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Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid
(AA), and their high production has been reported in multiple allergic, autoimmune, and
cardiovascular disorders. The biological synthesis of leukotrienes is instigated by transfer
of AA to 5-lipoxygenase (5-LO) via the 5-lipoxygenase-activating protein (FLAP).
Suppression of FLAP can inhibit LT production at the earliest level, providing relief to
patients requiring anti-leukotriene therapy. Over the last 3 decades, several FLAP
modulators have been synthesized and pharmacologically tested, but none of them
could be able to reach the market. Therefore, it is highly desirable to unveil the
structural requirement of FLAP modulators. Here, in this study, supervised machine
learning techniques and molecular modeling strategies are adapted to vaticinate the
important 2D and 3D anti-inflammatory properties of structurally diverse FLAP inhibitors,
respectively. For this purpose, multiple machine learning classification models have been
developed to reveal the most relevant 2D features. Furthermore, to probe the 3Dmolecular
basis of interaction of diverse anti-inflammatory compounds with FLAP, molecular docking
studies were executed. By using the most probable binding poses from docking studies,
the GRIND model was developed, which indicated the positive contribution of four
hydrophobic, two hydrogen bond acceptor, and two shape-based features at certain
distances from each other towards the inhibitory potency of FLAPmodulators. Collectively,
this study sheds light on important two-dimensional and three-dimensional structural
requirements of FLAP modulators that can potentially guide the development of more
potent chemotypes for the treatment of inflammatory disorders.

Keywords: 5-lipoxygenase activating protein (FLAP) inhibitors, machine learning, molecular docking, grind,
leukotrienes (LTs)

1 INTRODUCTION

The 5-LO pathway is responsible for the biological synthesis of leukotrienes (LTs) using arachidonic
acid (AA) predominately by inflammatory cells like polymorphonuclear leukocytes, activated
macrophages, and mast cells upon arrival of immunologic and non-immunologic stimuli (Hedi
and Norbert 2004). Activation of leukocytes results in translocation of cytosolic protein
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phospholipase A2 (PLA2) to membrane where it selectively
hydrolyzes the sn-2 acyl bond of membrane phospholipids to
release AA and lysophosphatidic acid. An integral membrane
protein called FLAP (5-lipoygenase activating protein) uptakes
the AA and efficiently transfers it to the active site of 5-
lipoxygenase (5-LO) enzyme, which catalyzes a series of
reactions at a single active site (Peters-Golden 1998; Peters-
Golden and Brock 2003). In the first step, in a calcium- and
ATP-dependent reaction, AA is converted to a 5-lipoxygenase-
specific hydroperoxide intermediate (5-HPETE), while in the
second step, 5-LO performs synthase reaction for conversion
of 5-HPETE to the epoxide intermediate, leukotriene A4 (LTA4)
(Woods et al., 1995; Smyrniotis et al., 2014). LTA4 acts as a
common precursor for biosynthesis of chemoattractant
leukotriene B4 (LTB4) by a zinc-bound LTA4 hydrolase
(LTA4H) and bronchoconstrictive cysteinyl leukotrienes
(CysLTs or LTC4) with the help of LTC4 synthase (LTC4S)
(Jakschik and Kuo 1983; Haeggström 2000). Both LTB4 and
CysLTs are physiologically active final products of the 5-LO
pathway and are exported out of the cell through specific
transport proteins while extracellular peptidases metabolize
LTC4 to LTD4, which is converted into LTE4 depending on
type of inflammatory signal and cell demand (Jedlitschky and
Keppler 2002). After export, LTs bind with respective G-protein-
coupled receptors, e.g., LTB4 binds with BLT1 and BLT2, whereas
CysLTs activate CysLT1 and CYsLT2 receptors to incite further
proinflammatory signaling cascades (Ghosh et al., 2016).

Since high levels of LTs have been reported in the
pathophysiology of a wide range of inflammatory,
cardiovascular, and autoimmune disorders, FLAP has become
the focus of immense research because LT production can be
stopped at the earliest level (Folco et al., 2000; Liu and Yokomizo
2015). Over the course of the last 3 decades, several FLAP
modulators have been proposed including first generation of
derivatives of indoles and quinolines for asthma treatment
(Evans et al., 1991; Frenette et al., 1999). These inhibitors
such as MK-886, MK-591, and BAY-X-1005 demonstrated
efficiency in clinical trials in patients with inflammatory
diseases in the mid-1990s but were not brought to market
due to poor pharmacokinetics (Friedman et al., 1993;
Diamant et al., 1995; Dahlén et al., 1997). Revelation of
SAR data along with crystal structure expedites the drug
discovery quest against FLAP, leading to the second
generation consisting of derivatives of diarylalkanes, biaryl
amino-heteroarenes, and benzimidazoles, proposed with
renewed interest for treatment of cardiovascular diseases
(Lemurell et al., 2015; Macdonald et al., 2008; N.; Stock
et al., 2010). Moreover, several inhibitors proved to be
promising readouts for preclinical and clinical studies such
as AM103, AM803, BI665915, AZD5718, and AZD6642 and
have been shown to ameliorate inflammation-related diseases
(Bain et al., 2010; Lorrain et al., 2010; Antoniu, 2014; Ericsson
et al., 2020). However, despite several practices, not a single
inhibitor has won the race to the market as a drug to date.
Therefore, development of more potent chemical entities
against FLAP is highly desirable to provide relief to
patients suffering from inflammatory disorders.

Mostly FLAP modulators were synthesized and
pharmacologically tested and optimized through SAR
(structure–activity relationship) studies. Some candidates were
also identified by virtual screening from a ligand-based
pharmacophore built upon smaller datasets (Banoglu et al.,
2012; Temml et al., 2017; Olgac et al., 2020). Here, in this
study, advanced machine learning (ML) techniques along with
classical modeling strategies are adapted to shed light on
important 2D and 3D anti-inflammatory properties of a
diverse set of inhibitors targeting FLAP. For this reason, ML
models based on most relevant 2D descriptors or features have
been constructed. Further molecular docking was performed to
establish a binding hypothesis of each class of inhibitors within
the FLAP binding cavity followed by common scaffold clustering
to obtain the most probable 3D binding solutions. The most
probable 3D binding poses were utilized for GRID-independent
molecular descriptor analysis (GRIND) to probe the important
3D binding features and associated mutual distances in active
FLAP modulators.

2 MATERIALS AND METHODS

2.1 Machine Learning Modeling
2.1.1 Dataset Preparation
All compounds having activity values in IC50 against FLAP were
retrieved from the ChEMBL database under target ID
ChEMBL4550 followed by removal of compounds with similar
canonical smiles resulting in a dataset of 658 compounds. The
IC50 of the finalized 658 compounds ranged from 0.3 to
22,500 nM. Furthermore, the highly active and least active
compounds were distinguished by the application of activity
threshold, i.e., compounds having IC50 < 10 nM were
categorized as highly active while compounds having IC50 >
70 nM were categorized as least active considering that FLAP
inhibitors that have entered clinical trials usually possess values <
10 nM (Gür, Çalışkan, and Banoglu 2018). Compounds with IC50

values in between >10 nM and <70 nM were labeled as
intermediates and were removed. For ML classification model
development, highly active compounds were labeled as one, while
least active ones were labeled as 0. The final dataset was composed
of 503 (253 highly actives and 250 least actives) compounds and
was randomly divided into a training set (402 compounds: 201
highly actives and 201 least actives) and a test set (101
compounds: 52 highly actives and 49 least actives) by a ratio
of 80% and 20% respectively using train_test_split function
(random_state = 42) of model_selection library from the
scikit-learn Python package (Pedregosa et al., 2012).
Additionally, it was ensured that the ratio of the highly active
to weakly active inhibitors remained equal in the training and
test set.

2.1.2 Computation of 2D Chemical Descriptors
Initially, 4,179 2D descriptors were calculated using alvaDesc tool
version 2.0.8 (Mauri 2020). The descriptors can be divided into 21
categories named constitutional indices, ring descriptors,
topological indices, walk and path counts, connectivity indices,

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8257412

Khan and Jabeen Activity Profiles of FLAP Modulators

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


information indices, 2D-matrix based descriptors, 2D
autocorrelations, burden eigenvalues, P_VSA like descriptors,
ETA indices, edge adjacency indices, fractional group counts,
atom-centered fragments, atom-type-estate indices,
pharmacophore descriptors, 2D atom pairs, charge descriptors,
molecular properties, drug-like indices, MDE descriptors, and
chirality descriptors. Descriptors with null values and variance
near zero were removed. For the remaining 2,352 descriptors,
Pearson autocorrelation coefficient was calculated and
autocorrelated descriptors along with low dependency
(correlation) on the target variable (inhibitory potency, IC50)
were discarded, resulting in a set of 442 descriptors. The final 442
features were further applied to train the ML models.

2.1.3 Machine Learning Modeling
For this study, six supervised ML classification models named
support vector machine (SVM), random forest (RF), multilayer
perceptron (MLP), decision tree (DT), logistic regression (LR),
and gradient boost decision tree (GBDT) were developed. SVM,
RF, MLP, DT, and LR were generated using the scikit-learn
Python package whereas the GBDT was built by the XGBoost
Python package (Cortes, Vapnik, and Saitta 1995; Liaw and
Wiener 2002; Haykin, 2009; Quinlan 1986; T.; Chen and
Guestrin 2016; McCullagh and Nelder 1989). To select the
most relevant features from the set of 442 descriptors, the
RFECV (Recursive Feature Elimination and Cross-Validation
Selection) algorithm of scikit-learn was used (Guyon et al.,
2002). Recursive feature elimination (RFE) is a wrapper-type
feature selection that works by eliminating n features from a
model by fitting the model multiple times and, at each step,
removing the weakest features, determined by either the coef_
(SVM and LR) or feature_importances_ (RF, DT, and XGBoost)
attribute of the fitted model (Guyon et al., 2002). Since there is no
attribute available to estimate feature importance in MLP,
XGBoost was used as the base estimator. The cross-validation
(cv) parameter of RFECV was set at fivefold and was done by
using the RepeatedStratifiedKFold method of the
model_selection library from scikit-learn (Zeng and Martinez
2010). The GirdSearchCV library in scikit-learn was used to tune
hyperparameters of the estimators based on a 10-fold cross-
validation Matthews Correlation Coefficient (MCC). This
process was repeated ten times. Moreover, to assemble data
transformer (RFECV) and hyperparameter tuner
(GirdSearchCV) with simultaneous cross-validation while
setting different parameters, the pipeline module of scikit-learn
was used.

An SVM constructs a maximummarginal hyperplane with the
help of a kernel function to map the non-linear problem in
multidimensional space for data separation. The performance of
the SVM model is controlled by parameters such as kernel,
capacity parameter (C), and gamma. Kernel represents sample
distribution in the mapping space, C controls the trade-off
between smooth decision boundary, and gamma controls the
extent of curvature in decision boundary (Nekoei,
Mohammadhosseini, and Pourbasheer 2015; Pourbasheer
et al., 2017). For this project, linear kernel was utilized while
all parameters were set at their default values except for tuning of

penalty parameter (C) (Chang and Lin, 2021). MLP is a
feedforward artificial neural network and is trained using back
propagation algorithm. It has an activation function that forms a
linear combination according to weights of inputs to decide the
output. The MLP model was controlled by tuning the following
parameters: the number of neurons (hidden_layer_sizes) and
activation function (activation), while the rest of the
parameters were set at their default values (Glorot and Bengio,
2021). An LR model predicts a dependent data variable by
analyzing the relationship through logic functions between one
or more existing independent variables. It was controlled by
tuning the following parameters: the way of regularization
(penalty), strength of regularization (C), tolerance for stopping
criteria (tol), and algorithm of optimization (solver), whereas
other parameters not mentioned were set at their default values
(Fan et al., 2008). A DT classifies data by splitting them into
source nodes and then multiple child nodes using statistical
probability. The DT model was optimized by tuning the
following parameters: quality of split (criterion), split at each
node (splitter), and number of features for the best split
(max_features). The remaining parameters were set as their
default values (Brieman and Olshen 2012). An RF builds
multiple decision trees and merges them together to get an
accurate and stable prediction. The RF model was controlled
by tuning the following parameters: number of trees
(n_estimators), quality of a split (criterion), features for the
best split (max_features), and the minimum number of
samples required for splitting (min_samples_split); the other
parameters not mentioned were set at their default values
(Breiman 2001). XGBoost is an ensemble tree method that
applies the principle of boosting weak learners using the
gradient descent architecture. For this project, gradient boost
tree (GBDT) has been implemented, which uses decision trees as
weak classifiers. The XGBoost model was controlled by tuning the
following parameters: the maximum depth of a tree (max_depth),
the number of the tree (n_estimators), minimum loss reduction
required for partition on a node (gamma), minimum sum of
instance weight needed to generate a child node
(min_child_weight), strength of L1 regularization (reg_alpha),
and learning rate (learning_rate). The other parameters not
mentioned were set at their default values (T. Chen and
Guestrin 2016).

The repeated stratified 5-fold cross-validation was used on the
training set to select and evaluate the robustness of models, and
the test set was used to evaluate the performance of models.
Evaluation parameters include classification accuracy (ACC),
true positive rate or sensitivity (SE), true negative rate or
specificity (SP), and Matthews correlation coefficient (MCC)
as mentioned in (Eqs 1–4) below:

True Positive Rate (Sensitivity) � TP

TP + FN
(1)

True Negative Rate (Specificity) � TN

TN + FN
(2)

Classification Accuracy (ACC) � TP + TN

TP + TN + FP + FN
(3)
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Matthews Correlation Coefficient (MCC)
� (TP × TN − FP × FN)�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (4)

2.2 Molecular Modeling
2.2.1 Calculation of Lipophilic Efficiency (LipE) and
cLogP
To estimate the druglikeness of the initially finalized 658 FLAP
inhibitors (section 2.1.1), LogP was calculated by using Bio-
Loom software (BioByte - Bio-Loom, 2021) followed by
computation of LipE with the following equation:

LipE � pIC50 − c logP (5)
Briefly, lipophilicity or cLogP strongly impacts membrane

passive permeability, which is required for oral absorption and
access of the drug to intracellular compartments and tissue
penetration (Arnott and Planey 2012). Lipophilic efficiency
(LipE) is defined as normalization of the pIC50 with respect to
cLogP of the compound. Previously, Leeson et al. proposed that
an ideal drug candidate should have a LipE value greater than five,
which is obtained in case of high potency and low lipophilicity
(Leeson and Springthorpe 2007). For the application of molecular
modeling techniques (Docking and 3D QSAR GRIND), LipE and
cLogP filter were used; i.e., compounds having LipE greater than
one and cLogP greater than two were selected. The new dataset of
compounds having LipE value greater than one and cLogP greater
than two was divided into a training set (80%) and a test set (20%)
by using the train_test_split function (random_state = 42) of the
model_selection library from the scikit-learn Python package.
Both training and test datasets were further employed in
molecular modeling studies (docking studies and GRIND
modeling).

2.2.1 Molecular Docking and Pose Analysis
To explore the binding interactions of structurally diverse FLAP
inhibitors, and to obtain the most probable 3D binding
conformations of ligands for GRIND analysis, inhibitors
having LipE value greater than one and cLogP greater than
two were docked into the binding pocket of the FLAP
structure retrieved from the Protein Data Bank (PDB ID:
2Q7M) (Ferguson et al., 2007). Protein structure was prepared
by energy minimization through the Amber99 force field of MOE
(A. A. Chen and Pappu 2007). The energy-minimized structure
was imported into GOLD software (version 5.6.1) (Jones et al.,
1997) followed by determination of x, y, z coordinates around the
single-solvent accessible point present in the center of the active
site. The binding site area was kept at 12 Å radius, which included
all important amino acid residues reported by previous studies. A
total of 100 conformations for each ligand were generated, and
GOLD fitness scoring function was used to rank each pose of
ligands with subsequent energy minimization of ligand–protein
docking complexes using LigX implemented in software MOE.
Gold score fitness scoring function was calculated as:

Fitness � S(hb)ext + 1.3750pS(vdw)ext + S(hb)int + 1.0000p S(int)
(6)

Based on structural similarity, common scaffold clustering
(CSC) as proposed by Jabeen et al. (2012) was conducted to
reduce the conformational space. For this purpose, RMSDmatrix
was generated through agglomerative hierarchical cluster
analysis, and clusters with maximum docked ligands were
selected for ligand–protein interaction profiling. Common
interactions between each class were sorted out and binding
hypothesis was generated for each class with respect to
interaction pattern and position in binding pocket.
Conformations from selected clusters were further utilized in
GRIND analysis as training set.

2.2.3 Grid Independent Molecular Descriptors
Analysis
Selected 3D molecular confirmations of ligands obtained from
clusters containing maximum docked ligands along with their
inhibitory potencies (pIC50) were imported in Pentacle software
version 1.06 to construct the GRIND model (Pastor et al., 2000).
Calculation of molecular interaction fields (MIFs) was done by
use of different probes, namely, N1, O, DRY, and TIP, where N1
(amide N) represents a hydrogen bond donor, O (sp2 carbonyl O)
denotes a hydrogen bond acceptor, DRY indicates a hydrophobic
region, and TIP stands for steric hotspots within the virtual
receptor site. A GRID was used to iteratively place these
probes to calculate the total energy by addition of Lennard-
Jones potential energy (Elj), hydrogen bond energies (Ehb),
and the electrostatic energy (Eel), whereas with the help of the
following equation, total interaction energy at each node was
calculated:

E xyz � ∑E hb +∑E lj +∑E el (7)
AMANDA algorithm was used to extract the most relevant

and significant MIFs along with evaluation of structural
characteristics of the dataset explained by GRIND descriptors
(Durán, Martínez, and Pastor 2008). The default GRID space of
0.5 and the energy cutoff values, which are –4.2, –2.6, –0.5, and
–0.74 for N1, O, DRY, and TIP, respectively, were used for
discretization of MIFs, while nodes that did not meet the
energy cutoff were discarded. The next encoding step involves
CLACC algorithm that aided in selection of consistent nodes by
adjustment of compounds according to their moment of inertia.
The values obtained from encoding consist of a consistent set of
variables whose values were directly represented in the form of
correlogram plots. The final GRINDmodel with PLS (partial least
square) analysis using LOO (leave one-out) method with
statistically significant R2, q2, and standard error values
(SDEP) was built on the training set followed by evaluation
with the test set (section 2.2.1). Additionally, r2m metrics
(r2m, Delta r2m) was also generated for validation purposes
according to the previously published studies (Roy et al., 2013;
Gajo et al., 2016).
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3 RESULTS

3.1 Machine Learning Models
Six MLmodels were developed by different algorithms (SVM, LR,
MLP, DT, RF, and GBDT) using two-dimensional structural
features of FLAP inhibitors. The performance of these models on
5-fold repeated stratified cross-validation is explained in Table 1. The
cross-validation accuracy of the training set ranged between 0.90 and
0.75, and theMCC ranged from 0.81 to 0.50. The prediction accuracy
and MCC values of the test set ranged from 0.90 to 0.70 and 0.80 to
0.40, respectively. MCC is often used as a measure of quality of binary
classification models. Two models (XGBoost and RF) exhibited an
MCC value of >0.7 on training and test sets, which means these two
algorithms have a relatively good ability to predict whether a
compound was a highly active or a least active FLAP modulator.
In terms of the best model, XGBoost outperformed all and the
accuracy and MCC values were observed as 0.90 and 0.81,
respectively. Additionally, a pervious fingerprint-based ML study
on FLAP modulators stated that that the reliability of predicted
results depends mainly on the compounds themselves rather than
algorithms or fingerprints (Tu et al., 2020).

The lowest performance was shown by theMLPmodel with an
accuracy value of 0.75 and an MCC value of 0.50. For the best
model (XGBoost), RFECV curve jumps to a maximum accuracy
when the 46 informative features are captured with feature
importance values ranging from 0.01 to 0.4. These 46 features
mainly belong to eight descriptor categories named topological
indices, 2D matrix-based descriptors, 2D autocorrelations, P_VSA-
like descriptors, edge adjacency indices, atom-type E-state indices,
pharmacophore descriptors, and molecular properties descriptors. All
46 captured features of the best-performing model (XGBoost) along
with description and feature importance values are given in
Supplementary Table S1. Additionally, 84, 126, 89, and 90
features have been captured by RF, DT, SVM, and LR,
respectively, and RFECV curves for all models with optimal
number of selected features are illustrated in Supplementary
Figure S1. We anticipate that these 46 2D descriptors have the
largest impact to differentiate between highly active and least active
FLAP inhibitors. Additionally, the tuned hyperparameters for each
model can be found in Supplementary Table S2.

3.2 LipE and cLogP Calculation
LipE and cLogP demonstrate the druggability of a compound in
lead optimization programs to evaluate the potential for better in

vivo efficacy and safety. A graph between pIC50 and cLogP along
with LipE values of the compounds in the training set is shown in
Supplementary Figure S2. In the current dataset of 658 FLAP
inhibitors, only 238 compounds out of 658 demonstrated LipE
value greater than five, which is the optimal threshold with cLogP
values in the range of −0.27 to 3.78. Moreover, only 136
compounds showed a cLogP value between optimal range of
2–3.5 as proposed by Leeson and Springthorpe (2007).
Additionally, 349 compounds out of 658 exhibited values of
LipE less than 1 (cLogP = 4.3–10.19) while the cLogP range
for 309 compounds having a LipE value greater than one was
observed as 0.27–7.88. Interestingly, several potent FLAP
inhibitors such as MK-886 (pIC50 = 8.65 cLogP = 8.58, LipE =
0.07), MK-591 (pIC50 = 9.30 cLogP = 8.82, LipE = 0.48), AM-643
(pIC50 = 8.69, cLogP = 7.72, LipE = 0.97), AM-679 (pIC50 = 8.65,
cLogP = 7.98, LipE = 0.67), AM-803 (pIC50 = 8.53, cLogP = 8.97,
LipE = 0.43), and BRP-7 (pIC50 = 6.50, cLogP = 7.23, LipE = 0.72)
displayed significantly low values of LipE. It seems that increase
in potency of these compounds might be due to increase in
lipophilicity. On the other hand, other FLAP modulators such as
BI665915 (pIC50 = 8.76, cLogP = 2.14, LipE = 6.62) and AZD6642
(pIC50 = 8.31, cLogP = 1.72, LipE = 6.62) showed relatively high
values of LipE.

Herein, a dataset of 187 compounds having LipE value greater
than one and cLogP greater than two was selected for further
application of molecular modeling studies as all FLAP inhibitors
in clinical trials possess high values of lipophilicity (cLogP). The
dataset of 187 compounds was subsequently divided into a
training set (151 compounds, Supplementary Table S3) and a
test set (36 compounds, Supplementary Table S4). Docking-
guided GRIND analysis was performed on the training set
followed by evaluation of the final GRINDmodel with the test set.

3.3 Molecular Docking and SAR-Guided
Pose Analysis
The selected dataset of 187 compounds mainly consists of already
published indoles, biaryl bicycloheptanes, oxadiazole, and
benzimidazole-based compounds. The dataset was further
divided into a training set (151 compounds) and a test set (36
compounds) and based on common scaffolds; the training set was
classified into six distinct classes. Common scaffold along with
activity, lipophilicity, and lipophilic efficiency ranges of the six
classes is depicted in Figure 1. Furthermore, a binding hypothesis
of each class within the FLAP binding cavity was established. The

TABLE 1 | The layout of prediction performances of machine learning models assessed by stratified 5-fold cross-validation for the training set and test set.

Classifier Training set (n = 402) CV5 of training set (n = 402) Test set (n = 101)

SE SP ACC MCC SE SP ACC MCC SE SP ACC MCC

XGBoost (GBDT) 0.99 0.99 0.99 0.98 0.91 0.89 0.90 0.81 0.89 0.91 0.90 0.80
Random forest (RF) 0.99 1.00 1.00 0.99 0.85 0.90 0.87 0.75 0.94 0.88 0.91 0.82
Decision tree (DT) 0.88 0.94 0.91 0.82 0.83 0.83 0.83 0.66 0.83 0.84 0.84 0.68
Support vector machine (SVM) 0.96 0.98 0.97 0.93 0.84 0.77 0.80 0.61 0.75 0.80 0.78 0.56
Logistic regression (LR) 0.82 0.88 0.85 0.69 0.84 0.75 0.79 0.59 0.85 0.87 0.86 0.72
Multilayer perceptron (MLP) 0.79 0.81 0.80 0.60 0.72 0.78 0.75 0.50 0.70 0.71 0.70 0.40
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distributions of compounds in each class along with common
scaffolds are depicted in Supplementary Table S5.

All datasets of the selected 187 compounds were docked into
the FLAP binding pocket, which included an area of 12 Å selected
by assigning x (65.7018), y (58.7512), and z (36.4565) coordinates
between chains B and C near previously known interacting amino
acid residues (B-F123, B-L120, B-I119, B-R117, B-K116, B-G115,
B-F114, B-I113, B-Y112, B-T66, B-A63, B-D62, C-V61, C-C60,
C-Q58, C-N57, C-H28, C-A27, C-F25, C-G24, C-N23, and
C-V21) (Mancini et al., 1994; Ma et al., 2008). To remove any
biases in the docking protocol, 100 poses per ligand were
generated using the GOLD score fitness function. Further
docking solutions were inspected by algoromatics hierarchical
cluster analysis based on root mean square deviation (RMSD) at
3.5 Å of the heavy atoms around a common scaffold. To follow
the idea of similar binding mode for similar compounds, only
those clusters that comprised the maximum number of docked
ligands were selected. Overall, one cluster of binding
conformations of compounds in all classes have been
identified that contained the maximum number of docked
ligands. The final selected cluster of each class and details of
common scaffold clustering are depicted in Supplementary
Table S5. Briefly, 26 out of 32 compounds for class I, 12 out
of 20 for class II, 32 out of 35 for class III, 10 out of 10 for class IV,
13 out of 18 for class V, and 26 out of 36 for class VI were
clustered out. Interestingly, the binding position of all final
clusters was the same, and they bind between helix 4 (α4) and
helix 2 (α2) of chain B and helix 1 (α1) and helix 2 (α2) of chain C,
but a distinct binding pattern was observed for each class. The

binding region between chains B and C occupied by all generated
poses of 187 ligands is shown in Figure 2A.

Briefly, class I compounds are derivatives of indole with
dimethyl butanoic acid and S-tert-butyl substituents at
positions two and three, respectively, as displayed in Figure 1,
while R1 at position one and R2 at position five are generally
occupied by heterogeneous 6-membered cyclic rings. The binding
solutions for final cluster (cluster 1, Supplementary Table S5) of
compounds in class I showed that dimethylbutanoic acid makes
π-H-bond interactions with C-H28 and C-Val21, S-tert-butyl
makes π-H-bond interactions with B-L120 and B-F123, while the
indole scaffold is primarily involved in making π-H-bond
interactions with C-G24 (Figure 2B). The R1 substituents
show hydrogen bonding with B-D62 and C-N23 and π-H
interactions contact with B-A63 and C-N23, whereas N of the
pyridine ring of R2 shows a strong hydrogen bond with B-A63
while R2 substituents show hydrogen bonding with B-R117 and
B-K116 (Figure 2B). Overall, compounds of class 1 displayed a
positive trend (R2 = 0.57) between lipophilicity and inhibitory
potency (Supplementary Figure S3) and exhibit a distinct SAR
pattern. For instance, compound 1 (IC50 = 0.4 nM,
Supplementary Table S3) having the highest activity value
(cLogP = 8.06, LipE = 1.34) among all the datasets contains 5-
methylpyridine at R1 and para-fluoro-2-phenylpyridine at R2 as
depicted in Supplementary Table S6. The final docking solution
of compound 1 reveals that the pyridine ring present at R1 shows
a π-H-bond bonding interaction with the -NH2 group of B-R117
(Figure 4). Compound 98 (IC50 = 9.0 nM, Supplementary Table
S6) has a similar structure to compound 1 except for the absence

FIGURE 1 |Common scaffolds of six classes of FLAP inhibitors used for common scaffold clustering to obtain the most probable 3D binding poses for employment
in GRIND studies.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8257416

Khan and Jabeen Activity Profiles of FLAP Modulators

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


of terminal 5-methyl on R1 and the absence of fluorine on R2,
rendering it low lipophilic (cLogP = 3.35, LipE = 4.69) and less
active.

A study by Stock et al. also established that terminal 5-
methyl on pyridine at R1 significantly increases the
inhibitory potency of compounds against FLAP (N. Stock
et al., 2010; N. S. Stock, 2011). Interestingly, the hydrogen
bonding between -NH2 of B-R117 and nitrogen of the
pyridine ring of R2 of compound 98 has also been
observed in the final docking solutions. However, the
pyridine ring at R1 did not seem to be involved in making
any clear interactions. It was observed that the absence of
terminal methyl on the pyridine ring of R1 in compound 98
might reduce the exposure of pyridine ring to amino acids
inside the FLAP binding cavity (Figure 3), leading to a
substantial decrease in inhibitory potency of compound
98. Moreover, the high LipE value of compound 98 as
compared to compound 1 could be attributed only to its
low logP (o/w) without an increase in biological activity.

Class II of FLAP antagonists contains 2,2-biaryl
bicycloheptane as a common scaffold having diverse
substituents at position 2 (R1) and quinoline moiety at
position 5 (R2) of the exo aryl group (Figure 1).
Ligand–protein interaction profiling of the final cluster (cluster
3, Supplementary Table S5) shows that the common scaffold
orients itself towards the outer side-facing membrane and makes
π-H interactions with B-L120, B-I119, and C-V21, whereas the
quinoline moiety occupied the inside of the FLAP binding cavity
and shows π-H interactions with B-A63, C-G24, and C-N23
(Figure 2D). Generally, R1 is involved in making hydrogen bonds
with B-F123 and B-K116 amino acid residues. Overall, a slight
positive correlation (R2 = 0.27) has been observed between
inhibitory potency and lipophilicity for class III
(Supplementary Figure S3). Moreover, a distinct SAR pattern
was observed among compounds of class III. For instance,
compound 10 (IC50 = 1.1 nM, Supplementary Table S3),
being the most potent and lipophilic (cLogP = 7.88, LipE =
1.07) member of this class, possesses oxadiazole-2-thione at R1,

FIGURE 2 | (A) illustrates the binding positions and chemical space occupied by all generated poses of 187 FLAP antagonists between chains B and C of the FLAP
binding cavity. Chain B is shown in green color, chain C is depicted in blue color, while chain A is depicted in orange color. (B–G) represents binding poses of maximum
docked ligands in final clusters from class I to VI respectively obtained from common scaffold-based clustering.
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and absence of thiol substituent of oxadiazole at R1

(Supplementary Table S6) resulted in approximately threefold
decease in inhibitory potency of compound 47 (IC50 = 2.9 nM,
cLogP = 7.37, LipE = 1.16). The lipophilicities and LipE values of
compounds 10 and 47 are relatively the same and the difference
in inhibitory potencies might be due to a distinct binding pattern.
The final docking solution of compound 10 reveals the presence
of two hydrogen bonds between the terminal sulfur of the
oxadiazole-2-thione group at R1 and -NH2 of B-R117
(Figure 3). In compound 47, only a π-H-bond interaction was
found between the oxadiazole ring of R1 and C-V21 that might be
not very favorable and contribute to its low inhibitory. The
positive contribution of negative ionizable moieties at the
oxadiazole ring of R1 towards inhibitory potency for class II
FLAP antagonists is also evident from previous SAR studies (Chu
et al., 2012).

Classes III, IV, and V are cyclobutylbenzene,
cyclopropylethylbenzene, and dimethylpropylbenzene
derivatives of oxadiazole, respectively (Figure 1). Unlike other
three classes, no positive correlation between lipophilicity and
inhibitory potency was observed for classes III, IV, and V
(Supplementary Figure S3). It means that the difference in
inhibitory potency might be due to the distinct interaction

pattern and LipE values. All compounds of classes IV, V, and
VI contain diverse substituents at R1 and pyrimidinamine at R2

(Supplementary Table S6), which occupies the inside of the
FLAP binding cavity (Figures 2E–G). The final cluster of class III
(cluster 3, Supplementary Table S5) reveals that the common
scaffold shows π-π stacking with B-F114 and π-H-bond
interactions with B-A63 (Figure 2E). R2 forms hydrogen
bonding with B-D62, C-C60, and π-H-bond interactions with
C-N57 and C-N23, while R1 seems to be involved in making
hydrogen bonds with B-K116 and π-H interactions with B-I119.
Compound 7 (IC50 = 1.0 nM, cLogP = 3.13, LipE = 5.87,
Supplementary Table S3), being the most potent compound
of class III, contains N-tert-butyl methylacetamide at the pyrazole
ring of R1 compared to compound 83 (IC50 = 6.5 nM, cLogP =
2.68, LipE = 5.50, Supplementary Table S3), which contains only
piperidine ring at R1, resulting in a twofold decrease in its
inhibitory potency (Supplementary Table S6). The final
docking solution of compound 7 reveals that the carbonyl
group of N-tert-butyl methylacetamide at R1 forms a strong
hydrogen bond with -NH2 of B-K116 (Figure 3). However, for
compound 83, no interaction was observed between the
piperidine ring of R1 and amino acid residues of the FLAP
binding cavity. The difference in the binding interaction

FIGURE 3 | Optimal binding poses of compounds displaying a distinct SAR pattern from all six classes of FLAP modulators. These poses were obtained from
clusters with maximum docked ligands (common scaffold clustering) andwere further employed for GRID-independentmolecular descriptor (GRIND) analysis. Chain B is
shown in green while chain C is depicted in blue color.
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pattern of compounds 7 and 83 might be solely responsible for
the difference in inhibitory potencies of both compounds as
lipophilicities and LipE values are not significantly different.
For class IV, ligand–protein interaction profiling of the final
cluster (cluster 4, Supplementary Table S2) suggests that the
common scaffold makes π-H interactions with B-T66, B-A63,
C-G24, B-I119, and C-Val21, and π-π stacking with B-F114
(Figure 2F). Amino acid residues such as B-D62 and C-N57
present inside the FLAP binding cavity shows hydrogen bonding
with R2 whereas R1 makes hydrogen bonds with B-K116 and π-π
interactions with C-H28 and C-F25. Compounds 13 and 114 of
class IV were selected to evaluate binding poses due to the distinct
SAR pattern (Supplementary Table S6). Compound 13 (IC50 =
1.3 nM, cLogP = 2.36, LipE = 6.52, Supplementary Table S3),
being the most active from class IV, contains the terminal methyl
at the pyrazole ring of R1, while compound 114 (IC50 = 29.0 nM,
cLogP = 4.86, LipE = 2.67, Supplementary Table S3) contains
N,1-dimethylpyrazol-4-amine at R1, resulting in a twofold
decrease in inhibitory potency. The final docking solution of
compound 13 reveals that the pyrazole ring of R1 is involved in
making π-π stacks with C-H28, whereas no significant interaction
was observed for terminal methyl (Figure 3). For compound 114,
the final binding pose suggests that the terminal pyrazole ring at
R1 is unable to show any interactions that might contribute to low
inhibitory potency. The significantly low LipE value of compound
114 as compared to compound 13 suggests that gain in activity of
compound 13 might be due to its distinct interaction pattern.
Similarly, the ligand–protein interaction analysis of the final
cluster (cluster 5, Supplementary Table S5) of class V points
out that the scaffold makes π-H-bond interactions with B-L120,
B-I119, B-A63, C-G24, and C-Val21, and π-π stacks with B-F123
and B-F114 (Figure 2G). R2 is involved in making hydrogen
bonds with B-D62 and C-N57 while R1 makes hydrogen bonds
with B-K116 and π-π contact with C-H28. Compound 19 (IC50 =
1.6 nM, cLogP = 3.08, LipE = 5.71, Supplementary Table S3)
contains terminal methyl at the pyrazole ring of R1, whereas
compound 110 (IC50 = 23 nM, cLogP = 2.65, LipE = 4.98,
Supplementary Table S3) possesses acetonitrile at the
pyrazole ring of R1 (Supplementary Table S6) and
approximately two orders of magnitude decrease of inhibitory
potency was observed for compound 110 as compared to
compound 19. The final binding pose of compound 19 reveals
that the pyrazole ring of R1 is involved inmaking π-π contact with
C-H28 while terminal methyl could not make any interactions
(Figure 3). The absence of interactions between acetonitrile at R1

of compound 110 and amino acid residues of the FLAP binding
pocket was likely the reason for the two orders of magnitude
decrease in inhibitory potency of compound 110 as LipE and
lipophilicity values of both compounds do not differ appreciably.
Overall, compounds of classes III, IV, and V displayed better LipE
values, but the high inhibitory potencies of highly active
compounds are due to strong interactions among particular
functional groups and amino acids of the FLAP binding cavity.

Class VI FLAP inhibitors are benzimidazole derivatives
(Figure 1) having diverse substituents at R1 and
pyrimidinamine at R2 around the benzimidazole scaffold. The
compounds of class VI did not exhibit any correlation between

activity and lipophilicity (Supplementary Figure S3). The
ligand–protein interaction profile of the final cluster indicated
that the pyrimidinamine group orients itself towards the inner
side of the FLAP binding cavity and is involved in making
hydrogen bonds with B-D62 and C-N23, whereas the common
scaffold occupies the between chains B and C and forms π-H
bonding with B-I119, C-G24, and C-V21. The diverse R1 is
involved in making hydrogen bonds with B-K116 and π-π
interactions with C-H28. Compounds of class VI showed a
distinct SAR pattern; e.g., in compound 70 (IC50 = 4.2 nM,
cLogP = 2.54, LipE = 5.84), the pyridine moiety of R1 contains
methyl triazole at position three and its replacement with
acetonitrile in compound 82 resulted in two orders of
magnitude decrease in the inhibitory potency of compound 82
(IC50 = 6.09 nM, cLogP = 2.18, LipE = 6.04). The selected binding
pose of compound 70 indicated that the triazole ring is making
hydrogen bonds with B-K116 whereas no interaction was
observed between acetonitrile and amino acid residues of the
FLAP binding cavity in the case of compound 82 (Figure 3). The
compounds of class VI did not show any correlation with LipE,
which means that the difference in binding interactions is the
main driving factor behind the difference in activity.

Overall, our criteria for the selection of compounds for
molecular modeling studies were cLogP and LipE. However,
our results indicate that only cLogP contributes slightly
positively towards inhibitory potency for classes I and II,
whereas for compounds of classes III, IV, V, and VI, the
difference in interaction pattern might be exclusively
responsible for the difference in inhibitory potency, as in these
classes of FLAP inhibitors, the high LipE values were maintained
due to loss in lipophilicity. In addition, our docking results
suggest that heterocyclic moieties are involved in making π-H
interactions with hydrophobic amino acid residues of the FLAP
binding cavity. Therefore, the presence of pyridine, pyrimidine,
pyridazine, pyrazole, triazole, and oxadiazole rings moderately
increases not only the lipophilicity but also the inhibitory
potency. Moreover, an increase or decrease in LipE values of
FLAP inhibitors does not alter the inhibitory potencies in either
way. Further docking poses obtained from multiple clusters with
maximum docked ligands were employed to generate the
vGRIND model.

3.4 GRID-Independent Molecular
Descriptors Analysis
The selected binding poses of 151 (Supplementary Table S3)
compounds of the training set obtained through common
scaffold clustering of docking poses along with their inhibitory
activity (pIC50) values were implied in the pentacle v 1.07
software package that utilizes special alignment independent
GRIND descriptors to develop a 3D-QSAR model. To
correlate the inhibitory potencies with 3D structural features
and to derive the most important pharmacophoric features of
our training set, a partial least square model was developed on five
principal components using the leave-one-out (LOO) cross-
validation method, resulting in initial models with satisfactory
values of variables. The inconsistent nodes were removed by one-
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time application of the fractional factorial design (FFD) variable
selection algorithm. The final GRIND model was obtained with
good values of performance measures, q2 = 0.66 and R2 = 0.82,
while the standard error of prediction (SDEP) was 0.47. The
before and after FFD application statistics along with the r2m
metric is shown in Table 2. The difference between actual and
predicted activity values was less than one log unit for all 151
inhibitors of the training set as shown in Figure 4. The test set
(Supplementary Table S4) was used for the evaluation of the
final GRIND model, which predicted inhibitory potencies of test
set compounds with a difference of less than one log unit for all
compounds between experimental and predicted pIC50 values
with R2 value observed as 0.77 (Figure 4).

A PLS coefficient correlogram of the GRIND variables is
shown in Figure 5A and describes important 3D structural
features that directly/inversely correlate with the inhibitory
potencies of the training set compounds. The PLS coefficient
correlogram depicts that DRY-DRY, DRY-N1, DRY-TIP, and
N1-TIP pair of probes positively contribute towards the
inhibitory potency of chemically diverse FLAP inhibitors
whereas no inverse contribution was observed by any variable.
These variables are located at a certain distance within active
inhibitors between substitutions at R1, R2, and common scaffolds.

More explicitly, the DRY-DRY correlogram in Figure 5A
shows the presence of two hydrophobic contours (HYD1 and
HYD2) at a mutual distance of 16.00–16.40 Å in a virtual receptor

site of highly active FLAP inhibitors pIC50 > 7.5. For class I, the
distance is present between the pyridine ring of R1 and the phenyl
ring of R2; for class II, it is observed between the quinoline group
and the endo aryl moiety of the common scaffold; for classes III,
IV, and V, it is present between the pyrazole ring at R1 position
and the phenyl ring of the common scaffold; and for class VI, it
was observed between phenyl of the common scaffold and
pyrimidinamine of R2 (Figures 5B–E). Furthermore, the
backstage projection of the actual FLAP structure onto the
identified hotspots revealed the presence of complementary
hydrophobic amino acid residues such as B-A63, B-I119, and
B-L120. This further strengthened our docking outcomes as all of
these amino acid residues are involved in making extensive π-H
interactions with dataset compounds. Additionally, a recent
pharmacophore study of Olgac et al. revealed that four
hydrophobic features are important in most potent indole-
and oxadiazole-based FLAP inhibitors (Olgac et al., 2020).

Similarly, DRY-N1 (Figure 5A) explicates the positive
contribution of one hydrophobic (HYD3) and one hydrogen
bond acceptor (HBA1) at a mutual distance of 16.40–16.80 Å
within active FLAP modulators. Interestingly, this distance was
observed in all highly active FLAP modulators pIC50 > 7.5 and
absent in all less-active compounds pIC50 < 7.5. Briefly, for class I,
it is observed between the terminal negative ionizable moiety
present at R2 and the pyridine ring of R1; in class II, it is observed
between the quinoline group and pyrazole ring; for classes III, IV,
and V, it is present between the pyrimidinamine group of R2 and
oxadiazole ring; and for class VI, it was observed between
pyrimidinamine and pyridine of R1 as displayed in Figures
5B–E. Projecting actual FLAP structure onto the identified
virtual hotspots revealed the presence of hydrophobic amino
acids B-F114, B-A63, and C-G24 and complementary amide
groups in the B-K116 and B-R117 amino acid residues within
the FLAP binding cavity that further complements the accuracy
of our model. These results further reinforce our docking
outcomes, which demonstrated the importance of B-A63 and
B-K116 for the hydrophobic and hydrogen bonding interactions
within the FLAP binding cavity. These outcomes are also in
accord with another pharmacophore-based study that
demonstrated the importance of hydrophobic and hydrogen
bond acceptor features in the highly active indole- and biaryl
bicycloheptane-based FLAP inhibitors (Temml et al., 2017).

Moreover, DRY-TIP correlogram (Figure 5A) portrays the
presence of one hydrophobic (HYD4) and one shape-based
feature (TIP1) that positively contribute towards the inhibitory
potency of FLAP inhibitors. For the sharpest peak, the two

TABLE 2 | Statistical parameters obtained before and after application of fractional factorial design (FFD) on final GRIND model.

Fractional factorial design cycle (FFD)

Complete variable FFD1

Datasets R2 q2
LOO SDEP r2m Delta

r2m

Datasets R2 q2
LOO SDEP r2m Delta

r2m

Training
set

0.71 0.60 0.49 0.703 0.004 Training
set

0.82 0.66 0.47 0.775 0.001

Test set 0.63 0.58 0.49 0.517 0.028 Test set 0.77 0.64 0.47 0.686 0.012

FIGURE 4 | Activity interactive graph plot between predicted and actual
experimental activity values. The graph plot displays separate data series for
training (filled circles) and test (rhombus) set. R2 for training set was observed
as 0.82 and 0.77 for test set.
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FIGURE 5 | (A) Correlogram of PLS coefficients representing the pair of probes contributing positively (peaks above 0) or negatively (peaks below 0) towards the
inhibitory potencies of training set compounds. The positive contribution towards pIC50 of FLAP inhibitors has been depicted by DRY-DRY (two hydrophobic), DRY-N1
(one hydrophobic and one hydrogen bond acceptor), DRY-TIP (one hydrophobic and one steric), and N1-TIP (one hydrogen bond acceptor and one steric) variables.
The variables are present in all highly active FLAP compounds and are located at mutual distances of 16.00–16.40 Å, 16.40–16.80 Å, 18.00–18.40 Å, and
17.20–17.60 Å, respectively. (B) The identified hotspots onmost active indole-based FLAP inhibitor (compound 1) of training set with projection of actual FLAP structure.
Hydrophobic features are depicted in yellow, hydrogen bond acceptors are in blue, while steric hotspots are depicted in green color. The two hydrophobic hotspots
(HYD1 and HYD2) are located between two aromatic moieties, one hydrophobic (HYD3) and one hydrogen bond acceptor feature (HBA1) are present between aromatic
rings and terminal negative ionizable substitution, one hydrophobic (HYD4) and steric feature (TIP1) can be spotted between aromatic ring and indole scaffold, while one
hydrogen bond acceptor (HBA2) and one steric (TIP2) hotspot are present between dimethylbutanoic acid and pyridine ring. (C) The most active compound (compound
10) of class II with mapping of complemented amino acids on the recognized contours. (D) The most active of class III (compound 7), which is also the most active
compound from oxadiazole-based FLAP antagonists (classes III, IV, and V) and mapped hotspots along with projection of complementary amino acids of FLAP binding
cavity. Due to high structural similarity, the features were also observed at the same positions in all active compounds of classes IV and V. (E) The compound (70) from
class VI with identified hotspots and corresponding amino acids.
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contours are present at a mutual distance of 18.00–18.40 Å,
indicating the distance between indole scaffold and R1 for
class I; exoaryl of common scaffold and quinoline for class II;
phenyl ring of scaffold and pyrazole ring of R1 for classes III, IV,
and V; and pyrazole of common scaffold and pyrimidinamine for
class VI (Figures 5B–E). Two identified contours (HYD4 and
TIP) were mapped on the actual FLAP binding site, and
interestingly, the hydrophobic region in all active compounds
is complementary to hydrophobic amino acids C-V21, C-G24,
and C-H28. It is also in accordance with our docking findings
where many compounds of our dataset are involved in making π-
H interactions and π-π stacking with these amino acids. The
green contour elucidates a steric hotspot region, and it defines the
3D molecular shape of FLAP inhibitors.

The last selected peak N1-TIP (Figure 5A) represents the
presence of one hydrogen bond acceptor (HBA2) and one shape-
based feature (TIP2) at a mutual distance of 17.20–17.60 Å within
highly active FLAP inhibitors. The two features at this distance
contributes positively towards the inhibitory potency of
compounds against FLAP. The hydrogen bond acceptor
hotspot in the virtual receptor site of FLAP is complemented
by the presence of B-K116, B-D62, C-N57, and C-N23 amino
acids in the actual receptor site when we mapped the FLAP
structure onto the identified N1 (HBA2) hotspot. The -NH2 and
carbonyl groups of these amino acids are involved in making
hydrogen bonds with active FLAP modulators as evident from
our docking studies and pose analysis. Moreover, these features
have been observed in all active FLAP inhibitors pIC50 > 7.5 while
they are absent in less active compounds pIC50 < 7.5. For class I,
the distance is present between the pyrimidine ring at R2 position
and dimethylbutanoic acid; for class II it is observed between
substituents at the pyrazole ring of R1 and endo aryl of scaffold;
for classes III, IV, and V, it is present between the pyrimidine
amine of R2 and pyrazole ring at R1 position; and for class VI, it is
present between the triazole of R1 and tertbutyl of the common
scaffold (Figures 5B–E). The TIP probe signifies the importance
of a steric hotspot at a distance of 17.20–17.60 Å from the
hydrogen bond acceptor feature.

Generally, our study provided a deeper understanding of
three-dimensional requirements of diverse inhibitor binding
within the FLAP binding cavity by mapping the mutual
distances of important pharmacophoric features (four
hydrophobic, two hydrogen bond acceptor, and two steric
features) as well as the complementary distances of the
important interacting amino acid residues (B-L120, B-I119,
B-R117, B-K116, B-F114, B-A63, B-D62, C-H28, C-G24,
C-N23, and C-V21). Previous docking studies also revealed
that highly potent FLAP modulators result in π-π stacking
with C-H28, hydrophobic interactions with B-L120, B-I119,
and hydrogen bonding with B-R117, B-K116, and B-D62 (Ma
et al., 2008). Overall, the binding hypothesis generated for each
class within the FLAP binding cavity was complementary with
our GRIND model, which predicted the inhibitory potencies of
validation and test sets with reasonable accuracy, indicating the
fitness of our model. Based on our current findings, we suggest
that the high inhibitory potency of a compound against FLAP can
be achieved by (1) increasing the hydrogen bond acceptor

strength on at least one substitution position (R1 or R2); (2)
insertion of heterocyclic moieties such as pyridine, pyrimidine,
pyridazine, pyrazole, and triazole at each side of the common
scaffold to increase hydrophobic strength; and (3) maintaining a
distance of 16.00–16.40 Å between two hydrophobic groups
(aromatic rings) and 16.40–16.80 Å between hydrophobic and
hydrogen bond acceptor groups.

4 DISCUSSION

Since high levels of leukotrienes have been reported in multiple
pathophysiological conditions in the past 3 decades, leukotriene
synthesis pathway has been targeted at many levels while FLAP
has received the greatest focus because it initiates the biological
synthesis of leukotrienes via leukotriene synthesis pathway
(Massoumi and Sjölander 2007; Bryda and Wątroba 2018; Jo-
Watanabe, Okuno, and Yokomizo 2019). Several practices have
been made to propose potent FLAP modulators, and many of
them have shown good clinical efficacy. However, not a single
molecule could be able to change into the status of “drug”. The
focus of the present study is to unveil the two- and three-
dimensional structural requirements of FLAP modulators.

First to demonstrate the important two-dimensional
structural features, supervised ML approach was adapted over
classical 2D QSAR modeling. The preference was made for two
reasons: (1) to escape the alignment step as FLAP modulators are
highly diverse in nature, and (2) evidence from the past
strengthens the adaptation of ML for quantitative
structure–activity relationship studies (Tsou et al., 2020; Gupta
et al., 2021). We developed multiple ML models including
XGboost (GBDT), random forest (RF), decision tree (DT),
support vector machine (SVM), logistic regression (LR), and
multilayer perceptron (MLP), and in comparison, XGBoost
and RF were able to classify our training set and predict the
test set with significant classification and prediction accuracies.
Moreover, recursive feature elimination with cross-validation
(RFECV) captured relevant features or 2D descriptors, which
are mainly participating in the classification of highly active and
least active FLAP inhibitors.

Further molecular modeling studies were performed to
vaticinate the important three-dimensional pharmacophoric
features instead of ML. The preference was made because (1)
three-dimensional structural properties are highly dependent on
binding poses, and (2) the GRIND model not only explains the
important molecular interaction fields but also distances between
them along with important amino acid residues by creating a
virtual receptor site (Shafi and Jabeen 2017). Before implication of
molecular modeling strategies, the dataset was first subjected to
calculation of LipE and cLogP. The purpose of LipE-based lead
optimization is to improve LipE while maintaining an
appropriate range of logP for the optimization of potency and
ADME properties. The increased potency of a compound with
eque-LipE to the reference ligand demonstrates that the increase
in lipophilicity alone is responsible for the increased potency,
although other factors associated with the specific structural
change cannot be ruled out. Also, an increase in LipE of a
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compound suggests that an increase in potency is beyond
lipophilicity increases alone and other factors such as
transport to the target and hydrogen bonding strength within
the protein binding site could be associated with this response. In
total, 238 out of 658 demonstrated the LipE value greater than
five, which is the optimal threshold, and only 136 demonstrated
cLogP between the optimal range of 2–3.5. Herein, we selected
187 compounds having LipE greater than one and cLogP greater
than two because FLAP is an integral membrane protein, which
means that compounds should possess a high lipophilicity value
for efficient binding. Also, FLAP modulators in clinical trials
usually possess lipophilicity >3. The dataset of 187 compounds
was divided into six distinct classes based on the common scaffold
with subsequent docking into the FLAP binding pocket. Our
docking results indicated that the FLAP binding pocket can cater
diverse anti-inflammatory compounds and they bind between
chains B and C. The ligand–protein interaction profile of selected
FLAP modulators revealed that mostly B-R117, BK-116, C-N57,
C-N23, and B-D62 FLAP amino acid residues are involved in
making hydrogen bonds; B-A63, B-L119, B-L120, B-V21, and
C-G24 make π-H-bond interactions, whereas C-H28 is involved
in forming π-π contact with FLAP modulators. Also, for classes I
and II, a moderate correlation was observed between lipophilicity
and inhibitory potency, whereas for compounds of classes III, IV,
V, and VI, an increase or decrease in lipophilicity or LipE did not
alter the inhibitory potency in either way or vice versa.

To select the most probable binding poses, common scaffold
clustering was performed because using GRID-independent
molecular descriptors, analysis of 3D structural features is highly
dependent on 3D confirmations of the molecules (Pastor et al., 2000).
Multiple clusters at 3.5 Å RMSD were generated and binding poses
from clusters with maximum number of docked ligands were further
used to build the GRIND model. The reliability of binding pose
selection via common scaffold clustering for generation of the GRIND
model can be explained by satisfactory statistical results obtained for
the final GRINDmodel. Furthermore, the model signifies the positive
contribution of four hydrophobic, two hydrogen bond acceptor, and
two steric features towards the inhibitory potency of FLAP
modulators. The identified hotspots or pharmacophoric features
were successfully mapped onto the highly active FLAP modulators
followed by projection of the actual receptor site, which revealed the
presence of corresponding amino acid residues. Overall, our GRIND
model suggested that (1) two hydrophobic features should be present
at a mutual distance of 16.00–16.40 Å, (2) one hydrophobic and
hydrogen bond acceptor feature should be present at a distance of
16.40–16.80 Å, (3) the distance between hydrophobic and steric
feature should be 18.00–18.40 Å, and (4) and it should be
17.20–17.60 Å between hydrogen bond acceptor and steric features.
The importance of hydrophobic and hydrogen bond acceptor features
has also been demonstrated by previous studies (Temml et al., 2017;
Olgac et al., 2020).

Based on these findings, further analyses will focus on virtual
screening from bothML and GRINDmodels followed by selection of
common compounds. The common hits can further be structurally
tuned and optimized. The ML and GRIND model will allow internal
inspection of FLAP modulators, before validating them using
predictions on vendor libraries, purchase, and testing.

5 CONCLUSION

The current study deals with the development of ML models and
a GRINDmodel on a diverse series of FLAP inhibitors. First of all,
our ML models signify some important 2D descriptors, and the
best-performing model (XG-Boost) has successfully classified the
active and inactive compounds present in our training set
exhibiting 91% overall classification accuracy. The subsequent
screening of test set from the model resulted in 90% prediction
accuracy, which further accentuates the efficiency of the model.
Secondly, docking studies reveal that hydrogen bonding and
hydrophobic interactions are critical for binding of FLAP
inhibitors. Further common scaffold-based clustering revealed
the optimal binding mode of structurally diverse inhibitors and
aided in determination of their molecular basis of interaction
within the FLAP binding cavity. Thirdly, the most probable
binding poses were utilized for GRIND model development,
which showed valid statistical results having an R2 of 0.82 and
a q2 of 0.66. Additionally, the GRIND model predicted all
compounds of training and test set with an activity difference
of less than one log unit. Overall, our GRIND model illustrated
that four hydrophobic, two hydrogen bond acceptor, and two
steric features are critical for achieving high inhibitory potency
against FLAP. All the features were successfully complemented by
the docking studies highlighting the significance of respective
amino acid residues such as B-L120, BI119, B-A63, C-H28,
C-G24, and C-V21 for hydrophobic interactions and B-R117,
B-K116, D-62, and C-N57 for hydrogen bonding. In general,
application of ML, docking analysis, common scaffold clustering,
and GRIND modeling to predict the 2D structural requirements
as well as the 3D molecular basis of interaction of diverse FLAP
inhibitors could potentially guide the development of more
potent chemotypes for the treatment of inflammatory
disorders requiring anti-leukotriene therapy.
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