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As we all know, dexmedetomidine (DEX), as a highly selective α2 adrenergic receptor
agonist, exerts sedative, anti-anxiety and hypnotic effects by inhibiting the discharge of
norepinephrine neurons in locus coeruleus and GABA-related hypnotic pathways.
However, the role of DEX in anti-inflammatory and immune regulation has gradually
attracted the attention of researchers in recent years. The α2 adrenergic receptor is
one of the members of the adrenergic receptor family, which is widely present in a variety of
immune cells and mediates the biological behavior of the inflammatory immune system. At
present, there have been more and more studies on the effects of DEX on immune cells
and inflammatory responses, but few studies have systematically explored the anti-
inflammatory and immunomodulatory effects of DEX. Here, we comprehensively review
the published human and animal studies related to DEX, summarize the effects of DEX on
immune cells and its role in related diseases, and propose potential research direction.
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1 INTRODUCTION

The adrenergic system is closely linked to the immune system (Keating, 2015). Both innate immune
cells and adaptive immune cells express adrenergic receptors and can directly respond to the
sympathetic nervous system (Lorton and Bellinger Denise, 2015; Scanzano and Marco, 2015).
Primary and secondary lymphoid tissues are regulated by postganglionic sympathetic nerve fibers,
mainly secreting norepinephrine as its main neurotransmitter (Sharma and Farrar, 2020). In general,
the role of the adrenergic system in immunity is gradually receiving attention and has now become a
research hotspot.

Dexmedetomidine (DEX) is a highly selective α2 adrenergic receptor (AR) agonist, which has a
high affinity for the AR family members α2A and α2C (Berkowitz et al., 1994; Huang et al., 2021). It
can regulate the release of norepinephrine by activating the α2 receptor located on the presynaptic
membrane, which is the basis of its immunomodulatory function. Meanwhile, studies have shown
that DEX can regulate cellular immunity, suppress the inflammatory response in the tissues and
enhance the immune function of patients (Li et al., 2016; Ferreira and Bissell Brittany, 2018).
However, the effects of DEX on immune cells and inflammatory cytokines have not been
systematically summarized.

The main purpose of our review is to comprehensively provide the latest evidence on the immune
regulation and anti-inflammatory effects of DEX in various immune cells and immune-related
diseases. And the future value of DEX in the treatment of some common but troublesome diseases is
worth looking forward to.
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2 DEX’S REGULATORY EFFECT ON
IMMUNE CELLS AND INFLAMMATION

2.1 General Effects
DEX can not only modulate the ability of antigen-presenting cells
to uptake and process antigens, and the recruitment, chemotaxis
and local aggregation of immune cells in innate immunity, but
also regulate the CD4+/CD8+ ratio and balance the quantity of
Th1, Th2, Th17 and Regulatory T cells (Tregs) in the adaptive
immunity. As well, DEX can reduce the secretion of pro-
inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12/23 (p40), IL-
17A, IL-18, IFN-γ, TNF-α, Eotaxin, HMGB1, MIP-2, MCP-1)
and increase the level of anti-inflammatory factors (IL-2, IL-4, IL-
10 and TGF-β1). Therefore, it plays a vital role in immunity and
inflammation.

In more details, here below we summarize the main effects of
DEX on different immune cell populations, as shown in Table1.

2.2 Innate Immune Response
The innate immune response refers to the use of differentiated
leukocytes to identify and eliminate foreign substances in organs,
tissues, blood and lymph. And, the innate immune response-

related cells mainly include dendritic cells (DCs), natural killer
cells (NKs), eosinophils, mast cells and phagocytic cells
(neutrophils and monocytes/macrophages).

2.2.1 Dendritic Cells (DCs)
DCs are one of the antigen presenting cells in the body. They can
efficiently capture, process and present antigens, and induce the
generation of specific cytotoxic T lymphocytes (CTLs).

DCs express α1, α2 and β-AR on the cell membrane. As an α2-
AR agonist, DEX can inhibit immune responses by inhibiting
antigen processing/presentation and migration of DCs (Ueshima
et al., 2013). For another, DEX could inhibit the maturation and
function of DCs by interfering with the synthesis and secretion of
IL-12 and IL-23, thereby negatively regulating human immune
function (Chen G. et al., 2016). In addition, DEX can inhibit the
protein hydrolysis and migration of phagosomes in DCs, reduce
the expression and migration of class II MHC molecule I-Ab and
costimulatory molecule CD86 and inhibit the proliferation of
cytotoxic T lymphocytes and the secretion of IFN-γ, thereby
exerting an immunosuppressive effect (Ueshima et al., 2013;
Chen S. L. et al., 2016). However, the interesting phenomena
have been found in an animal experiments, in which DEX at

TABLE 1 | Summary table on effects of DEX on immune cells and inflammatory cytokines.

Target cells Effects

Suppression Induction References

Dendritic cells Pro-inflammatory cytokines (TNF-α, IL-1β IL-6,
IFN-γ)

Anti-inflammatory cytokine IL-10 Ueshima et al. (2013)

Immunomodulatory factor (IL-12, IL-23) Chen G. et al. (2016)
Class II MHC and costimulatory molecules (I-Ab
And CD86)

Guo et al. (2018)
Huang et al. (2021)

Natural killer
Cells

Development and metastasis of tumor Increase the number and maintain the activity Zhao et al. (2013)
Yang et al. (2017)
Wu L. et al. (2015)

Eosinophils Chemokines (eotaxin) —————————————————————— Kalbach et al. (2019)
Mast cells Degranulation Proteolytic enzyme MMP-9 Proteolytic enzyme MMP-2 Tüfek et al. (2013)

Matsumoto (2009)
Neutrophils Pro-inflammatory cytokines (IL-6, TNF-α,

Necrosis factor)
Elimination of pathogen Chen S. L. et al. (2016)

Antimicrobial effectors (ROS, RNS, NO, iNOS)
Respiratory eruption

Yuan et al. (2020)

Local aggregation of neutrophils Cowburn et al. (2008)
Monocytes The ratio of CD42+/CD14+ Pro-inflammatory

cytokines (IL-6, TNF-α)
The ratio of HLADR+/CD14+ Zhou et al. (2017)

The expression of Cx43, PKC-α, VLA-4 and
LFA-1

Chai et al. (2020)

Monocyte-endothelial cells adhesion
Macrophages Pro-inflammatory cytokines (IL-6, COX-II, PGE2,

HMGB1)
TNF-α, IL-1β Transforming growth factor TGF-β1 Martinez Fernando and

Gordon (2014)
Inflammatory protein MIP-2 Anti-inflammatory cytokine (IL-10) Lai et al. (2009)

The production of Th1 cells by promoting the secretion of IL-12
Polarization of M2

Zhou et al. (2020)

Clearance of Neutrophil and autophagy of mitochondrial Li et al. (2021)
Wang K. et al. (2019)
Piazza et al. (2016)

B cells Chemokine (IL-2) Ma et al. (2017)
Liu et al. (2018)

T cells The amount of CD8+ The amount of CD3+,
CD4+, CD4+/CD8+

Pro-inflammatory cytokines (IL-17A) Immune regulatory factors (IFN-γ) Huang et al. (2021)
Yang et al. (2017)
Lee et al. (2018)
Song et al. (2020)
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different concentrationsmay have the opposite effect on the secretion
of inflammatory mediators by DCs. At high concentrations (10, 1,
and 0.1 μm) of DEX, the expression of mRNA and the contents of
TNF-α, IL-1β, IL-6, and IL-10 in DCs stimulated by LPS increased,
while DEX at lower concentrations (0.001 μm), the content of these
molecules decreased, and the mechanism was related to the
activation of NF-κB and JNK-MAPK signaling pathways (Guo
et al., 2018). The experiment shows that DEX has a dual
regulatory effect on DCs, in which inflammatory factors are
increased at high concentrations and decreased at low
concentrations. Studies have found that DEX can preserve the
number of DCs in patients undergoing oral cancer surgery and
enhance the immune function of patients (Huang et al., 2021).

In general, DEX acts on DCs through α2-AR and exerts
immune regulation. Guo et al. (2018) have suggested that
DEX may play different roles in different pathological
conditions, because other kinds of AR and downstream signals
also participate in the reaction. Moreover, the current results of
clinical trials are too few, and the actual effects of DEX on DCs
need to be further confirmed.

2.2.2 Natural Killer Cells (NKs)
NKs are the important immune cells in the body, participating in
non-specific cell-mediated anti-tumor immune regulation. They
can kill MHC class I cells without being activated, and when the
number of NKs decreases, it means the body’s immune function
is suppressed (Pilla et al., 2005).

Whether α2 -AR are expressed on the cell membrane of NKs is
unclear. At present, animal studies have found that DEX can
maintain the activity of NKs after surgery or general anesthesia
(Taniguchi et al., 2004), which decreased after operation or
anesthesia originally. In clinical trials, cancer patients who used
DEX in the perioperative period showed significantly higher
concentrations of NKs from 6 to 24 h after surgery (Barbera-
Guillem et al., 2000; Wolf et al., 2003; Zhao et al., 2013; Yang et al.,
2017). It has also been found that the decrease in the number of NK
cells after DEX treatment in children with brain tumors during the
perioperative period was significantly less than that in the control
group (Wu Lei et al., 2015).

In fact, it is believed that IL-2, IL-12, IL-18, IFN-α, TNF-α and
leucomodulin (LR) have a positive regulatory effect on the activation
and differentiation of NK cells, which can significantly improve the
killing activity of NK cells. Prostaglandins (PGE1, E2, D2) and
adrenocortical hormone can inhibit the activity of NK cells (Alboni
et al., 2010; Kallioinen et al., 2019).

In conclusion, DEX can increase the number of NKs and
maintain their activity. However, most of the current studies
focus on the effect of DEX on the number of NKs, and lack of
studies on the effect of DEX on the differentiation and migration
of NK cells. Whether DEX can affect the function of NK cells
through the above-mentioned inflammatory immune molecules
will be the direction of future research.

2.2.3 Eosinophils
Eosinophils have the function of killing bacteria and parasites,
which are also considered as the crucial cells in the process of
immune and allergic reactions.

It has not been verified that whether α2-AR are expressed on
the cell membrane of eosinophils cells yet. But, Kallioinen et al.
(2019) and Dahl. (1991) confirmed that eosinophil
chemoattractant factor (eotaxin) decreased significantly in
healthy subjects after administration of DEX. Eotaxin is a
potent chemotactic agent for eosinophils, which mediates
leukocyte recruitment in allergic diseases such as asthma
(Cheng et al., 2002), and is also strongly up-regulated in septic
mouse models (Kalbach et al., 2019). It means that DEX may be a
good choice for anesthesia for patients with asthma and sepsis.
However, some studies have found that a large proportion of
children with severe asthma require an upgrade from noninvasive
positive pressure ventilation to invasive mechanical ventilation
when DEX is given as adjunctive therapy (Kalbach et al., 2019).

Generally speaking, there are few studies on the effect of DEX
on eosinophils currently, and the clinical effect of DEX on asthma
can be used as a future research direction.

2.2.4 Mast Cells
Mast cells are the first cells to be recruited to the site of the injury,
then selectively produce pro-inflammatory mediators, thereby
enlisting neutrophils, macrophages and other monocytes into the
site to activate the inflammatory response (Kennelly et al., 2011;
Younan et al., 2011; Theoharides et al., 2012).

It is not known that whether α2 -AR are expressed on the cell
membrane of mast cells. However, early studies have shown that α2-
AR agonist clonidine can regulate the function of mast cells through
α2-AR (Lindgren et al., 1987; Anderson et al., 1987; Lavand’homme
and Eisenach, 2003; Lavand’homme Patricia et al., 2002). Compared
with clonidine, DEX has 8-fold higher affinity for α2-AR (Bhana
et al., 2000). At present, numerous literatures have shown that DEX
may be a strong stabilizer of mast cells, and may inhibit
inflammation by preventing degranulation (Tüfek et al., 2013). In
the animal models, the application of DEX could reduce oxidative
stress (Tüfek et al., 2013). Specifically, it decreased the levels of
matrix metalloproteinase-9 (MMP-9) and galectin-3, and increased
the level of matrix metalloproteinase-2 (MMP-2) (Matsumoto,
2009). Besides, some studies have found that DEX stabilizes mast
cells at the injured site (Tüfek et al., 2013).

There are few studies on the regulation of mast cell function
and inhibition of inflammation by DEX, which may be the fields
of future research.

2.2.5 Neutrophils
Neutrophils, also known as polymorphonuclear leukocytes
(PMN), are the main cell type of the innate immune system,
which mainly scavenge pathogens and lead to the acute
inflammation (Cowburn et al., 2008). The clearance of
pathogens by neutrophils involves a series of physiological
processes, including chemotaxis, phagocytosis and killing
microorganisms (Kantari et al., 2008; Raffaghello et al., 2008).

It has been identified that α2-AR are expressed on the cell
membrane of neutrophils (Panosian and Marinetti, 1983). And it
has been confirmed that a variety of anesthetics, including
propofol, midazolam and ketamine, can inhibit the chemotaxis
and phagocytosis of neutrophils and the production of
superoxide anion, while DEX not (Stevenson et al., 1990;
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Mikawa et al., 1998; Nishina et al., 1998). This suggests that DEX
may be more suitable for patients with infection, sepsis and
systemic inflammation (Nishina et al., 1999).

Whether neutrophils can successfully eliminate pathogens
depends on oxidative burst, the main process that kills
microorganisms through the formation of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) (Cowburn et al., 2008). It
was found that DEX could inhibit the oxidative burst stimulated by
E. coli and the production of nitric oxide (NO) (Chen G. et al., 2016).
And studies have found that DEX can inhibit endotoxin induced
inflammatory response, reduce the concentration of IL-6, TNF-α and
local aggregation of neutrophils, so as to play the role of anti-
inflammation and immunosuppression. And the inhibition of
DEX on the infiltration of neutrophils may be related to FOXO3a
signaling pathway (Yuan et al., 2020).

To sum up, DEX can not only regulate the chemotaxis and
phagocytosis of neutrophils, but also inhibit the local aggregation,
oxidative burst and the production of reactive oxygen and
reactive nitrogen of neutrophils, thereby playing an anti-
inflammatory effect. However, the above results are all in vitro
data, and the clinical situation cannot be simply inferred.
Therefore, further studies are needed to elucidate the effect of
DEX on function of neutrophils in vivo.

2.2.6 Monocytes/Macrophages
2.2.6.1 Monocytes
Monocytes are the precursors of macrophages and DCs, which
are involved in immune responses. After phagocytosis of antigen
by monocytes, antigenic determinants are transferred to
lymphocytes to induce lymphocyte-specific immune responses.
And the recruitment of circulating monocytes to inflammatory
tissues is one of the important characteristics of acute and chronic
inflammatory response.

It has been confirmed that α2-AR are expressed on the cell
membrane of monocytes. And it has been reported that the
percentage of monocyte-platelet aggregation (CD42a +/CD14
+) can reflect the level of inflammation and hemostasis, and
the percentage of monocyte activated cytokines (HLA DR+/
CD14+) can reflect the state of immunosuppression (Monneret
et al., 2006). Clinical trials have found that when DEX acts on
monocytes, it can inhibit the inflammatory response and enhance
immunity by inhibiting the percentage of (CD42a+/CD14+),
promoting the percentage of (HLA DR+/CD14+) and reducing
the production of proinflammatory cytokines, such as IL-6 and
TNF-a (Zhou et al., 2017).

In vitro cell experiments, DEX decreased Cx43 expression and
PKC-α of the carboxyl terminal domain of Cx43 protein in
monocytes at its clinically relevant concentrations (0.1 and
1 nm). With the downregulation of PKC-α, the NOX2/ROS
signaling pathway was inhibited, resulting in the decreased
expression of VLA-4 and LFA-1, and finally, decreased
monocyte-endothelial cell adhesion (Chai et al., 2020).

At present, there are many known risk factors that increase
monocyte-endothelial cell adhesion, including patients
undergoing major surgery, intensive care, or long-term bed
rest (Sikorski et al., 2011; Ribeiro et al., 2018; Schmitt et al.,
2020; Wilhelms et al., 2020; Wu et al., 2020). Therefore, the

rational use of DEX in critically ill patients should be concerned.
Moreover, whether DEX can affect the phagocytosis and
presentation of monocytes remains to be further studied.

2.2.6.2 Macrophages
Macrophages, as the principal phagocytes in the inflammatory
stage, are responsible for clearing the necrotic fragments,
pathogens of tissues and cells in the body damage. They can
phagocytize and absorb polymorphonuclear neutrophils (PMN)
with local infiltration and apoptosis, and then inhibit the
excessive secretion of pro-inflammatory cytokines. They play a
key role in the lysis phase, and participate in the progress and
regression of inflammation (Sugimoto et al., 2017).

Macrophages express α2-AR on their cell membrane. And the
ability of macrophages to resist microbial growth depends on the
activated state of macrophages. There are two phenotypes of
macrophage activation including M1 and M2. M1 macrophages
participate in the positive immune response and play the role of
immune monitoring by secreting pro-inflammatory cytokines
and chemokines, and presenting antigens; M2 macrophages only
have weak antigen presenting ability, but play an important role
in immune regulation by secreting cytokines such as IL-10 and
TGF-β (Martinez Fernando and Gordon, 2014). And DEX can
enhance the production of major antibacterial effector molecules,
including ROS and NO, and activate macrophages to resist the
growth of intracellular pathogens (Rezai, 1968; Ohmori and
Hamilton, 1994; MacMicking et al., 1997). It can also activate
the antifungal and antibacterial activities of macrophages by
combining with macrophages α2-AR, and regulate the up-
regulation of inflammatory molecules induced by endotoxin
(Miles et al., 1996; Lai et al., 2009). In an animal experiment,
macrophages were pretreated with DEX to increase pro-
inflammatory factors, such as TNF-α and IL-6, inhibit the
secretion of anti-inflammatory factor IL-10, and promote
macrophage M2 polarization in a PPARγ/STAT3 dependent
manner (Zhou et al., 2020).

Moreover, Chang et al. (2013) found that DEX could inhibit
the transport of HMGB1 from nucleus to cytoplasm and the
expression of high mobility group box 1 (HMGB1) mRNA, while
HMGB1 is a key pro-inflammatory factor closely related to the
mortality of patients with sepsis. Its mechanism may be related to
NF-κB signaling pathway and α2-AR activation (Chang et al.,
2013). Li et al. (2021) found that DEX post-treatment, through
the increase of F4/80 + Ly6G + macrophages, promotes the
secretion of TGF-β1, which leads to the reduction of cytokine
storm and accelerates the resolution of inflammation. A series of
studies have found that DEX can reduce the secretion of IL-1β
and TNF-α in macrophages, increase the expression of LC3-II
(autophagy related protein), promote the clearance of damaged
mitochondria. The DEX also can promote PTEN-induced
putative kinase 1 (PINK1) mediated mitochondrial autophagy,
thereby reducing the apoptosis and inflammation of
macrophages induced by LPS, and play a protective role in
sepsis (Wang K. et al., 2019). Yang et al. (2008) found in
animal models that high-dose but not clinically relevant dose
DEX can effectively inhibit the concentration of macrophage
inflammatory protein 2 (MIP-2), TNF-α and iNOS in the lung,
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and significantly reduce the cytokines (IL-1β, IL-6) in ventilator-
related lung injury, these effects are at least partially mediated by
α2-AR. However, Lai et al. (2009) discovered that DEX at a higher
dose than routinely used in clinics has a significant biphasic effect
(first inhibition and then enhancement) on the secretion of
inflammatory factors (COX-2, PGE2, TNF-a, IL-1b, IL-6, IL-
10, iNOS and NO) after activating mouse macrophages α2-AR.
Meanwhile, it has been found that DEX does not directly inhibit
the release of cytokines from human pulmonary macrophages
like rodents (Kang et al., 2003; Piazza et al., 2016).

At present, the effect of DEX on phagocytosis of macrophages
is still controversial. Wu R. S. et al. (2015) found that DEX could
enhance the phagocytic activity of macrophages in mice with
endotoxemia. Tippimanchai et al. (2018) suggested that DEX
could reduce the number of alveolar macrophages and inhibit
their phagocytosis in septic mice. García et al. (2003) suggest that
α2-AR controls phagocytosis and chemotaxis in primary cultured
rat peritoneal macrophages, maintaining phagocytosis at optimal
levels.

All in all, the difference between the results of animal
experiments and clinical trials deserves further study.

2.3 Adaptive Immune Responses
Adaptive immune responses refer to the whole process in which
antigen-specific T/B lymphocytes are activated, proliferated and
differentiated into effector cells to produce a series of biological
effects.

2.3.1 B Cells
B cells participate in the immune responses through a variety of
ways: produce antibodies, differentiate into plasma cells, act as
APCs, and secrete various cytokines to regulate the activities of
other immune systems and immune cells. Under antibody-
mediated autoimmune conditions, B cells play a key role in
humoral immunity.

Whether α2-AR are expressed on the surface of B cells is
unclear. When DEX is administrated with middle and high doses,
it can inhibit the release of IL-1, IL-6, TNF-α and PGE2, increase
the release of IL-2, and play an anti-nociceptive role in acute
inflammatory visceral pain, thereby inhibiting visceral
hypersensitivity (Ma et al., 2017; Liu et al., 2018). Also, DEX
activates the B cell signaling pathway by inhibiting the
p38 mitogen-activated protein kinase/nuclear factor K-light
chain enhancer, increasing the serum IL-2 level of ovarian
cancer rats and enhancing the immune function (Cai et al., 2017).

However, it was found that there was no significant difference
in the number of B lymphocytes between the DEX group and the
control group, suggesting that DEX had little effect on humoral
immune response of patients undergoing oral cancer surgery
(Huang et al., 2021). Wu R. S. et al. (2015) found that continuous
intravenous infusion of DEX during general anesthesia can
reduce the number of B cells, which effectively inhibits the
perioperative stress response of children with brain tumors.
The specific mechanism of the effect of DEX on humoral
immune function is still unclear, and its effect on humoral
immune function of patients with malignant tumor needs
further study.

2.3.2 T Cells
T cells are one of the main members of lymphocytes. They have
many biological functions, including killing target cells directly,
assisting or inhibiting B cells to produce antibodies, responding to
specific antigens and producing cytokines. The immune response
caused by T cells belongs to cellular immunity.

2.3.2.1 The Amount of CD3+, CD4+, CD8+ and CD4+/CD8+
Ratio
CD3molecule is a characteristicmark on themature T cells and the
number of it reflects the total number of T cells, and its increase
indicates the enhancement of immune function. CD4+ T cells are
auxiliary T cells, which play an accessory role in the induction of
cellular and humoral immunity. CD8+ T cells are mainly
immunosuppressive cells, which inhibit the function of other
immune cells. The decrease of the CD4+/CD8+ ratio indicates
poor immune function, and a large decrease often indicates the
severity of the disease and poor prognosis (Huang et al., 2021).

Related studies have confirmed that compared with the
control group, the amount of CD3+, CD4+ cells and the ratio
of CD4+/CD8+ in the DEX group were significantly increased,
while the percentage of CD8+ cells was significantly decreased
(Wu R. S. et al. (2015); Huang et al., 2021; Wu R. S. et al. (2015);
Yang et al., 2017; T. Zhao et al., 2013). Moreover, clinical trials
found that intraoperative continuous intravenous infusion of
DEX in adults can significantly improve cellular immune
function (Liang et al., 2012). Clinical studies also show that
DEX can regulate the perioperative immune response of
patients undergoing radical surgery for breast cancer, colon
cancer and gastric cancer, which is beneficial to enhance the
immune function of cancer patients and promote postoperative
recovery. And the incidence of gastrointestinal reaction and
postoperative cognitive dysfunction in the DEX group are
significantly lower than those in the control group (Wang
et al., 2015; Yang et al., 2017; Wang and Li, 2018). Related
studies believe that DEX can maintain better perioperative
cellular immune function, reduce cellular immune suppression
and hematogenous metastasis, and play a role in postoperative
immune protection. As for cytokines, Yang et al. (2017)
considered that the concentrations of IFN-γ, IL-2, IL-10 and
IL-6 in DEX group were significantly increased.

2.3.2.2 The Balance Among Th1, Th2, Th17 and Regulatory
T Cells (Tregs)
The balance among T cell subsets is crucial for the homeostasis of
the immune system and is a hot spot in current research (Zhao
et al., 2013). The number of CD4+ T cells accounts for 65% in
peripheral blood. The previous studies on CD4+ T cells are more
detailed, and we will focus on this review. The Th0 cells is an
initial CD4+ T cell unstimulated by antigen and can differentiate
into Th1, Th2, Th17, and Treg cells under different cytokine
environments.

Th1 mainly secretes IL-2 and IFN-γ, activates T lymphocytes
and macrophages, mediates cellular immune response, and
reduces postoperative infection (Lee et al., 2018). It is also
believed that the increased secretion of IL-2 and TNF-α can
activate inflammatory responses, promote leukocyte adhesion,
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and provide conditions for the further development of
inflammation (Jeong et al., 2016; Elmoutaz Mahmoud and
Rashwan, 2018). Th2 mainly secretes IL-4, IL-6 and IL-10,
induces B lymphocytes to secrete immunoglobulin (Lee et al.,
2018), promotes humoral or antibody mediated immunity, and
suppresses cell-mediated immune responses (Kurosawa and
Kato, 2008; Webster and Galley, 2009). At present, IFN-γ, IL-
2 and IL-4 are the main indicators that reflect the balance of Th1
and Th2. However, the effect of DEX on the balance of T cell
subsets (Th1/Th2) is controversial.

From the results of the meta-analysis, Wang Y. et al. (2019)
belived that DEX increased the ratio of Th1/Th2. Besides, in
patients undergoing laparoscopic cholecystectomy, the ratio of
IFN -γ/IL-4 and Th1/Th2 cytokines in DEX group were higher
than that in control group. In breast cancer patients, the levels of
IL-2 and IFN-γ secreted by Th1 in DEX group increased, while the
level of IL-4 secreted by Th2 did not change much, indicating that
DEX can inhibit the transformation of Th1 to Th2 (Cardinale et al.,
2011). DEX attenuates Th2 polarization, maintains a relatively
stable balance of Th1/Th2, and reduces surgical stimulation and
inflammatory response. Therefore, DEX can maintain the immune
balance of the patient population and protect the cellular immune
function of the patient (Wang et al., 2015). These findings suggest
that DEX may increase the Th1/Th2 ratio, thus playing an
immunomodulatory role in patients under stress from surgery
and anesthesia (Song et al., 2014).

The above research believes that DEX can shift the balance to
Th1, but the following research believes that DEX is more
inclined to Th2. Inada et al. (2005) found that DEX reduced
the Th1/Th2 ratio, leading to a shift towards Th2. DEX combined
with spinal anesthesia could promote the mRNA expression and
protein secretion of IL-4 and IL-10 in female patients and
newborns after cesarean section, while the mRNA expression
and protein secretion of TNF-α and IL-2 in the DEX combined
with spinal anesthesia group were significantly lower than that in
the control group. Although cesarean section may affect the levels
of IL-2 and IL-4, but it turns out that there is no significant
difference compared with normal delivery. Therefore, DEX
combined with intraspinal anesthesia can reduce the adverse
reactions of puerpera after cesarean section, and promote the
transformation of Th1 cytokines to Th2 cytokines (Shi and

Zhang, 2019). In the anesthesia of patients with colon cancer
radical operation, the indexes of Th1 and Th1/Th2 in DEX group
were lower than that in the control group, which promoted the
transformation of Th1 cytokines to Th2 cytokines, and DEX can
significantly inhibit the activation of NF-κB, soluble intercellular
adhesion molecule-1 (sICAM-1), IL-8 and IL-6 caused by
anesthesia (Wang and Li, 2018). However, it was also found
that the ratio of Th1/Th2 in DEX group did not change
significantly during anesthesia in healthy patients (Kallioinen
et al., 2019).

Th17 cells are another recently discovered helper T cell that
differentiates under the stimulation of IL-6 and IL-23. The Th17
secrete IL-17A, which has obvious pro-inflammatory effect (Song
et al., 2014), and can enhance the recruitment of neutrophils in
the inflammatory site (Zhang et al., 2018a). IL-17A is considered
to coordinate the local immune response and host defense against
foreign pathogens in the autoimmune system. Regulatory T cells
(Tregs) are a subset of T cells that can inhibit the immune
response of cancer patients, and closely related to the
occurrence of autoimmune diseases. Their abnormal
expression can lead to autoimmune diseases, in which IL-17
and IL-10 are the main indicators of Th17 and Tregs, respectively.
Moreover, the Th17/Tregs ratio has been reported to play an
important role in immune regulation (Park et al., 2005; Singh
et al., 2007; Guo et al., 2010; ChangHee and Chen, 2011; Zhang
et al., 2011; Gu et al., 2013).

Similarly, there are different opinions about the effect of DEX
on the balance of Th17 and Tregs. In patients undergoing radical
resection of colon cancer, the number of Tregs in the DEX group
was higher than that in the control group, indicating that DEX
can promote the transformation of primitive T cells into Tregs
(Wang and Li, 2018). However, in laparoscopic cholecystectomy
anesthesia, DEX is associated with the decrease of Tregs cytokines
IL-4 and IL-10 and can dose-dependently modulate the
inflammatory response (Lee et al., 2018). In the mouse model,
Song et al. (2020) deemed that DEX could inhibit IL-17A storm
induced by acute lung injury to a certain extent, and could
significantly reduce the amount of proinflammatory cytokines
in bronchoalveolar lavage fluid (BALF).

In general, DEX can regulate the balance of Th1, Th2, Th17
and Tregs, and it can not only inhibit inflammation, but also

FIGURE 1 | The effect of DEX on T cells. DEX can increase CD4+ T cells, decrease CD8+ T cells, and increase the CD4+/CD8+ value; meanwhile, DEX can promote
the differentiation of CD4+ T cells into Tregs, reduce Th17 and the Th17/Tregs value; however, there is currently no consensus on the effect of DEX on Th1 and Th2.
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alleviate immunosuppression, so it has strong
immunomodulatory effect and better clinical therapeutic effect
(Song et al., 2020).

2.3.2.3 Brief Summary
The possible reasons for DEX to improve cellular immunity are
as follows: 1) DEX can selectively activate α2-AR in central and
peripheral nervous system, reduce sympathetic activity and
serum catecholamine concentration, and further alleviate
surgical stress and its coupled immunosuppression (Xu and
Wang, 2003); 2) DEX reduces perioperative opioid use and thus
reduces the immunosuppressive effects of opioids (Kallioinen
et al., 2019); 3) DEX has a certain analgesic effect, and
application before surgical trauma stress can prevent the
sensitization of the central and peripheral nerves, reduce the
pain caused by traumatic stimulation, achieve preemptive
analgesia, and enhance the body’s immune function (Wu R.
S. et al., 2015); 4) DEX has anti-inflammatory and organ
protective effects on ischemia and hypoxia injury, thereby
maintaining body homeostasis and helping to improve
immunity (Wang et al., 2015; Ma et al., 2017). In the future,
we will need to study these potential mechanisms at the cellular
and molecular levels, analyze immune cells, and detect the
mRNA expression levels of transcription factors and
chemokines (Huang et al., 2021).

In fact, T cells are mainly divided into T helper cells (CD4+

cells), cytotoxic T cells (CD8+ cells), memory T cells (CD4+ or
CD8+ with antigenicity), Tregs, natural killer T cells (NKT cells)
and δγ T cells (Chaplin, 2010). However, at present, studies
mainly focus on the effect of DEX on the amount of CD3+, CD4 +,
CD8+ and the ratio of CD4+/CD8+. The effects of DEX on
memory T, NKT and δγ T cells are not involved at present, and
there are few studies on molecular level, which may become the
direction of future research. Figure 1 summarizes the effects of
DEX on T cells.

2.4 DEX and Cancer
DEX can improve the coagulation and immune function of
patients with colon cancer, and the CD4+/CD8+ of the DEX
group after surgery is higher than that of the control group (Zhao
and Li, 2020). DEX can reduce the immunosuppression of
patients with oral cancer by increasing the percentage of
CD3+, CD4+, DCs and CD4+/CD8+ ratio (Huang L et al.,
2021). DEX can effectively inhibit the activation of IGF2 signal
pathway, improve the immune function of ovarian cancer rats,
inhibit the invasion and migration of ovarian cancer cells, and
significantly increase the percentage of CD4+, CD8+ and the ratio
of CD4+/CD8+ (Tian et al., 2019). The DEX infusion may
improve the surgical outcomes of ovarian cancer by inhibiting
the surgical stress response and the release of stress mediators
(Shin et al., 2021). CD3+ T cells and CD4+/CD8+ in DEX group
were significantly higher than that in the control group, which
could reduce the perioperative inflammatory response and
improve the cellular immune function of patients undergoing
thoracoscopic radical resection of lung cancer (Kong and Lu,
2018; Zong et al., 2021). DEX may inhibit p38MAPK/NF-κB
signaling pathway to enhance the immune function of ovarian
cancer rats (Cai et al., 2017). DEX can alleviate the
immunosuppression caused by circulatory fluctuation in
patients with gastric cancer (Zheng et al., 2020). The levels of
IFN-γ and IL-10 in the DEX group were lower than those in the
control group, and the percentage of CD4+/CD8+ cells was
higher than that in the control group, which reduced the
perioperative stress response of rectal cancer patients and
protected the cellular immune function (Zhang et al., 2018b).
DEX can effectively alleviate the release of inflammatory factors
in patients undergoing radical gastrectomy for gastric cancer,
possibly by down-regulating the activation of NF-κB. In addition,
DEX can also regulate the reduction of CD3+ and CD4+ subsets,
so as to improve the impaired immune function (Dong et al.,
2017). It also reduces the severity of early postoperative pain and

FIGURE 2 | Effects of DEX on immune cell and inflammatory cytokines. DEX can act on DC cells to down-regulate innate immune function, while acting on NK cells,
eosinophils, mast cells, neutrophils and monocytes to up-regulate this function; and DEX has no obvious effect on B cells, but can act on T cells upregulate adaptive
immunity; meanwhile, DEX can down-regulate pro-inflammatory cytokines and up-regulate anti-inflammatory factors, thereby inhibiting the inflammatory response.
Note: The image of the cells in the figure is from https://biorender.com/.
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opioid consumption in patients with uterine cancer (Cho et al.,
2021). Continuous intravenous infusion of DEX during general
anesthesia can effectively inhibit the perioperative stress response
of children with brain tumors and reduce cellular immune
suppression (Wu L et al., 2015). All in all, the current
evidence shows that DEX can reduce immunosuppression in
tumor patients, which may have certain significance in limiting
tumor spread and invasion. Of course, the current studies has the
problem of insufficient sample size, or most of the studies are
based on animal experiments, so high-quality clinical
randomized controlled studies in the future are necessary to
demonstrate this conclusion.

2.5 DEX and Clonidine
Studies have shown that under acute inflammatory conditions,
α2-AR agonist drugs can regulate the inflammatory process and
immune pathways, of which receptor-mediated action is one of
the important mechanisms (Flanders et al., 2019). Compared
with clonidine, DEX has 8-fold higher affinity for α2-AR (Bhana
et al., 2000). It was found that clonidine and DEX at relevant
concentrations did not affect the chemotaxis, phagocytosis or
superoxide production of human neutrophils. These findings
indicate that when used in patients with infection, sepsis, or
systemic inflammation, the type of α2-AR agonist is not the focus
of attention (Nishina et al., 1999). A trial with no risk of bias
compared DEX to clonidine found that target sedation was
achieved in more patients treated with DEX and less need for
additional sedation. Evidence on the use of clonidine in the
intensive care unit (ICU) is very limited. DEX can effectively
reduce the hospitalization time and extubation time of patients in
ICU (Cruickshank et al., 2016). Unlike those reported in rodents,
clonidine and DEX do not directly inhibit cytokine release from
human lung macrophages (Piazza et al., 2016). In short, DEX and
clonidine, which are also α2-AR, have very few comparative
studies on their effects on immune cells, and this may be a
future research direction.

3 CONCLUSION AND PERSPECTIVES

The adrenergic signaling pathway has an immunomodulatory
effect and has been extensively studied (Sharma and Farrar,
2020). As a highly selective agonist of α2-AR, DEX plays an
important role in the inflammatory immune system, and this new
direction has also triggered a series of studies on DEX in clinical
diseases.

The article reviews the novel functions of DEX from the
aspects of immune cells and related diseases. In general, DEX
has double effects on innate immune response: on the one hand, it
suppresses DCs function to play an immunosuppressive role; on
the other hand, it promotes M2 polarization of macrophages,
neutrophils clearance and enhance the amount of NKs to adjust
immune function and play an anti-inflammatory role. In adaptive
immune responses, DEX has little effect on the humoral response
of B cells, but it can enhance cellular immunity by regulating the
differentiation, number and proportion of T cell subtypes. And,
the overall effect of DEX on immune cell function and

inflammatory cytokines is shown in Figure 2. Furthermore,
DEX can alleviate neuroinflammation and has a good
therapeutic effect on autoimmune diseases, such as RA,
osteoarthritis, tooth inflammation and colitis.

However, there are a lot of controversies at present. Some
studies hold that DEX can inhibit the function of DCs in vitro, but
some consider that it can increase the number of DCs in cancer
patients to enhance immune function in clinical trials; besides,
some think that DEX can increase the number of B cells, while
others argue that it has little effect; and there are different
opinions on the direction in which DEX modulates the
balance of Th1/Th2 and Th17/Treg; similarly, there are
different opinions on the mechanism of the new effect of DEX.

The reasons for the different results may be as follows: 1) due
to the long-term use of DEX in some studies, the sensitivity of α2-
AR may be down regulated, resulting in different results (Banati
et al.,1993; Peng et al., 2013); 2) at present, the research on
immune cells and inflammatory molecules is not thorough
enough, and they may play different roles in different
conditions; 3) the DEX may also play a role through other
receptors and other mechanisms in different pathological
conditions (Guo et al., 2018); 4) the dose was more than the
clinical use in vitro studies; 5) studies on the effects of DEX on
immunity and inflammation mostly focuses on monocytes/
macrophages, microglia and T cells, and other immune cells
are less involved, so it is normal for controversies to arise; 6) the
research objects may be different, some are healthy, some are
under the condition of illness; 7) it may be inaccurate to estimate
the balance of T cells by measuring plasma cytokine
concentration, because all IFN-γ and IL-4 in plasma are not
only from Th1 and Th2 cells (Meng et al.,2020); 8) in addition,
since most studies on the effect of DEX on immune responses are
conducted in a clinical environment, patients have received
various drug combinations, and some confounding factors
may affect the results; 9) the time of sample collection and
detection may be different, some may only detect the
immediate reaction after medication, ignoring the results after
1–3 days (Lorton and Bellinger Denise, 2015).

The mechanism of DEX regulating immune cells and
inflammatory mediators currently discovered includes: 1) DEX
can active α2-AR on the immune cells membrane in the center
and periphery, thereby regulating the expression of related
inflammatory mediators; 2) DEX can directly or indirectly
regulate the release of sympathetic neurotransmitters; 3) DEX
has the direct anti-inflammatory effect, reduces the expression of
pro-inflammatory mediators and increases the level of anti-
inflammatory mediators; 4) DEX can promote natural sleep
(Wu et al., 2016), which protects the body immune function,
restores body energy and repairs the potential organ damage in
the body (Besedovsky et al., 2012; Irwin and Opp, 2017; Joshua,
2021); 5) DEX can regulate M1/M2 polarization of macrophage
and the balance among Th1, Th2, Th17 and Tregs; 6) DEX has a
certain analgesic effect and helps to regulate the neuroendocrine
immune network; 7) DEX reduces the release of pro-
inflammatory factors through the TLR4-NF-κB-MAPK
signaling pathway and the cholinergic anti-inflammatory
pathway; 8) DEX exerts central anti-inflammatory effect by
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down regulating the expression of MCP-1; 9) DEX pretreatment
can inhibit the expression of HMGB1, which is well known as a
mediator of late inflammation, and it is also an early mediator of
aseptic inflammation.

In the future, the role of DEX in different inflammatory and
immune conditions, such as atherosclerosis and pulmonary
infection, should be considered. DEX can significantly reduce
the expression of MCP-1 (Wang et al., 2020), which plays an
important role in the occurrence and development of RA,
atherosclerosis, coronary heart disease and other
inflammatory diseases (Deshmane et al., 2009; Xia and Sui,
2009). Also, DEX can enhance the expression of sirtuin-1
(SIRT1), which has been expected to become a new target for
the treatment of cardiovascular diseases (Prola et al., 2017).
Similarly, DEX can reduce the expression of VCAM-1 receptor
integrin-4 (VLA-4) and lymphocyte associated molecule-1
(LFA-1), which is a good news for patients with
atherosclerosis, long-term bedridden and undergoing major
surgery. Also, DEX can up adjust PPARγ, which is the key to
control the synthesis of pro-inflammatory cytokines,
immunosuppression and cancer development (Wu et al.,
2012). Moreover, DEX can down regulate HMGB1 in
macrophages, which is an important inflammatory mediator
in the late stage of sepsis and plays an important role in the
pathogenesis of sepsis, tumor, arthritis and other inflammatory
diseases (Andersson et al., 2018). Besides, DEX can enhance
cellular immune response, so we can focus on its role in
enhancing anti-tumor immunity.

All in all, we reviewed the anti-inflammatory and
immunomodulatory mechanisms of DEX, comprehensively
summarized the effects of DEX on immune cell function and
inflammatory molecules, and also explained the role of α2-AR in
the immune system, which provides a theoretical background for
the application of DEX in immune-inflammatory related diseases.
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