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Background: Metabolomics and onco-anesthesia are two emerging research fields in
oncology. Metabolomics (metabolites analysis) is a new diagnostic and prognostic tool
that can also be used for predicting the therapeutic or toxic responses to anticancer
treatments. Onco-anesthesia studies assess the impact of anesthesia on disease-free and
overall survival after cancer surgery. It has been shown that local anesthetics (LA),
particularly lidocaine (LIDO), exert antitumor properties both in vitro and in vivo and
may alter the biologic fingerprints of cancer cells. As LA are known to impair
mitochondrial bioenergetics and byproducts, the aim of the present study was to
assess the impact of LIDO on metabolomic profile of a breast cancer cell line.

Methods: Breast cancer MDA-MB-231 cells were exposed for 4 h to 0.5 mM LIDO or
vehicle (n = 4). The metabolomic fingerprint was characterized by high resolution magic
angle spinning NMR spectroscopy (HRMAS). The multivariate technique using the
Algorithm to Determine Expected Metabolite Level Alteration (ADEMA) (Cicek et al.,
PLoS Comput. Biol., 2013, 9, e1002859), based on mutual information to identify
expected metabolite level changes with respect to a specific condition, was used to
determine the metabolites variations caused by LIDO.

Results: LIDO modulates cell metabolites levels. Several pathways, including
glutaminolysis, choline, phosphocholine and total choline syntheses were significantly
downregulated in the LIDO group.

Discussion: This is the first study assessing the impact of LIDO on metabolomic
fingerprint of breast cancer cells. Among pathways downregulated by LIDO, many
metabolites are reported to be associated with adverse prognosis when present at a
high titer in breast cancer patients. These results fit with the antitumor properties of LIDO
and suggest its impact on metabolomics profile of cancer cells. These effects of LIDO are
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of clinical significance because it is widely used for local anesthesia with cutaneous
infiltration during percutaneous tumor biopsy. Future in vitro and preclinical studies are
necessary to assess whether metabolomics analysis requires modification of local
anesthetic techniques during tumor biopsy.

Keywords: lidocaine, onco-anesthesia, perioperative period, anesthesia, cancer surgery, metabolomics, cancer
progression

INTRODUCTION

In 2020, female breast cancer was the most diagnosed cancer in
the world (2,261,419 cases). As almost 685,000 women die of this
cancer each year (Sung et al., 2021), breast cancer care is still
challenging (Burguin et al., 2021), particularly the triple negative
breast cancer (TNBC) subtype which is very aggressive (Bianchini
et al., 2021). Customizing care to patient’s phenotypic and/or
genotypic background could be an approach to TNBC issues
(Burstein et al., 2021; Li et al., 2021).

An emerging strategy to improve survival by personalized
medicine and treatment is using metabolomics, an “-omic”
approach based on Nuclear Magnetic Resonance (NMR). This
technology is an interesting tool for personalized care (Vignoli
et al., 2021). Indeed, NMR may provide clues to determine the
best therapeutic strategy to follow in patient care and monitoring.
High resolution magic angle spinning (HR-MAS) NMR
spectroscopy can simultaneously analyze approximately 40
metabolites in biological samples without altering them and
can determine tumor metabolomic fingerprints. Many studies
have reported a significant association between those fingerprints
and clinicopathological status (Choi et al., 2012; Cao et al., 2014;
Chae et al., 2016; Tayyari et al., 2018; Vignoli et al., 2021),
response to chemotherapy (Cao et al., 2012; Choi et al., 2013)
and survival (Giskeødegård et al., 2010, 2012; Cao et al., 2012).
Some metabolites are of particular interest: Cao et al. (2012) have
demonstrated a significant decrease of glycerophophocholine,
phosphocholine, choline and total choline level in survivors in
response to treatment compared to non-survivors in breast
cancer. Higher levels of glycine and lactate were found to be
associated with lower survival rates in breast cancer
(Giskeødegård et al., 2012).

Another emerging field of research in cancer care is called
onco-anesthesia (Wigmore et al., 2016; Hiller et al., 2017; Cata
et al., 2020). Onco-anesthesia investigates the potential impact of
anesthesia practices on cancer progression after surgery. Many
anesthetic and analgesic drugs used during perioperative period
may have a significant impact on immune responses but can also
interfere with signaling pathways.

Lidocaine is a commonly used local anesthetics which is often
required for local anesthesia before performing fine needle
aspiration biopsy or core needle biopsy. It is also employed for
regional anesthesia in breast cancer surgery, remote from the
surgical site when performing paravertebral block or closer to the
wound through plane blocks (pectoral nerves block, serratus
blocks, erector spinae plane block . . . ) (Elshanbary et al.,
2021; Gabriel et al., 2021).

In addition to its anesthetic effects, lidocaine can also be
administrated intravenously (i.v.) for postoperative analgesia
(Beaussier et al., 2018). In breast cancer surgery LIDO
contributes to prevent both acute and chronic pain after breast
cancer surgery (Grigoras et al., 2012). And it was shown to have
anticancer properties (Chamaraux-Tran and Piegeler, 2017;
Chamaraux-Tran et al., 2018; Wall and Buggy, 2021; Zhang
et al., 2021).

It is also well-know that anesthetic and analgesic drugs do have
an impact on cell metabolism (Nouette-Gaulain et al., 2011; Jose
et al., 2012). Energy metabolism modulation properties of local
anesthetics may stand for a potential therapy to decrease cancer
cell proliferation (Jose et al., 2012).

Given the emerging role of metabolomics in breast cancer care,
the antitumor properties of local anesthetics and their impact on
cell metabolism, we sought to evaluate the impact of lidocaine in
metabolomics fingerprints. In an in vitro study, we assessed the
impact of lidocaine on a triple negative breast cancer human
cell line.

MATERIALS AND METHODS

Cells and Cell Culture
MDA-MB-231 (ER and PGR double negative, no amplification of
erbB-2 oncogene) human breast cancer cell line representative of
the triple negative subtype used throughout this study was
obtained from the American Type Culture Collection (ATCC)
biological resource center (http://www.atcc.org). The detailed
characteristics of the tumor cell line are described elsewhere
(Lacroix and Leclercq, 2004). MDA-MB-231 cells were grown
in RPMI 1640 medium without HEPES and enriched with 10%
fetal calf serum (FCS) and gentamicin (40 μg/ml). Subculturing
was routinely carried out every week using diluted trypsin
solution (0.25%) in Dulbecco’s phosphate buffered saline
(DPBS) without calcium and magnesium (pH 7.2) and cell
cultures were kept in a 5% CO2 incubator at 37°C.

Drug Treatment
To perform in vitro experiments, lidocaine hydrochloride
monohydrate was obtained in a pure lyophilized form (MW
288.81, Sigma-Aldrich, St. Louis, MO). A stock solution (50 mg/
ml in H2O) was freshly prepared and increasing drug
concentrations (0.1, 0.5, 1, 5, 10 mM) were obtained by
diluting the stock solution in cell culture medium. Final pH of
lidocaine-containing or -free (control) mediums were controlled
and were found to be equivalent.
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MTT Assay for Cell Viability
This rapid colorimetric assay using 3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide; thiazolyl blue (MTT) was
elaborated by Mosmann et al. to assess cellular growth and
survival (Mosmann, 1983). Exponentially growing cells were
enzymatically detached and a single tumor cell suspension in
culture medium at a density of 30 × 103 cells/ml was prepared.
Cells were seeded in 24-well microtiter plates (1 ml/well) and
allowed to attach for 48 h under the previous specified conditions.
Culture medium in each well was aspirated and replaced with
fresh culture medium containing the different lidocaine
concentrations and allowed to grow for a further 4 h.
Triplicate wells were used for controls (H2O as vehicle alone)
and each concentration of lidocaine. Cell viability was then
determined using the MTT assay (Marks et al., 1992) with
minor modifications. In brief, 100 µl of MTT (5 mg/ml in
DPBS) (3-(4,5 dimethylthiazol-2-yl) 2,5 diphenyl-tetrazolium
bromide) were added and the plates were incubated at 37°C
for 1 h in the dark. This assay is based on the cleavage of the
tetrazolium salt by viable cells and the accumulation of a water
insoluble formazan salt proportional to the number of living cells
in the well. After careful aspiration of the culture medium, 100 µl
of DMSO were added to each well and the plates were incubated
for a further 1 h. Absorbances were then measured for each
treatment condition at a wavelength of 550 nm with reference
to the appropriate blank (DMSO only) in a 96-wells microplate
spectrophotometer (ELx808 Absorbance Microplate Reader,
Biotek Instruments and Gen5 Data Analysis Software 1.06)
and compared to control untreated cells.

1H-High Resonance Magic Angle
Spectroscopy (1H-HRMAS) Metabolomic
Data Acquisition and Processing
For this experiment, 107 MDA-MB-231 cells were seeded in
750 ml cell culture flask with a polystyrene growth area of
175 cm2 for 24 h. Culture medium was then aspirated and
replaced with fresh culture medium containing lidocaine (at
concentration of 0.5 mM, n = 5) or the same volume of H2O
(n = 4). After 4-h incubation at 37°C, medium was removed, and
cells were washed by phosphate-buffered saline (PBS 1M). Cells
were trypsin-detached and centrifugated at 1,200 rpm to throw
supernatant. Cell pellet was then homogenized and 20 µl of the
cap was put into a cryotube. Manual centrifugation was
performed to remove any air bubbles and the cryotube was
immediately placed in liquid nitrogen for rapid freezing. Five
microliters of deuterium oxide were added before −20°C storage.

NMR HRMAS data acquisition and processing have been
previously detailed (Battini et al., 2016). Briefly, NMR HRMAS
assay was performed by 500 MHz Bruker Avance III
spectrometer. A 1-dimensional (1D) proton spectrum using a
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was
acquired for each sample with a 285 μs interpulse delay and a
76 min acquisition time for each tissue sample. The number of
loops was set at 328, giving the CPMG pulse train a total length of
93 ms. The chemical shift was calibrated to the peak of the methyl
proton of L-lactate at 1.33 parts per million (ppm).

Unidimensional (1D) acquisition was immediately followed by
a 2-dimensional (2D) heteronuclear experiment (in order to
confirm resonance assignments). Heteronuclear Single
Quantum Coherence (HSQC) spectrum was acquired during
15 hs and 22 mns (time acquisition: 0.073s (1H)/0.006s (13C),
136 scans, spectral window: 7,002 Hz (1H)/20,833 Hz (13C),
relaxation time: 1.5 s). Metabolites were assigned using a
standard metabolite chemical shift table available in the
literature (Martínez-Bisbal et al., 2004; Wishart et al., 2007).
Metabolite quantification was performed using an external
reference standard of lactate (19,3 nM), scanned under the
same analytical conditions. Spectra were normalized according
to sample weight. Peaks of interest were automatically defined by
an in-house program using MATLAB (MATLAB R2010;
MathWorks, Natik, MA).

Statistical Analysis
Data Are Expressed as Mean ± Standard Deviation
MTT in vitro assay was performed in triplicate and at least three
times. Results were compared with one-way repeated measures
ANOVA followed by a Dunnett test. GraphPad InStat statistics
software (GraphPad Software, Inc., La Jolla, CA) was used for
these analyses. p values < .05 were considered statistically
significant.

Network analysis was obtained using the Algorithm to
Determine Expected Metabolite Level Alterations Using
Mutual Information (ADEMA) which has been applied on
metabolite quantification values. ADEMA processing has been
previously detailed (Cicek et al., 2013; Battini et al., 2016; Bender
et al., 2020). Briefly, this method allows for the comprehensive
analysis of variations in a pathway of metabolites within cells
exposed or not to lidocaine. Instead of analyzing the metabolites
one by one, ADEMA integrates them into the topology of the
metabolic network that was built according to the Kyoto
Encyclopedia of Genes and Genomes (Kanehisa and Goto,
2000) and Salway’s work (Salway, 2016).

FIGURE 1 | MDA-MB-231 cell viability exposed for 4 h to increased
concentrations of lidocaine (from 0.01 to 10 mM) compared to cells exposed
to vehicle alone (purified water, CTL). ANOVA: F (5,30) = 28.16; p < .0001
(***: p < .001).
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RESULTS

High Concentration of Lidocaine Impairs
Cell Viability
As compared to untreated cells, MDA-MB-231 cell viability
was significantly impaired when treated with lidocaine at the
concentration of 10 mM (45% reduction, Figure 1)
(0.194±0.016 AU versus 0.425± 0.06 AU in control group,
p < .0001 in Dunnet test). Because of its negative effect on cell
viability, the lidocaine concentration of 0.5 mM was selected
for the 1H-HRMAS assay.

Quality of Spectra Acquisitions
Spectra of the 9 samples collected (5 for cells exposed to lidocaine
and 4 for control group) were of high quality. Figure 2 represents
1D 1H CPMGHRMAS spectra of MDA-MB-231 cells exposed or

not to lidocaine. Figure 3 represents a 2D 1H-13C HSQC
spectrum of MDA-MB-231 cells exposed to lidocaine.

Twenty-two metabolites were quantified for the experiment:
Alanine, Asparagine, Aspartate, Choline, Creatine, Fumarate,
Glutamate, Glutamine, Glutathione, Glycerol, Isoleucine,
Lactate, Malate, myo-Inositol, Phenylalanine, Phosphocholine,
Proline, Taurine, Total Choline, Valine and Glycine. Mean values
are presented in Table 1. Glucose and glycerophosphocholine
were not measurable in both groups. There were no peaks of
lidocaine in the samples, thus confirming efficient cell washing.

Lidocaine Modulates Metabolic Pathways
andDecreases Cell Proliferation Potential in
Triple Negative Breast Cancer Cells
Network analysis using the ADEMA algorithm shows an
impairment in several metabolic pathways in MDA-MB-231

FIGURE 2 | 1D 1H CPMG HRMAS spectra of MDA-MB-231 exposed to vehicle (A) or to lidocaine (0.5 mM) (B). Spectra can be compared because they were
normalized to the sample weight. Peaks are identified as below: 1-Acetate 2-Alanine 3-Asparagine 4-Aspartate 5-Choline 8-Glutamate 9-Glutamine 10-Glutathione 11-
Glycerol 12-Isoleucine 13-Lactate 15-myo-Inositol 17-Phosphocholine 18-Proline 19-Taurine 21-Valine 22-Glycine.
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cells (Figure 4). Cell exposure to 0.5 mM of lidocaine for 4 h
yielded predicted decrease in levels of metabolites involved in
phospholipids metabolism and cell membrane proliferation: total
choline, choline and phosphocholine. A predicted decrease in the
levels of taurine, asparagine, aspartate, malate, fumarate, alanine,
myoinositol, glutathione, glutamine, glutamate, proline, and

creatine was also observed. On the other hand, valine,
isoleucine levels were predicted to increase. Lactate, glycine
and acetate levels were similar in the 2 groups (Figure 4). The
metabolomic profiles indicate that lidocaine treatment of MDA-
MB-231 cells at a 0.5 mM concentration impairs choline and
glutaminolysis pathways and the tricarboxylic acid (TCA) cycle.

FIGURE 3 | Example of 2D 1H-13C HSQC spectrum of MDA-MB-231 cells exposed to lidocaine (0.5 mM for 4 h). Spots are identified as below: 1-Acetate 2-
Alanine 3-Asparagine 4-Aspartate 5-Choline 8-Glutamate 9-Glutamine 10-Glutathione 11-Glycerol 12-Isoleucine 13-Lactate 15-myo-Inositol 17-Phosphocholine 18-
Proline 19-Taurine 21-Valine 22-Glycine.

TABLE 1 | Metabolite quantification in MDA-MB-231 cells exposed or not to lidocaine, expressed in mM [mean ± standard deviation (SD)].

Lido n = 5 mean
(mM)

±SD Control n = 4 mean
(mM)

± SD

Acetate 0,139 0,030 0,137 0,019
Alanine 0,758 0,276 0,847 0,081
Asparagine 0,727 0,264 0,828 0,196
Aspartate 0,620 0,287 0,788 0,287
Choline 0,363 0,293 0,354 0,083
Creatine 0,311 0,118 0,386 0,093
Fumarate 0,043 0,020 0,061 0,017
Glutamate 5,882 1,751 6,812 1,396
Glutamine 1,519 0,520 1,692 0,116
Reduced Glutathion 2,367 0,404 2,805 0,316
Glycerol 1,213 0,736 1,214 0,258
Isoleucine 0,260 0,081 0,242 0,027
Lactate 9,599 1,468 9,466 1,646
Malate 1,349 0,190 1,985 0,431
myo-Inositol 1,453 0,591 1,645 0,241
Phenylalanine 0,131 0,041 0,133 0,022
Phosphocholine 3,777 0,949 4,121 0,670
Proline 2,102 0,744 2,314 0,333
Taurine 1,492 0,363 1,607 0,134
TotalCholine 1,943 0,521 2,109 0,356
Valine 0,166 0,063 0,144 0,018
Glycine 1,086 0,605 0,985 0,089
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DISCUSSION

To our knowledge, this is the first study reporting the metabolic
impact of lidocaine on the metabolomic fingerprint in cancer
cells. We have demonstrated that lidocaine, at concentration of
0.5 mM for 4 h, can significantly alter metabolites levels and some
metabolic pathways which are active in highly proliferative
tumors.

First, our viability assay supports previous works showing a
decrease in the proliferation of MDA-MB-231 cells exposed to
lidocaine (Chamaraux-Tran and Piegeler, 2017; Chamaraux-
Tran et al., 2018; D’Agostino et al., 2018). It was mandatory
for us to determine a lidocaine concentration with no significant
effect on cell viability to have the same quantity of cells for the
HR-MAS NMR assay. In this experiment we used lidocaine
hydrochloride monohydrate to avoid absolute ethanol as
solvent which might compromise NMR assay. As higher
concentrations of lidocaine hydrochloride monohydrate were
needed to decrease cell viability [10 versus 0.5 mM of
lidocaine prepared in absolute ethanol (Chamaraux-Tran et al.,
2018)], it confirms that excipient may have a direct antitumor

effect (Chamaraux-Tran and Beloeil, 2018). To note, higher
concentrations of lidocaine (10 mM) were needed in our
experiment compared to previous studies on MDA-MB-231
cells, independently to solvent. Jiang et al. (2016) and Li et al.
(2018) have demonstrated that lidocaine from 1 mM was able to
significantly decreased cell viability in a concentration-dependent
manner. These results could be explained by shorter exposure in
our study (4 h versus 24 or 48 h, respectively).

The HR-MAS NMR assay finds similar metabolomic
fingerprints for MDA-MB-231 cells to a previous work (Maria
et al., 2015). To note, glucose was not measurable in both groups
due to the highly intense glucose uptake and glycolysis in most
solid tumors compared to normal tissues. High levels of choline-
rich metabolites are mainly due to increased phospholipid
turnover and cell membrane synthesis in proliferative cells.
Intense glutaminolysis promotes tumor proliferation and
chemoresistance, in part through activation of the PI3K/AKT/
mTORC1 pathway (Vignoli et al., 2021). Lidocaine causes a
decrease in the metabolites of these two pathways, which
reflects its impact on the proliferative potential of cancer cells.
These results confirm previous experiments on lung cancer (Sun

FIGURE 4 | Metabolomic network of MDA-MB-231 cells exposed to 0.5 mM of lidocaine or vehicle as control for 4 h. Several pathways which promote
proliferation, invasion and metastasis (glutaminolysis, choline, phosphocholine and total choline syntheses) were significantly downregulated in lidocaine group. Red,
green and blue arrows indicate the decreased, the increased or the unchanged levels of metabolite after exposure to lidocaine compared to control, respectively.
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and Sun, 2019) and hepatocellular carcinoma cells (Zhang et al.,
2020) showing an inhibitor effect of lidocaine on PI3K/AKT/
mTORC1 pathway, evidenced by assessing the phosphorylation
levels of PI3K and AKT by western blot. The metabolomic impact
of lidocaine choline pathway is comparable to the effects of some
chemotherapies on this triple negative cell line: Maria et al. (2017)
have demonstrated that cisplatin and tamoxifen could
significantly reduce phosphocholine content suggesting a direct
antiproliferative effect.

The tricarboxylic cycle (Krebs cycle) of MDA-MB-231 cells is
also affected by lidocaine. There is a decrease in fumarate, malate
and alanine. For instance, fumarate inhibits prolyl-hydroxylases,
which leads to an increase in HIF-1α levels and allows, among
other things, the survival of cancer cells exposed to hypoxia (Kuo
et al., 2016). Thus, lidocaine could modulate the HIF-1-induced
proliferation pathway as it was suggested in other studies. Indeed,
western blot and/or gene expression experiments showed that
lidocaine impairs HIF-1 pathway in renal and neuronal cells
(Okamoto et al., 2017) or in human hepatoma and
neuroblastoma cell lines (Nishi et al., 2005).

Our results showed a decrease in glutathione in its reduced
form (GSH), which could be linked to the decrease in
myoinositol. The level of glutamate, which is a precursor of
GSH, is lowered; its synthesis may thus also be compromised
by lidocaine. Another likely hypothesis would be glutathione
consumption in response to increased oxidative stress. Indeed,
a previous work investigating the impact of lidocaine on yeast
cells observed an initial decline in GSH at H+1 but a gradual
increase in this antioxidant from H+2, which may be a
counter-regulation mechanism against oxidative stress
induced by lidocaine (Boone et al., 2017). Similarly, an
in vitro study showed that lidocaine caused a decrease in
mitochondrial membrane potential and an increase in free
radical production in non-small cell lung cancer cells (Wang
et al., 2016). Furthermore, the absence of glucose and
glycerophosphocholine in our samples and the similar levels
of lactates in the control and lidocaine groups indicate that the
glycolysis pathway and the choline pathway remain highly
active in MDA-MB-231 cells despite lidocaine treatment.
Indeed the increase of glycolysis in the tumor cell is a well-
known phenomenon described as the Warburg effect (Wishart
et al., 2016). It is linked to tumor overexpression of glucose
membrane transporters, to the increase in hexokinase activity
involved in glucose phosphorylation, and to the increase in
anaerobic cellular glycolysis by inhibition of the oxidative
pathway. Similarly, while glycerophosphocholine (GPC)
levels still cannot be measured under lidocaine treatment,
the fact that phosphorylcholine (PC) levels are lowered
supports an increase in the GPC/PC ratio, which is
considered a good prognosis factor in a cohort study in
patients with in situ root canal carcinoma biopsies (Chae
et al., 2016) and in a cohort of patients with gliomas (Dali-
Youcef et al., 2015) or oligodendroglioma (Bund et al., 2019).

The effects of decreased myoinositol by lidocaine should be
further investigated. In fact, inositols have important
antiproliferative properties (Bizzarri et al., 2016). For instance,
they can interfere with cell proliferation by decreasing the PI3K

level or inhibiting pRB phosphorylation or Akt activation and
therefore NF-kB. They can also interfere with cell invasion and
the epithelial-mesenchymal transition (Bizzarri et al., 2016).

We have shown here that lidocaine at a concentration of
0.5 mM for 4 h can modulate the metabolism of triple negative
cells. This concentration is compatible with clinical use of
lidocaine infiltration for local anesthesia as lidocaine is
frequently used at the concentration of 10 mg/ml (=42 mM,
MW = 234,34 g·mol−1) but not with systemic intravenous
administration. Indeed, over a plasma concentration of 21 μg/
ml (90 μM) (Beaussier et al., 2018), patients may experience the
systemic toxicity of lidocaine with neurologic symptoms ranging
from cognitive disorders to seizures and cardiovascular
compromise ranging from rhythm disorders to cardiac arrest.
Moreover, lidocaine plasma levels following its intravenous
administration are in a range of 1,4–6 μg/ml (25 μM)
(Beaussier et al., 2018).

Therefore, the deepening of our study, investigating dose-
effects and time-effects curves, would allow us to determine the
molecular mechanisms at play and potential clinical use given the
antitumoral properties of lidocaine. Similarly, in vitro studies in
breast cancer (Li et al., 2014) and in vivo findings in
hepatocellular carcinoma (Xing et al., 2017) showed that
lidocaine can have a synergistic effect with cisplatin. It would
thus be worth studying these combined effects in metabolomics to
reach lidocaine doses below its toxic thresholds allowing its
systemic use and repositioning lidocaine in chemotherapy.

Finally, as metabolomic profiles in oncology are established to
develop prognostic strategies capable of classifying different
breast cancers or therapeutic strategies in personalized
medicine, it appears important to continue this work. Thus,
studying the impact of lidocaine on an in vivo model (such as
PDX xenograft) would get closer to physiological conditions, that
could be transposed into the clinical arena. Indeed, if the cell
culture allows for a simple experimental approach, both the
nutritional conditions (excess glucose in the culture medium)
and the oxygen concentrations (ranging from hyperoxia to
hypoxia in some parts of the flask if it is not agitated) often
do not allow extrapolation of experimental results to clinical use.
Moreover, our in vitro study doesn’t assess the impact of lidocaine
on the microenvironment while it has been shown that local
anesthetics could affect viability and differentiation capacity of
adult stem/progenitor cells (Kim et al., 2020; Kubrova et al.,
2021). Those effects on mesenchymal stem cells could influence
wound healing or tumor spreading after surgery (Lucchinetti
et al., 2012). Similarly, the study should be extended to other
anesthesia drugs (hypnotics and analgesics in particular) that may
also affect tumor progression (Sekandarzad et al., 2017). It would
allow for a standardization of tumor sampling protocols in breast
cancer surgery. Indeed, if percutaneous biopsies and clips are
systematically performed under local anesthesia by lidocaine, the
dose administered is not standardized. Similarly, wire localization
by ultrasound before surgical excision can be done the day before
or the morning of the surgery and the local anesthesia is not
systematic. It depends for example on the expected difficulties,
the anatomic structures that will be crossed, the patient’s wish or
the type of localization device. Finally, in the context of
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multimodal analgesia during surgery, patients can benefit from
regional anesthesia (plane or paravertebral blocks) or intravenous
lidocaine administration. Similarly, in vivo studies have shown
that other analgesic drugs such as morphine or hypnotics needed
for general anesthesia can affect cellular metabolism (Sonnay
et al., 2017). Hu et al. have recently shown that propofol, the most
commonly used anesthetic drug, could alter metabolism of lung
cancer cells (Hu et al., 2021). In this study, propofol increased
intracellular glutamate and glycine but decreased acetate and
formate in A549 cell line. Considering the results of this study and
our own, it would be interesting to find a protocol which could
have a direct protective effect against circulating cells or micro-
metastasis, which development may be favored during the
perioperative time (Benish and Ben-Eliyahu, 2010). All those
parameters should also be considered to establish metabolomic
fingerprints.

CONCLUSION

Our in vitro study showed that, under our experimental
conditions, lidocaine at clinical concentrations useful for
surgical site infiltration inhibits the proliferation of a high
dose triple negative breast cancer cell line. At lidocaine
concentrations that do not affect cell viability a priori, there is
an inhibition of several overactive metabolic pathways in
oncogenesis. This effect could have interesting clinical
applications in several respects: 1) for local tumor recurrence,
lidocaine may prevent the proliferation of a possible remnant of
malignant cells at the surgical site; 2) for metastases, this local
anesthetic may limit the spread of tumor cells.

On the other hand, the concentrations studied in our work
were higher than systemic toxic thresholds. Further works are
needed to refine the dose-response relationship of the
observed effects and possibly to find a synergistic effect
with conventional antiproliferative drugs. Our
experimental results will need to be supplemented and
tested in prospective multi-year clinical studies using
either infiltration or intravenous analgesia. Our in vitro
data are also interesting because they are part of the
current trend of over-specialization in «onco-anesthesia».
In this context, anesthesiologists should be made aware of

the impact of their management as specialists in perioperative
medicine on the long-term oncological outcomes of patients
anesthetized for cancer surgery. Additionnally the impact of
local anesthetics should be considered to establish
metabolomic fingerprints in cancer.
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