) and P-selectin (B) expression. Whole blood was stimulated with LTE4 (0.1–30 nM), for
15 min at room temperature. The percentage of TFpos- and P-selectinpos-platelets is shown. Data are reported as mean ± SD. *p < 0.05; ***p < 0.001 (TF, tissue factor;
Psel, P-selectin; PLT, platelets).
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vaccines trigger the vaccine-induced immune thrombotic
thrombocytopenia (VITT) is still unclear; this syndrome is
thought to involve a FcγRIIA receptors-dependent platelet
activation causing platelet P-selectin’s expression, secretion of
alpha granules, and release of procoagulant MVs, leading to TF
accumulation into developing thrombi (Marchandot et al., 2021).
Therefore, montelukast treatment might also help to prevent or
mitigate this rare, but serious adverse event upon vaccination.

At this stage, we can only speculate on the mechanism of
antiplatelet activity of montelukast. While it is known that
human platelets express both CysLT1 and CysLT2 receptors,
and that pranlukast inhibits cysteinyl-LT-induced RANTES
release (Hasegawa et al., 2010), contrasting data are present in
the literature on platelet activation by LTs (Austen et al.,
2009; Foster et al., 2013). While the results of our in vitro
experiments showing that LTE4 concentration dependently
induced TF and P-selectin expression suggest that LTE4 itself
plays a central role in the described platelet activation, we
cannot rule out the involvement of other players. Of note, in
our model, IL-6, the expression of which can be modulated by
montelukast, at concentrations comparable to those found in
COVID-19 patients, significantly potentiated the effect of
low-concentration adenosine diphosphate (ADP) or
thromboxane A2, and accordingly, aspirin and the P2Y12

inhibitor AR-C69931MX prevented platelet activation
induced by COVID-19 plasma (Canzano et al., 2021).
Therefore, considering that montelukast has been shown to
have some off-target effects, namely inhibition of some P2Y
receptors (Mamedova et al., 2005; Woszczek et al., 2010), the
data presented here might be either due to inhibition of its
primary target or to a secondary target directly involved in
platelet activation.

In conclusion, we believe that our data, highlighting the
possible contribution of montelukast not only to mitigate the
CSS but also in alleviating the peculiar platelet prothrombotic

phenotype of COVID-19, should foster the scientific community
to further consider the repurposing of montelukast, or other
approved LTRAs, as an innovative strategy for COVID-19
syndrome.
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