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Background: Constructed an immune-prognosis index (IPI) and divided lung
adenocarcinoma (LUAD) patients into different subgroups according to IPI score,
describe the molecular and immune characteristics of patients between different IPI
subgroups, and explore their response to immune checkpoint blockade (ICB) treatment.

Methods: Based on the transcriptome profile of LUAD patients in TCGA and immune
gene sets from ImmPort and InnateDB, 15 hub immune genes were identified through
correlation and Bayesian causal network analysis. Then, IPI was constructed with 5
immune genes by using COX regression analysis and verified with external datasets
(GSE30219, GSE37745, GSE68465, GSE126044 and GSE135222). Finally, the
characteristics and the response to ICB treatment of LUAD patients between two
different IPI subgroups were analyzed.

Results: IPI was constructed based on the expression of 5 genes, including A2M, ADRB1,
ADRB2, VIPR1 and PTH1R. IPI-high LUAD patients have a better overall survival than IPI-
low LUAD patients, consistent with the results in the GEO cohorts. The comprehensive
results showed that patients in the IPI-high subgroup were exhibited characters as
metabolism-related signaling pathways activation, lower TP53 and TTN mutation rate,
more infiltrations of CD8 T cells, dendritic cells and macrophages M1, especially earned
more benefit from ICB treatment. In contrast, patients in the IPI-low subgroup were
exhibited characters as p53 signaling pathways activation, higher TP53 and TTN mutation
rate, more infiltrations of resting memory CD4 T cells, macrophages M2, immune-
suppressive response and less benefit from ICB treatment.

Conclusion: IPI is a potentially valuable prognostic evaluation method for LUAD, which
works well in the benefit predicting of LUAD patients within ICB treatment.

Keywords: lung adenocarcinoma, immune cell infiltration, immune checkpoint blockade (ICB), immune-prognosis
index (IPI), network analysis

1 INTRODUCTION

Immune checkpoint blockade (ICB) treatment is designed to attack cancer cells by activating the
immune system (Mahoney et al., 2015). As targeted programmed death-ligand 1 (PD-L1),
programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4), the
existed ICB treatment has significantly improved the overall survival (OS) of patients in several
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cancers (Larkin et al., 2015; Motzer et al., 2015; Bellmunt et al.,
2017). In advanced LUAD, patients within nivolumab treatment
could earn significantly benefits, both in the remission rate, OS
and progression-free survival (PFS) (Brahmer et al., 2015).
However, low response rate which limited LUAD patients
survival from ICB treatment extremely (Sharma et al., 2017).
In fact, many issues could influence the therapeutic effect of ICB
treatment, including immune cell infiltration (Van Allen et al.,
2015; Nishino et al., 2017), PD-L1 expression (Patel and Kurzrock
2015), tumor mutation burden (TMB) (Samstein et al., 2019),
tumor antigen presentation (Snyder et al., 2014; Zaretsky et al.,
2016) and so on. But evaluation method based on these issues still
cannot make an effective prediction in LUAD patients after ICB
treatment (Nishino et al., 2017). Therefore, it remains needed for
us to identify new prognostic biomarkers which could indicate
the response of ICB treatment in LUAD, also explore novel
evaluation method by using such biomarkers.

In this study, we first isolated the differential immune
genes in the LUAD patients (tumor vs. normal lung tissue),
and used correlation and causal network analysis to get hub
immune genes, then identified genes which significant related
to the prognosis of LUAD, and finally construct the immune-
prognosis index (IPI). We tested the efficient of IPI in
prognosis prediction, demonstrated that IPI could predict
the prognosis of LUAD patients both in conventional and
immune therapy. We also analyzed the molecular and
immune characteristics between different IPI subgroups,
which further indicated that the efficient of IPI in
prognosis prediction was based on realizing the anti-tumor
immune status in patients.

2 MATERIALS AND METHODS

2.1 Patients and Datasets
The transcriptome data of LUAD samples (535 tumors vs. 59
normal lung tissues) and clinical information were downloaded
from the TCGA database (https://portal.gdc.cancer.gov/). The
transcriptome data and survival information of the validation
data sets (GSE30219 (293 tumor samples), GSE37745 (196 tumor
samples), GSE68465 (442 tumor samples)) were downloaded
from Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo). The immune gene sets were downloaded from the
ImmPort (https://www.immport.org/shared/home) and
InnateDB (https://www.innateDBdb.com/) databases.

2.2 Correlation and Causal Network
Analysis to Identify Differential Immune
Genes
Based on the expression profile data of LUAD in TCGA, we used
the “limma” R package to get the differentially expressed genes
(p-value < 0.05, |log2FC| > 1.5). Intersecting the obtained
differential genes with the immune genes obtained from
ImmPort and InnateDB, we finally got the differential immune
genes. The obtained differential immune genes were used for

functional enrichment analysis with Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG).

Then, Weighted Gene Co-expression Network Analysis
(WGCNA) was used to determine the LUAD-related
immune gene modules (Langfelder and Horvath 2008).
According to abline = 39 and β = 5 as the soft threshold,
WGCNA was used to construct a weighted gene co-expression
network. Finally, removing the grey module, we got two
modules, and the minimum number of genes in each
clustering was set 30. According to the heatmap of module-
trait relationships, we found the blue and turquoise modules
were significantly correlated with LUAD. Two modular gene
were subjected to functional enrichment analysis using
“clusterProfiler” R package (v3.9.2; https://github.com/
GuangchuangYu/clusterProfiler). Next, “STRINGdb” R
package was used to calculate the interaction of these
modular genes (Szklarczyk et al., 2015). According to the
weight >900, gene-pairs with strong interaction in the blue
and turquoise modules were obtained. Then, screened by
degree >5, 44 co-expressed genes were identified
(Supplementary Table S3C).

Finally, Bayesian causal network analysis was used to
determine immune hub genes of LUAD (Puga et al., 2015).
We used the “bnlearn” R package to construct a Bayesian
causal network (200 iterations) between the 44 differential
immune genes identified above. Screening based on weight
>0.8, we identified 39 genes and 79 gene-pairs
(Supplementary Tables S4A, B), and used Cytoscape (3.7.2)
to draw this causality network. Then screened by degree ≥5, and
finally 15 immune hub genes were determined. We finally
analyzed the biological functions and gene mutations of 15
immune hub genes.

2.3 Construction and Verification of
Immune-Prognosis Index
Through univariate COX regression analysis, we identified
5 immune-prognosis genes. The “survival” and “survminer” R
packages were used for further survival analysis. The Kaplan-
Meier method was used to estimate the survival curve, and the
log-rank test was used to analyze the difference in survival time.
At the same time, we analyzed the network relationships and
biological functions of 5 genes, and mapped the network
relationships by Cytoscape (3.7.2).

Five immune-prognosis genes that significantly affect the
prognosis of LUAD were used to construct a prognosis model
through multivariate COX regression analysis. 504 LUAD
samples with survival information were used as the training set,
and GSE30219 (274 LUAD samples), GSE37745 (196 LUAD
samples) and GSE68465 (442 LUAD samples) were used as the
validation set. The calculation formula was as follows: risk score =
Σ(C × EXPRNA). In our formula, EXPRNA represents the expression
of 5 IPI genes, C represents the corresponding coefficient of
multivariate Cox proportional hazards regression. To validate the
independent prognostic value of IPI, univariate and multivariate
COX regression analysis was performed.
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2.4 The Molecular, Immune Characteristics
and the Response of anti-PD-1 Therapy in
IPI Subgroups
We compared whether the distribution of clinical characteristics
between IPI subgroups was even. Next, we performed GSEA and
mutation analysis to compare the biological functions and
molecular characteristics between IPI subgroups. In order to
determine the composition of immune cells in the LUAD
samples, we imported the expression of LUAD into
CIBERSORT (https://cibersort.stanford.edu/) (iterated 1000)
(Newman et al., 2015), and finally obtained the relative
proportions of 22 immune cells. We analyzed the difference
and correlation between 22 immune cells in different IPI
subgroups. In addition, we also analyzed the correlation
analysis of PD-1/PD-L1, CTLA4 and HLA-E and IPI scores.

To further determine the immune and molecular functions
between IPI subgroups, we performed ssGSEA analysis on certain
gene signatures and compared the scores between the two IPI
subgroups. At the same time, we draw survival curves for
immune and molecular functions (p < 0.05) between IPI subgroups.

In order to determine the relationship between IPI subgroups
and clinical characteristics and reported immunotype, we
grouped LUAD patients according to tumor stage, pathological
subtype, and reported immunotype, and analyzed their
interactions.

In order to explore the prognostic value of IPI in ICB
treatment, we conducted survival analysis on GSE126044 (n =
9) and GSE135222 (n = 27) cohorts of LUAD patients receiving
anti-PD-1 therapy. In addition, we compared the area under the
curve (AUC) of IPI, TIDE, TIS and two external models at 3-years
of follow-up to determine the prognostic value of different
models. Tumor Immune Dysfunction and Exclusion (TIDE)
score was calculated online (HTTP://tide.dfci.harvard.edu/).
T-cell-inflamed signature (TIS) is an 18-gene signature
including genes which reflect the response of an ongoing
adaptive Th1 and cytotoxic CD8 T cell in anti-PD-1/PD-L1
therapy (Ayers et al., 2017). Two articles on immune signature
models predicting prognosis and responsiveness to ICI therapy in
LUAD patients were used to validate the accuracy and specificity
of IPI model (Guo et al., 2020; Yi et al., 2021).

3 RESULTS

3.1 Correlation and Causal Network
Analysis to Identify Differential Immune
Genes in Lung Adenocarcinoma
The graphical abstract for the construction, verification and
characterization of IPI in LUAD is depicted in Figure 1. In
the differential expression analysis between 535 tumors vs. 59
normal lung tissues of LUAD patients, we obtained 3764
differential genes, including 2747 up-regulated genes and
1017 down-regulated genes (Supplementary Figure S1A;
Supplementary Table S1). Intersecting these genes with
immune gene sets obtained from ImmPort and InnateDB, 437

differential immune genes were obtained, including 264 up-
regulated genes and 173 down-regulated genes
(Supplementary Figure S1B). The functional analysis of 437
differential immune genes were enriched in 1516 GO terms and
33 KEGG pathways, and we showed the top 20 GO terms and
KEGG pathways (Supplementary Figure S1C,D;
Supplementary Table S2A,B).

In order to determine the gene modules related to LUAD,
WGCNA was used to perform co-expression analysis of 437
candidate differential immune genes. The optimal soft-
thresholding power was 5 based on the scale-free network.
Then based on the optimal soft-thresholding power and the
average linkage hierarchical clustering, three modules were
finally determined (Supplementary Figure S2A). According to
the Pearson correlation coefficient between gene modules and
samples, we found that the blue (49 genes) and turquoise (204
genes) modules were correlated with LUAD (Supplementary
Figure S2B), and these genes were used for subsequent analysis.
The top eight GO terms and KEGG pathways of genes in the blue
and turquoise modules were respectively shown (Supplementary
Figure S2C,D; Details in Supplementary Tables S2C–F).
Screened with the threshold of weight >900, we showed the
correlation network of blue (29 gene-pairs) and turquoise (226
gene-pairs) modules (Supplementary Figure S2E,F;
Supplementary Table S3A,B). Then screened according to the
degree >5 of correlation network genes, we finally identified 44
genes (Supplementary Table S3C). After intersecting 44 genes
with five GEO datasets, 41 immune-related genes were finally
identified, and batch correction was performed using the ComBat
algorithm in the all samples.

Next, based on the expression of LUAD in TCGA and the gene
strength >0.8 in the Bayesian causal network, we got 39 genes and
79 gene-pairs (Supplementary Figure S3A; Supplementary
Table S4A). Then according to the degree ≥5, 15 immune hub
genes were finally obtained (Supplementary Table S4B). Most of
these immune hub genes were enriched in G protein-coupled
receptor signaling pathway, cell chemotaxis and IL-17/TNF
signaling pathway (Supplementary Figures S3B,C).
Meanwhile the mutation rate of these immune hub genes was
less than 5% (Supplementary Figure S3D).

3.2 Construction and Verification of
Immune-Prognosis Index in Lung
Adenocarcinoma
In order to determine immune-prognosis genes, we performed
univariate COX regression analysis on 15 immune hub genes.
Only 5 genes (A2M, ADRB1, ADRB2, VIPR1 and PTH1R) were
significantly affected the outcome of LUAD patients (all HR < 1),
and the Kaplan-Meier survival curves of these genes were drawn
(Figures 2A–F). Besides, we analyzed the correlation and
biological functions between 5 immune-prognosis hub genes
and immune genes obtained from ImmPort and InnateDB.
We found that these genes were mainly enriched in cAMP-
mediated signaling, G protein-coupled receptor signaling
pathway and cAMP/MAPK signaling pathway
(Supplementary Figure S4A–C, Supplementary Table S5).
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Then, we constructed a prognostic index for the LUAD patients,
using the formula IPI = (−0.0125 × EXPA2M) + (0.3224 ×
EXPVIPR1) + (0.22 × EXPADRB2) + (0.1663 × EXPADRB1) +
(0.0329 × EXPPTH1R). Grouping by the median of IPI score,
we found that the AUC and 5-years survival rate of LUAD
patients in the IPI-high subgroup was significantly higher than
IPI-low subgroup (AUC = 0.725, p = 0.00389, Figures 2G,K). At
the same time, we also got this result in three validation datasets
(all p < 0.05; Figures 2H–J; Figures 2L–N).

Between IPI subgroups, these clinical characteristics were
distributed equally (Supplementary Figure S5). Univariate
COX regression analysis showed that IPI, tumor stage and

radiation therapy were significantly related to the prognosis of
LUAD (Figure 2O). Moreover, multivariate COX regression
analysis showed that IPI could act as an independent
prognostic factor after adjusted other clinical characteristics
(Figure 2O).

3.3 Molecular Characteristics of
Immune-Prognosis Index Subgroups
GSEA was used to determine the differences of signal pathway
between IPI subgroups. IPI-high subgroup was mainly
enriched in cell adhesion molecule pathways and

FIGURE 1 | Graphical abstract for the construction, verification and characterization of IPI in LUAD.
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FIGURE 2 |Constructing an immune-prognosis index (IPI) for LUAD. (A)Univariate COX regression analysis was used to determine the prognostic-related genes in
15 immune hub genes. (B–F) Kaplan-Meier survival analysis of 5 prognostic-related genes (p < 0.05). (G–J) ROC analysis of the IPI in the LUAD of TCGA and GEO
cohorts. (K–N) Kaplan-Meier survival analysis of the IPI subgroups in the LUAD of TCGA and GEO cohorts (p < 0.05). (O) Univariate and multivariate COX regression
analysis to determine the independent prognostic value of IPI in LUAD.
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metabolism-related signaling pathways (p < 0.05, FDR <0.25;
Figure 3A), and IPI-low subgroup was mainly enriched in
proteasome and p53 signaling pathways (p < 0.05, FDR <0.25;
Figure 3B). The detailed results of GSEA for the IPI subgroups
were listed in Supplementary Table S6.

Next, in order to further understand the molecular
characteristics of IPI, we analyzed the gene mutations of IPI
subgroups. We showed the top 20 gene mutations in the IPI
subgroups (Figures 3C,D). The most frequent mutation type
was missense mutation, followed by nonsense mutation. The
mutation rate of TP53, TTN, MUC16, RYR2, CSMD3, LRP1B,
ZFHX4, USH2A and KRAS all exceeds 20% in IPI subgroups.
In addition, the mutation rate of TP53, TTN and MUC16 in
the IPI-low subgroup was significantly higher than that in the
IPI-high subgroup.

Immune Characteristics of
Immune-Prognosis Index Subgroups
In order to determine the composition of immune cells in the
IPI subgroups, we uploaded the sequencing data of LUAD to
CIBERSORT to obtain the proportion of immune cells in the IPI
subgroups. We found that CD8 T cells, plasma cells, activated
memory CD4 T cells, dendritic cells and macrophages M1 were
more abundant in IPI-high subgroup, while resting memory
CD4 T cells, macrophages M2, resting dendritic cells and resting
mast cells were more abundant in IPI-low subgroup
(Figure 4A). By analyzing the correlation between different
immune cells and IPI scores, we found that CD8 T cells, plasma
cells, activated memory CD4 T cells, activated NK cells and
macrophages M1 were positively correlated with IPI
(Supplementary Figures S6A–F), while resting memory CD4

FIGURE 3 | Molecular characteristics of IPI subgroups. (A,B) Enriched pathways in IPI-high and IPI-low subgroups (p < 0.05, FDR <0.25). (C,D) Top 20 gene
mutations in IPI-high and IPI-low subgroups. The percentage of mutations is shown on the right and the total number of mutations on the top. Different colors represent
different types of mutations.
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T cells, macrophages M2, resting dendritic cells and resting mast
cells were negatively correlated with IPI (Supplementary
Figure S6G–K). Next, we explored the relationship between
IPI scores and PD-1/PD-L1, CTLA4, and HLA-E.We found that

there was no correlation between PD-1/PD-L1 and CTLA4 and
IPI scores (Figures 4B–D), while there was a significant
correlation between HLA-E and IPI scores (R = 0.29, p <
0.001) (Figure 4E).

FIGURE 4 | Immune characteristics of IPI subgroups. (A) The proportion difference of 22 immune cells in IPI subgroups in LUAD patients (*p < 0.05, **p < 0.01,
***p < 0.001). (B–D) The relationship between IPI scores and PD-1/PD-L1 and CTLA4 (p > 0.05). (E) The relationship between IPI scores and HLA-E (p < 0.05). (F) The
difference of immune and molecular functions of IPI subgroups in LUAD patients (*p < 0.05, **p < 0.01, ***p < 0.001).
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Next, we applied specific gene signature to define the
immune and molecular functions of IPI subgroups. We
found that activated dendritic cells, HLA, MHC class I and
type II IFN response were more in IPI-high subgroup, while
Th2 cells were more in IPI-low subgroup (Figure 4F). We
further studied the prognostic value of IPI in different immune
and molecular functions. We found that patients with more
immune cell infiltrations and HLA have a better prognosis
(Supplementary Figure S7). It could be seen that the more
immune cell infiltrations in IPI-high subgroup, the better
prognosis in LUAD patients.

Relationship Between Immune-Prognosis
Index and Clinical Characteristics and
Immune Subtype
The 494 LUAD patients of TCGA were grouped by tumor stage.
We found that from stage I to stage IV, the percentage of patients
in the IPI-high subgroup gradually decreased, while the
percentage in the IPI-low subgroup gradually increased.
Among them, patients with stage IV in the IPI-low subgroup
(62%) were more than IPI-high subgroup (38%) (Figure 5A).
According to the pathological subtype, 501 LUAD patients were
divided into 6 groups. As shown in Supplementary Figure S8,

FIGURE 5 | Relationship between IPI and tumor stage and reported immune subtype. (A) Heat map and table showing the distribution of LUAD tumor stage
between IPI subgroups. (B) Heat map and table showing the distribution of LUAD immune subtype (C1, C2, C3, C4 and C6) between IPI subgroups. C1: Wound
Healing, C2: IFN-γ Dominant, C3: Inflammatory, C4: Lymphocyte Depleted and C6: TGF-β Dominant. The distributions of tumor stage and reported immune subtype in
the IPI subgroups were compared through the chi-square test.
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solid tumors only exist in the IPI-low subgroup, and there were
more mucinous and papillary LUAD in the IPI-high subgroup
(p < 0.001, chi-square test).

According to the reported method of immunotype, the
immune types of all samples can be divided into 6 types (C1-
C6): Wound Healing, IFN-γ Dominant, Inflammatory,
Lymphocyte Depleted, Immunologically Quiet, and TGF-β
Dominant (Thorsson et al., 2018). From Figure 5B, we found
that there were more Inflammatory (C3) in the IPI-high
subgroup, while there were more Wound Healing (C1) in the
IPI-low subgroup. The survival of C3 patients is significantly
better than that of TGF-β Dominant (C6) patients
(Supplementary Figure S9A, p=0.0244). At the same time,
according to the IPI grouping, we could see that among the
C3 patients, the patient’s prognosis in the IPI-high group was

better than in the IPI-low group (Supplementary Figure S9B,
p=0.0465); in the C6 patients, there was no significant difference
between IPI high and low groups, but there was still a trend of
better prognosis in the IPI-high group (Supplementary
Figure S9C).

The Benefit of Anti-PD-1 Therapy in
Different Immune-Prognosis Index
Subgroups
We used TIDE to score T cell dysfunction in samples from
different IPI subgroups and predict their response to ICB
treatment (Jiang et al., 2018). A higher TIDE score indicates a
higher probability of immune escape, which suggested that
patients were less likely to benefit from immunotherapy. In

FIGURE 6 | The benefit of IPI in LUAD patients with anti-PD1 therapy. (A) Compared the scores of TIDE, MSI, and T cell exclusion and dysfunction in two IPI
subgroups (ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001). (B,C)Kaplan-Meier survival analysis of IPI subgroups in the GSE126044 (n = 9) with anti-PD-1 therapy.
(D) Kaplan-Meier survival analysis of IPI subgroups in the GSE135222 (n = 27) with anti-PD-1 therapy. (E)ROC analysis of IPI, TIDE and TIS on OS at 3-years follow-up in
LUAD patients. (F) ROC analysis of IPI, and other two models on OS at 3-years follow-up in LUAD patients.
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our results, the IPI-high subgroup has a lower TIDE prediction
score compared to IPI-low subgroup (Figure 6A). Meanwhile, we
found that IPI-low subgroup had a higher T cell exclusion scores,
but there was no difference in microsatellite instability (MSI)
score between two IPI subgroups (Figure 6A). In addition, we
also evaluated the prognostic value of IPI in two LUAD cohorts
(GSE126044 and GSE135222) with anti-PD-1 treatment. We
found that compared with IPI-low subgroup, patients in the
IPI-high subgroup have better OS and PFS (Figures 6B–D).
In summary, patients in IPI-high subgroup have less immune
escape and better prognosis than IPI-low subgroup.

Finally, we compared the prognostic value of IPI, TIDE and
TIS in different follow-up times in LUAD patients. The result
showed that the AUC for IPI (AUC = 0.685) were better at 3-years
follow-up than TIDE and TIS (AUC = 0.45, 0.475) (Figure 6E).
At the same time, compared with the other two reported models,
IPI still had good predictive value (AUC = 0.684) (Figure 6F).
Therefore, we recommended using IPI to predict the prognosis of
LUAD patients, especially those receiving ICB treatment.

4 DISCUSSION

Lung cancer remains one of the most common malignant tumors
worldwide (Yoda et al., 2019). With the improvement of surgical
techniques, the continuous optimization of traditional treatments
and the development of immunotherapy, the overall survival rate of
lung cancer has been significantly improved (Petrella and Spaggiari
2016). In recent years, ICB treatment has been proven to be an
effective treatment for advanced LUAD and improve patient’s
survival (Shah et al., 2019; Garassino et al., 2020). Since the
overall response rate of ICB treatment is still low (Ferris et al.,
2016; Larkins et al., 2017), it is particularly important to determine
which patients could benefit from ICB treatment. However, there is
still less hopeful candidate biomarkers which can be used to predict
the response of ICB treatment. This also highlights the importance of
finding prognostic biomarkers for ICB treatment in LUAD.

Network analysis is different from conventional difference
analysis, which could help us to detect key node factors related
to event occurrence from omics data (Puga et al., 2015). In our study,
based on transcriptome data of LUAD and immune gene sets, we
have used correlation and causal network analysis to identify 15
immune hub genes, and constructed IPI with 5 immune-prognosis
genes (A2M, ADRB1, ADRB2, VIPR1 and PTH1R). Combined with
clinical characteristics, IPI was proved to be an independent
prognostic factor for LUAD (p = 0.008). Our results showed that
there were active immune response and better survival in the IPI-
high subgroup, while immune-suppressive response and worse
survival in the IPI-low subgroup.

IPI was made up of the following five genes, A2M, ADRB1,
ADRB2, VIPR1 and PTH1R. α2-macroglobulin (A2M) is known
as an acute phase protein of the innate immune system. It is a
general protease inhibitor in serum and can bind a variety of
cytokines and growth factors (Mocchegiani and Malavolta 2007;
Xue et al., 2017). Taking advantage of the immunoaffinity of A2M
protein complex in human serum, more and more studies have
taken A2M protein complex as a new cancer serum biomarker

(Kanoh et al., 2001; Burgess et al., 2008). As for β1 and β2
adrenergic receptors (ADRB1/ADRB2), the adrenergic receptors
(AR) are a prototypic family of guanine nucleotide binding
regulatory protein-coupled receptors that mediate the
physiological effects of the hormone epinephrine and the
neurotransmitter norepinephrine. Studies have shown that the
systemic activation of β-AR (β1+β2) in vivo can enhance the
mobilization, expansion, and anti-tumor activity of TCR-gamma
delta T cells (Baker et al., 2019). As for vasoactive intestinal
polypeptide receptor 1 (VIPR1), it is the receptor of VIP which
can be considered as an anti-inflammatory and
immunomodulatory agent (Gomariz et al., 2006). VIP can
increase the differentiation of Th2 and T regulatory (Treg)
subsets and reduce the differentiation of Th1 and pathogenic
Th17 cells (Delgado et al., 2001; Jimeno et al., 2014). In addition,
studies have reported the healing effects of VIP in animal models
of inflammatory/autoimmune diseases (Abad et al., 2003;
Gonzalez-Rey et al., 2007). According to the formula of IPI,
A2M was negatively associated with IPI, while ADRB1, ADRB2,
VIPR1 and PTH1R were positively associated with IPI, and HR <
1. It can be seen that higher IPI score indicates better prognosis,
lower IPI score indicates worse prognosis.

In order to understand the molecular characteristics between
different IPI subgroups, we first analyzed gene mutations in each
subgroup. The most common mutation was missense mutation,
then nonsense mutation, consistent with previous reports
(Martincorena and Campbell 2015). The mutations of TP53
and TTN in the IPI-low subgroup were more common than
in the IPI-high subgroup (TP53: 52% vs. 35%; TTN: 53% vs. 28%).
TP53 was identified as the most frequently mutated gene in
cancers. As a transcription factor, p53 is involved in a variety of
cellular processes, including DNA repair, cell cycle arrest,
senescence, and apoptosis (Bieging et al., 2014). About half of
cancer patients have TP53 mutation, and its mutations have been
confirmed to be associated with poor prognosis in many cancers,
especially in LUAD (Olivier et al., 2010; Skoulidis and Heymach
2019). Besides, TTN is also frequently mutated in a variety of
cancers, including lung squamous cell carcinoma, LUAD and
colon adenocarcinoma (Kim et al., 2017). Studies have shown that
the mutation load within TTN represents high TMB status (Oh
et al., 2020). Therefore, IPI-low patients with high TP53 and TTN
mutations have a worse prognosis than IPI-high patients with low
TP53 and TTNmutations, in consistent with our survival results.

Understanding the composition of immune cells in tumor tissue
will help to find new method of cancer treatment and improve the
efficiency of ICB treatment. CD8 T cells, activated memory CD4
T cells, activated NK cells and macrophages M1 were more
abundant in IPI-high subgroup, while resting memory CD4
T cells, macrophages M2 and resting dendritic cells were more
abundant in IPI-low subgroup. A lot of research have shown that the
dense infiltrations of CD8 T cells and macrophages M1 indicate a
favorable prognosis (Gentles et al., 2015; Fridman et al., 2017;
Garrido-Martin et al., 2020). NK cells can enhance the response
of antibodies and T cells to tumors, and improve the prognosis of
patients (Shimasaki et al., 2020; Myers andMiller 2021). In addition,
macrophages M2 is proved to be related to tumor growth and the
development of aggressive phenotypes, as well as the poor prognosis
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of gastric cancer, breast cancer, bladder cancer, prostate cancer and
lung cancer (Ruffell and Coussens 2015; Pathria et al., 2019). Our
results also confirmed that IPI-high subgroupwithmore infiltrations
of CD4 T cells, NK cells and macrophages M1 have a better
prognosis, while IPI-low subgroup with more infiltrations of
macrophages M2 have a poor prognosis.

Next, we explored the relationship between IPI scores and ICB
targets (PD-1/PD-L1 and CTLA4) and HLA-E. It has been proven
that PD-L1+ tumors have better response to anti-PD-1/PD-L1
therapy than PD-L1- tumors (Hansen and Siu 2016; Oliva et al.,
2019). However, our results showed that there was no correlation
between IPI and PD-1/PD-L1 and CTLA4. We believe that the
unclear threshold for the positive expression of PD-1/PD-L1 and
CTLA4 in the LUAD transcriptome datamay be themain reason for
this negative result. Moreover, based on the immunohistochemistry
to detect the expression of PD-1/PD-L1 andCTLA4 ismore valuable
than transcriptome sequencing. Therefore, further research is
needed to clarify the correlation between IPI and PD-1/PD-L1
and CTLA4. Besides, our results showed that IPI were positively
correlated with HLA-E (p < 0.001). HLA-E is mainly expressed on
the surface of endothelial cells, T and B lymphocytes, monocytes and
macrophages, and is a presentation molecule for endogenous
antigens (Kochan et al., 2013). Studies have found that HLA-E
antigen peptide complexes can limit the cytotoxicity of CD8+ T cells
and play an important regulatory role in adaptive immunity (Pietra
et al., 2010). Andwe found that there wasmoreHLA andMHC class
I in the IPI-high subgroup, which is also consistent with the above
results. These results indicated that there were a large number of
MHC class I molecules in the IPI-high subgroup, which have the
characteristics of immune activation and the inhibition of tumor
progression.

IPI grouping could distinguish different stages, pathological
subtypes and reported immune subtype. In addition, according to
Thorsson’s study, the immune landscape of cancer have significant
differences in macrophage, extent of intratumoral heterogeneity,
aneuploidy, extent of neoantigen load, overall cell proliferation,
expression of immunomodulatory genes, and prognosis
(Thorsson et al., 2018). And high content of C3 (inflammatory)
can promote tumor immunity, and high content of C1 (Wound
Healing) and C6 (TGF-β dominant) can inhibit tumor immunity
(Lee andMargolin 2011; Nakamura and Smyth 2017). These studies
were consistent with our results, that is, the IPI-low subgroup was
characterized by more advanced, solid and C1, immune-suppressive
response and worse prognosis in LUAD patients, while the IPI-high
subgroup was characterized by more early, mucinous, papillary and
C3, active immune response and better prognosis in LUAD patients.

The difference of T cell function between IPI subgroups identified
by TIDE could reflect the effectiveness of ICB treatment (anti-PD-1/
PD-L1 and anti-CTAL4). In our study, patients with IPI-low
subgroup had higher scores of TIDE and T cell exclusion. It can
be seen that the low response of ICB treatment in IPI-low subgroup
may be caused by immune escape via T cell exclusion. The “T cell
dysfunction” in the TIDE prediction score represents the proportion
of inactive T cells in the tumor (Jiang et al., 2018). IPI-low subgroup
had a higher T cell dysfunction score than IPI-high subgroup. This
result suggested that there were a lot of T cell infiltrations in the IPI-
low subgroup samples, but most of them were inactive. The

expression of T cell failure markers leads to the inactivation of
T cells in the tumor microenvironment may be the reason for this
result (Chen et al., 2019). In order to further verify the prognostic
value of IPI, we performed survival analysis on the LUAD patients
within anti-PD-1 treatment.We found that the prognosis of patients
in the IPI-high subgroup was better than IPI-low subgroup,
indicating that IPI could effectively distinguish the outcomes in
LUAD patients with anti-PD-1 treatment.

Some identified biomarkers, such as TIDE and TIS, can predict
the response to immunotherapy. Both TIDE and TIS mainly
reflect the functional status of T cells, and cannot fully reflect the
changes in the tumor immune microenvironment during ICB
treatment (Ayers et al., 2017; Jiang et al., 2018). In addition, these
two biomarkers were mainly used to predict the patient’s
response to immunotherapy, but survival time was also
important when making treatment decision. In our study, IPI
could predict the response of ICB treatment and was a good
predictor for long-term follow-up than TIDE and TIS. Moreover,
IPI has only five genes, which was easier to detect than TIDE
and TIS.

In summary, IPI is a potentially valuable immune-prognosis
biomarker. IPI grouping helps distinguish the anti-tumor
immune status in LUAD patients.
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