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Cancer immunotherapy often involves the use of engineered molecules to selectively bind
and activate T cells located within tumour tissue. Fundamental to the success of such
treatments is the presence or recruitment of T cells localised within the tumour
microenvironment. Advanced organ-on-a-chip systems provide an in vitro setting in
which to investigate how novel molecules influence the spatiotemporal dynamics of
T cell infiltration into tissue, both in the context of anti-tumour efficacy and off-tumour
toxicity. While highly promising, the complexity of these systems is such that mathematical
modelling plays a crucial role in the quantitative evaluation of experimental results and
maximising the mechanistic insight derived. We develop a mechanistic, mathematical
model of a novel microphysiological in vitro platform that recapitulates T cell infiltration into
epithelial tissue, which may be normal or transformed. The mathematical model describes
the spatiotemporal dynamics of infiltrating T cells in response to chemotactic cytokine
signalling. We integrate the model with dynamic imaging data to optimise key model
parameters. The mathematical model demonstrates a good fit to the observed
experimental data and accurately describes the distribution of infiltrating T cells. This
model is designed to complement the in vitro system; with the potential to elucidate
complex biological mechanisms, including the mode of action of novel therapies and the
drivers of safety events, and, ultimately, improve the efficacy-safety profile of T cell-targeted
cancer immunotherapies.

Keywords: cancer immunotherapy, T cell infiltration, in vitro cell systems, mathematical modelling,
spatio—temporal analysis

1 INTRODUCTION

In the last decade, cancer immunotherapy (CIT) has emerged as one of the most rapidly advancing
and promising fields in the research and development of cancer treatments (Mellman et al., 2011;
Couzin-Frankel, 2013; Farkona et al., 2016). Such treatments often involve the use of engineered
molecules to selectively bind and activate T cells located within the tumour tissue in order to harness
their cytotoxic potential. The presence or recruitment of T cells within the target tissue is crucial to
the mode of action of such treatments (Zhang et al., 2019). Thus, a deep understanding of the
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processes driving T cell trafficking and tissue infiltration and how
these are modulated by novel CIT molecules is key to the
development of new drugs to reduce the high rate of attrition
which results from a lack of efficacy or adverse effects in vivo
(Havel et al., 2019; Martins et al., 2019). However, observing these
dynamics at a high resolution using in vivo animal models may be
technically challenging. Such models may also fail to be
translationally predictive in the clinic as a consequence of
genetic differences, with more complex molecules often not
cross-reactive with pre-clinical species (Husain and Ellerman,
2018; Olson et al., 2018; Wagar et al., 2018). Aligning with the
principle of the “3 Rs” for the refinement, reduction and
replacement of animal models (Guhad, 2005), such
considerations motivate the development of advanced in vitro
cell systems towards more controllable, predictive platforms in
which to test the pharmacodynamic effects of novel drugs and
reduce the emphasis on in vivo animal experiments.

We set out to address this gap by building the first in vitro
system that permits physiologically relevant, basal infiltration of
T cells into engineered three-dimensional (3D) intestinal mucosa.
We further increased the physiological relevance and predictive
capacity of the model by incorporating a resident immune
compartment. The multiple components that constitute the
model—primary intestinal epithelium, resident immune cells
and matched circulating T cells—enable us to introduce
controlled modulations that can allow for a simplified
representation of variations in patient physiological status
within the system, such as chronic inflammation, common
asymptomatic infections, microbiome changes, autoimmune
susceptibilities or even tissue damage, and immune
reprogramming due to cancer or chemotherapy. While T cells
are principally responsible for the effects on the epithelium (given
the mode of action of TCBs), we cannot exclude the contribution
of other immune cell types (B cells, monocytes, NK cells) in the
pharmacodynamic effects in both efficacy and safety, even if it is
indirect by way of soluble factors, for example. As such, our
in vitro models incorporate the whole compartment, rather than
only T cells (Kerns et al., 2021). Consequently, the experimental
data and subsequent analysis presented in this paper consider the
infiltration of the PBMC population as a whole.

The control and tractability provided by the platform enables
in-depth quantitative analyses of the mechanisms that underlie
the observed outcomes. However, the multiple components
within the system are interdependent and interact with each
other in a complex manner resulting in spatiotemporal dynamics
that can be challenging to analyse in a manner that fully utilises
the extent of the available data to understand the underlying
biology. Mathematical modelling has the potential to enhance the
insight gained from such systems and elucidate complex,
interrelated biological mechanisms and, ultimately, provide
more quantitative predictions. Cellular movement, interactions,
and signalling processes have been modelled extensively to
mechanistically explore these phenomena using a variety of
modelling approaches (DiMilla et al., 1991; Dallon and
Othmer, 1997; Matzavinos et al., 2004; Anderson, 2005; Di
Costanzo et al., 2015; McLennan et al., 2015). In particular,
the chemotactic response has received a lot of attention to

understand the directed movement of cell populations and
organisms in response to chemical stimuli (Painter et al., 2000;
Horstmann, 2003). Among these approaches, variations on the
classical system of partial differential equations (PDEs) first
formulated by Keller and Segel (1971) have been successfully
used to describe the dynamics of a variety of cell populations in
different biological contexts (Hillen and Painter, 2009; Painter,
2019). The ability of these systems to mechanistically describe
how the distribution of cell populations may evolve spatially and
temporally makes them an attractive choice of framework for
modelling the rich imaging data which may be collected from
advanced in vitro cell systems.

There are numerous established techniques which are
routinely employed for fitting mathematical models to
experimental data. However, these may often be
computationally expensive involving large numbers of model
simulations; including, but not limited to, Monte Carlo
Markov Chain (MCMC) methods, particle swarm optimizers,
and differential evolution and genetic algorithms (Storn and
Price, 1997; Jin, 2005; Poli et al., 2007; Qin et al., 2009;
Gelman et al., 2014). For PDE model systems there are two
key considerations which may hinder the use of these approaches,
namely, the computational complexity of solving a PDE system
numerically and the dimension of the model parameter space to
be explored. Surrogate-based optimisation algorithms leverage an
approximation of the solution to the full model which may be
simulated cheaply in order to perform global optimisation using
the aforementioned approaches (Wang and Shan, 2007; Viana
et al., 2014). Such methods are routinely used in other fields such
as engineering in manufacturing, automotive, and aerospace
applications (Wang and Shan, 2007; Laurenceau and Sagaut,
2008; Haftka et al., 2016; Bergh et al., 2020) but their use for
complex modelling of biological processes are limited to just a few
examples in the literature (Afraites and Bellouquid, 2014; Li et al.,
2016; Grenier et al., 2018).

In this paper we present a novel microphysiological system
that recapitulates immune cell infiltration into gut epithelial
tissue and develop a mathematical model of the in vitro
system to mechanistically describe the dynamics of infiltrating
cells observed experimentally. We combine features from a
number of surrogate-based optimisation algorithms and
develop a workflow to efficiently explore the model parameter
space to fit the model to the spatiotemporal experimental data.
We use in silico simulations of the mathematical model to analyse
the imaging data from the in vitro model under a range of
experimental conditions to explore how the dynamics of T cell
infiltration are altered in the presence of a cytotoxic T cell
bispecific antibody (TCB) compared to control, non-toxic
conditions.

2 MATERIALS AND METHODS

2.1 In vitro System
To construct the in vitromodel, we leverage the multicompartment
design of the Organoplate (Mimetas BV, Netherlands)—a
microfluidic device containing 40 three-channel chips
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(Figure 1). The three channels of each chip are delimited via a
phase guide promoting the formation of distinct
microenvironments within each channel while permitting
cellular movement between channels [further details of the chip
design can be found in (Gjorevski et al., 2020)]. The top (luminal)
channel is used to form an intestinal tube using Caco-2
colonocytes. The middle channel is used to create the stromal
compartment of the intestine, by incorporating primarymonocyte-
derived macrophages, embedded in collagen-based extracellular
matrix (Gjorevski et al., 2020). The bottom (basal) channel is used
to introduce circulating peripheral blood mononuclear cells
(PBMCs), including effector T-cells. Importantly, the same pool
of PBMCs is used to generate the resident macrophages, thus
ensuring matched resident, and peripheral immune
compartments.

A tool HLA-restricted T cell bispecific antibody (hereafter
toxic TCB), D66-ESK, known to result in broad T-cell mediated
killing of HLA-A2-expressing target cells (Augsberger et al.,
2021) is used to test whether recreating the cellular and
architectural complexity of an immune-responsive intestinal
mucosa would allow us to recapitulate the damaging apoptotic
effects and investigate the resulting influence on T cell infiltration.
A non-targeting, CD3-only binding TCB (hereafter control TCB),
DP47, was used as a control expected to yield no toxicity. TCBs,
along with PBMCs, were introduced using the basal channel,
mimicking systemic delivery in the clinic.

In this paper we present results using resident macrophages
that were characterised as an M1 phenotype to provide a pro-
inflammatory stimulus and promote T cell migration (Gjorevski
et al., 2020). Our dataset comprises 16 different experiments of
which 8 were performed in the presence of the control TCB,
DP47, and 8 included the cytotoxic TCB, D66-ESK.

The course of each experiment was imaged at 2 h intervals to
capture the dynamics of infiltrating PBMCs. Images were acquired
using an Opera Phoenix (PerkinElmer) with a 5X objective. The
images contain a bright-field and two fluorescent channels (488:
Caspase 3/7 green and 555: Cell Tracker red) in a 14 planes z-stack.
We analysed the multi-channel images utilizing the Fiji (Schindelin

et al., 2012) distribution of ImageJ (Rueden et al., 2017). We opened
the images with the Bio formats plugin (Linkert et al., 2010) and
reduced the image dimensionality projecting themaximum intensity
of the z-planes. We select the area of the image corresponding to the
Mimetas Organoplate chip middle and upper compartments
utilizing the bright-field channel. To do this we manually defined
a region of interest based on the bright-field channel with the ROI-
manager tool and cropped the multi-channel images accordingly.

We then quantified the fluorescently labelled immune cells
present in the middle and upper chip compartments based on the
fluoresce channel. To achieve this we converted the images to a
binary mask applying the default auto-threshold method.
Additionally, we separated touching nuclei with watershed
segmentation. From this segmented image we analysed the
particle amount, area, coordinates, and morphology with the
Analyze Particles tool. The tabular results were then exported for
the in silico modelling.

The image analysis algorithm may fail to separate some cells
which are closely clumped together. We handle this by
incorporating a post-processing step in which cell areas
above a threshold size are assumed to be multiple cells
occupying the same location, with the number of cells
determined by rounding to the nearest multiple of the
threshold size. We choose a threshold of 50 μm2 under the
assumption that a PBMC is typically less than 10 μm in
diameter. This is such that regions above 75 μm2 in area
(~ 10μm in diameter) are assumed to comprise more than
one cell and rounded up. The spatial distribution of infiltrating
PBMCs at each time point is summarised by dividing the
region of interest into 20 bins of equal size and counting the
number of cells identified in each bin.

2.2 Mathematical Model
We propose a reaction-diffusion-chemotaxis system of partial
differential equations (PDEs) to describe the evolution of a
continuous PBMC density. The infiltration of PBMCs is
assumed to be influenced by the micro-environment in the
different channels of the in vitro system and responds to

FIGURE 1 | Schematic showing the design and layout of the Mimetas Organoplate chip and the components comprising each of the three channels of each
well—primary gut epithelium in the top channel, extracellular matrix and resident immune cells in the middle channel, and peripheral blood mononuclear cells in the
bottom channel.
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cytokine-mediated chemotactic cues. For simplicity, we
assume that we may neglect any horizontal movement of
PBMCs parallel to the boundaries of each channel and that
the infiltration dynamics may be captured considering a single
spatial dimension in the forward direction as cells travel across
the different channels within the system. We thus describe the
dynamics in space, x, and time, t, of two constituent species
within our mathematical model system: the PBMC density,
ρ(x, t), and the concentration of a generic chemoattractant,
α(x, t). We focus on capturing the dynamics of infiltrating
PBMCs and thus consider a domain including the middle
matrix channel and top epithelial tissue channel. PBMCs
enter the domain at x = 0 from the PBMC channel while
the boundary x = 1 corresponds to the top of the epithelial
tissue channel, with the transition between the matrix and
tissue channels denoted by x = xt ∈ (0, 1). A schematic
representation of this domain is shown in Figure 2.

The reaction-diffusion-chemotaxis system governing the
evolution of the PBMC density, ρ, and chemoattractant
concentration, α, may thus be written as:

zρ

zt
� z

zx
Dρ x( ) zρ

zx
( ) − z

zx
χ x, α( )ρ zα

zx
( ) − ξρ, (1)

zα

zt
� z

zx
Dα x( ) zα

zx
( ) + η11 x≤xt{ }︸���︷︷���︸

Production frommacrophages

+ η2ρ1 x≥xt{ }
︷���︸︸���︷Target−induced release

− κρα − ]α, (2)

where 1A denotes the indicator function on the set A.
The interactions between the species in our model describe the

dynamics of PBMC infiltration as influenced by a resident
immune compartment and the additional effects of drug-target

interactions in the epithelial tissue. The production of the
chemical species α captures the influence of the resident
immune compartment in the matrix channel. Here we do not
explicitly model the resident macrophages, instead assuming a
uniform distribution throughout the matrix and thus uniform
rate of production of α in 0 < x < xt given by η1. This mechanism
thus represents a pro-inflammatory, macrophage-derived,
chemotactic stimulus within our system. If the experimental
conditions include the presence of a TCB, for example, then
drug-target interactions may occur upon infiltrating PBMCs
reaching the tissue channel. This may result in apoptotic
epithelial cell death and induce cytokine release, acting as a
source of α in the top channel. For simplicity we similarly do
not model epithelial cell density directly but again assume a
uniform distribution such that cytokine release of α occurs at a
rate, η2 proportional to the PBMC density, ρ, in xt < x < 1. This
assumption is of course a simplification and may break down at
later times in the case of widespread apoptosis. The cytokines
represented by α are assumed to degrade with rate ] and may be
taken up by PBMCs with rate, κ. Diffusion throughout the
domain is assumed to occur with the spatially varying
diffusion coefficient, Dα(x).

PBMCs are assumed to infiltrate in response to the chemotactic
gradient of α. Based upon the empirical observations that cytokine
expression increases throughout the time course of the experiments
while the total number of infiltrating PBMCs saturates, we are
motivated to consider a “receptor law” formulation for the
chemotactic sensitivity, χ(x, α), given by

χ x, α( ) � ~χ x( )k
k + α( )2. (3)

FIGURE 2 | Schematic diagram of the mathematical domain used to model the PBMC infiltration dynamics in the top two channels of the Mimetas Organoplate
chip. The interface with the bottom channel is given by x = 0, while x = xt denotes the interface between the middle and top channels. The diffusivity parameters, Di, and
chemotactic sensitivity, ~χ, vary spatially as given by Eq. 4, with cells moving more freely in the middle channel corresponding to higher (hi vs. lo) parameter values.
Cytokine production may occur in both channels via two distinct mechanisms.
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This well-established and characterised functional form
captures the observed behaviour that for large concentrations
individual cells may not be able to resolve gradients of the
chemoattractant and thus may no longer respond to the
chemotactic signal (Painter et al., 2000). In addition to
chemotaxis, the cells may also move in an unbiased, diffusive
manner. Since we here consider a one-dimensional domain, we
also introduce a sink term proportional to the local cell density
to account for the small number of cells which are observed to
move horizontally and leave the region of interest captured by
the image analysis.

Aside from the different mechanisms of cytokine release
previously described, we also capture differences between the
two channels in the ability of the species to move across each part
of the domain. More specifically, it is assumed that cells may
move and cytokines may diffuse more freely through the matrix
channel than they may penetrate the epithelial tissue. These
differences manifest themselves in the form of piece-wise
constant diffusion and chemotaxis coefficients, Dρ(x), Dα(x)
and ~χ(x), which are defined by

Dρ x( ) �
�Dρ 0< x<xt

�Dρ/μρ xt < x< 1,
⎧⎪⎨⎪⎩

Dα x( ) �
�Dα 0<x<xt

�Dα/μα xt <x< 1,
⎧⎪⎨⎪⎩ ~χ x( ) �

�χ 0<x<xt

�χ/μρ xt <x< 1,
⎧⎨⎩

(4)
for μρ, μα > 1, where �Dρ, �Dα and �χ are scalar parameters for the
motility coefficients. Thus the diffusion and chemotaxis
coefficients are higher (c.f. “hi” in Figure 2) in the middle
channel than in the top channel (c.f. “lo” in Figure 2).

It remains to specify appropriate initial and boundary
conditions to close the system given by Eqs. 1, 2. For the
boundary at the top of the tissue channel at x = 1 we
prescribe no flux conditions for ρ and α given by:

Dρ
zρ

zx
− χ

zα

zx
ρ
∣∣∣∣∣∣∣x�1 � 0,

zα

zx

∣∣∣∣∣∣∣x�1 � 0. (5)

The boundary at x = 0, however, does not represent a solid
boundary of the in vitro system, but rather the interface between
the bottom PBMC channel and the middle compartment
representing the ECM. As a consequence of the experimental
observation that very few PBMCs infiltrate in the absence of
macrophages in the system, we assume that the initial
infiltration of PBMCs into the matrix channel is driven by
chemotaxis. The total flux of PBMCs into the domain at x =
0 is thus proportional to the chemotactic signal from α which
may be written as:

−Dρ
zρ

zx
+ χ

zα

zx
ρ � χ

zα

zx
~ρ, (6)

where ~ρ represents the assumed constant source of PBMCs in the
bottom channel. The cytokine species α is able to diffuse across
the interface at x = 0 and so we prescribe a diffusive flux out of the
domain proportional to the concentration such that

zα

zx
� ζα. (7)

The in vitro system is initialised with the pool of PBMCs
contained within the bottom channel. The resident immune
compartment is present at the start of the experiment and
provides the chemotactic stimulus for PBMC infiltration. We
therefore assume a non-zero, steady state initial condition for the
concentration of α due to the production by the macrophages in
the matrix channel. Initial conditions for the PBMC density, ρ,
and the cytokine concentration, α, throughout the domain are
thus given by:

ρ x, 0( ) � 0, α x, 0( ) � �α x( ), (8)
where �α(x) satisfies

z

zx
Dα x( ) z�α

zx
( ) + η11 x≤xt{ } − ]�α � 0. (9)

Eqs. 1–9 completely describe our spatiotemporal
mathematical model of PBMC infiltration in the in vitro
system. We note that this model is similar to that proposed by
Alt and Lauffenburger (Lauffenburger and Kennedy, 1983; Alt
and Lauffenburger, 1987) for modelling T cell infiltration in vivo.
We simulate the solution of our model using a finite volume
numerical scheme, of which more details may be found in the
Supplementary Material.

2.3 Parameter Optimisation Framework
In order to integrate the mathematical model developed in
Section 2.2 with the in vitro experimental data of PBMC
infiltration, we require a framework to efficiently explore the
model parameter space. In this section we present a summary of
the key ideas of the optimisation methodology used in this paper,
which is summarised by the pseudo-code in Algorithm 1. Please
see the Supplementary Material and the references therein for a
more detailed explanation.

Kriging, also known as Gaussian process modelling, is a
method of statistically interpolating data to build a response
surface (Sacks et al., 1989). First introduced by Jones et al. (1998)
based on ideas developed by Sacks et al. (1989), the key idea of
surrogate-based optimisation is to leverage the Kriging surrogate
for computationally-intensive global optimisation to minimise
the number of calls to numerically simulate the true function. In
brief, a typical Kriging-based optimization algorithm proceeds by
first building an initial Kriging model based on a random sample
of the parameter space [e.g., Latin hypercube sample (LHS)].
Subsequent iterations involve the use of a differential evolution
(DE) global optimisation algorithm (Storn and Price, 1997) on
the Kriging model to identify the best next point to sample based
on a metric of expected improvement (EI) over the current
minimum. The true model is then solved at the identified
point and the Kriging model correspondingly updated. The
algorithm iterates until either a convergence tolerance is met
or a pre-determined computational budget is exceeded.

In our framework, we incorporate additional features from a
number of existing algorithms to improve the speed and
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convergence of the algorithm to the global optimum. These
features include parallelisation (Zhan et al., 2017), additional
sampling criteria (Sacher et al., 2018; Xing et al., 2020), and
domain size reduction (Xing et al., 2020).

Algorithm 1 Kriging-based optimisation workflow.

The PBMC distribution at each time point is characterised
from the in vitro data by splitting the domain into equally sized
bins and counting the number of cells identified in each.
Correspondingly, we also numerically integrate the solution
for PBMC density across each bin. We calculate the sum of
squares distance between each bin count and the solution
summed over all time points to give the distance metric to be
minimised as the objective function for the optimisation
algorithm.

3 RESULTS

3.1 Recapitulating T Cell Infiltration in vitro
A series of time lapse images for two representative experiments
are shown in Figure 3, one in the presence of the non-toxic,
control TCB, DP47, and one in the presence of the cytotoxic TCB,
D66-ESK. A video of the time lapse imaging for an

experiment in cytotoxic TCB conditions can be found in
the online Supplementary Material. From a visual
comparison, it is evident that the in vitro system
recapitulates differences in both PBMC infiltration and
epithelial cell apoptosis between the two conditions. Soon
after TCB treatment, as observed in the snapshot at 3 h in
Figure 3, lymphocytes began infiltrating the ECM
compartment, likely also guided by cytokines produced by
the resident macrophages. Within 48 h, however, toxic TCB
treatment resulted in substantially higher PBMC infiltration
compared with the control TCB. Moreover, in the toxic TCB-
treated in vitro model, PBMC infiltration culminated with
massive epithelial cell killing via apoptosis, which is
consistent with mechanisms of T cell cytotoxicity.

We use our image analysis pipeline to identify infiltrating
PBMCs and quantify precisely these observations. We visualise
how the extent of PBMC infiltration at 48 h differs between the
control TCB and cytotoxic TCB conditions in Figure 4. In
Figure 4A we confirm that significantly more PBMCs have
migrated into the top two channels after 48 h in conditions in
the presence of the cytotoxic TCB. Across the 16 experiments in
our dataset, a mean of 582.13 cells are identified in the D66-ESK
conditions compared to 237.63 cells in the DP47 conditions.
However, if we visualise how these populations of infiltrating
PBMCs are distributed throughout the system we observe very
little difference between the two conditions (Figure 4B). The
majority of infiltrating cells are spread throughout the middle
ECM channel with a mean distance travelled of 109.81 and
119.20 μm for the DP47 and D66-ESK conditions, respectively.
The leading cells that travel the furthest and reach the interface
with the top epithelial channel at 350 μm appear to cluster close to
the interface and do not significantly penetrate through this
epithelial barrier.

3.2 Mathematical Model Fitting to Data
The ability of the mathematical model given by Eqs. 1–9 to
describe the observed dynamics is assessed by fitting the model to

FIGURE 3 | Time lapse images for the first 48 h of two representative experiments in the presence of a control TCB, DP47 (top), and in the presence of a cytotoxic
TCB, D66-ESK (bottom). Infiltrating PBMCs are tracked in red while apoptotic epithelial cells are imaged in green.
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the experimental data. We consider each well of the plate to be a
different experiment and separately optimise the model fit to each
dataset in turn. In each case the optimisation framework
described in Section 2.3 is used to identify the parameter set
which best describes the data. An example of a good fit to the data
is shown in Figure 5 whereby the model well describes the
dynamics of infiltrating PBMCs in vitro. In this particular case
the experiment was performed in the presence of 10 μg/ml of the
control TCB, DP47. The surface in Figure 5A represents the
model solution for the PBMC density, ρ, as it evolves in space and
time. The red points summarising the cell counts of infiltrating
PBMCs identified in the imaging data lie close to the solution
surface and are evenly distributed around it. From the model
solution we can see that the infiltration dynamics comprise an
initial infiltration phase, lasting ~24 h, during which PBMCs
infiltrate the system, migrate through the middle ECM
channel and begin to accumulate at the interface with the
epithelial tissue. The first cells reach the interface with the
epithelial cell channel and start to accumulate around 12–15 h
into the experiment. Subsequently, a steady state distribution
profile is reached with few cells penetrating the epithelial channel
beyond the cellular interactions at the interface. A more granular
time lapse showing the comparison between the simulated cell
distributions and the data is shown in Figure 5B.

We note, however, that while our imaging dataset provides
good resolution on the PBMC infiltration dynamics throughout
the time course of the experiment, we lack information on the
cytokine expression in each channel and how it changes over
time. Consequently some model parameters are not identifiable
with respect to the current dataset. This is most obviously seen
when we consider the boundary conditions given by Eqs. 6, 7.
Using Eq. 7, the right hand side of Eq. 6 becomes χ(0, α)ζ~ρα.
Consequently, in the absence of cytokine data, we would
anticipate that the parameters ζ and ~ρ are not identifiable. We
may verify this by fixing all other model parameters to those used
in Figure 5 and exploring the (~ρ, ζ)-subspace. In Figure 6 we
visualise the contours of this subspace with respect to model fit to
the data. As might be expected from the equations, we observe a
reciprocal relationship between ~ρ and ζ which gives rise to
parameter combinations with equally good fits.

3.3 The Influence of Cytotoxic TCBs
While we may not make any concrete statements based on the
identified parameter values arising from our parameter fitting as a
result of the unidentifiability of a number of model parameters,
we may still more broadly interpret the ability of the
mathematical model and the proposed mechanisms to describe
the in vitro infiltration dynamics in the data based on the quality
of fit. In Figure 5, we presented an example of data from a single
experiment to which the model provides a good fit. However, as
might be expected, there is variability in both the experimental
data and, correspondingly, the quality of the model fit to the data.
Our dataset includes experiments performed under a variety of
experimental conditions, in particular in the presence of either a
control, non-toxic TCB, DP47, or a cytotoxic TCB, D66-ESK. In
Figure 7A we visualise the results of the parameter optimisation
grouped by compound. When grouped by compound we observe
that the mathematical model consistently describes the
conditions in the presence of the control TCB, DP47, better
than those treated with the cytotoxic TCB, D66-ESK, in
absolute terms.

To further investigate the discrepancies between the
mathematical model and the data in the D66-ESK treated
conditions we consider each residual to the data in space, x,
and time, t. We sum the values for each residual across all
experiments performed in the presence of D66-ESK and
visualise the results as a heatmap in (x, t)-space in Figure 7B.
The dark blue area of the heatmap near (x, t)=(0,0) corresponds
to the initial infiltration phase with large negative residuals
corresponding to a significant overestimation of the early
dynamics by the model simulations. By contrast, the
predominantly green colours at later times represent a
relatively good fit of the model to the data. As discussed in
Section 3.1, the presence of D66-ESK results in an increase in the
number of infiltrating PBMCs compared to the DP47 conditions.
In order to optimise the fit to the data, the model simulations
closely match the distribution profile at later times when more
cells are present in the system at the expense of capturing the
initial infiltration phase. The inability of the model to capture
both phases with a single parameter set suggests that the
increased infiltration observed with the cytotoxic TCB does

FIGURE 4 | Summaries of PBMC infiltration data at 48 h grouped by compound. (A) The total number of infiltrating cells. (B) The distribution of distances travelled
per infiltrating cell away from the interface with the bottom channel in μm.
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not arise as simply an amplification of the mechanisms present in
the control TCB conditions.

The distinction between the dynamics observed in the
presence of the cytotoxic TCB versus the control TCB is

further highlighted when we plot the difference between the
aggregated D66-ESK data points and the aggregated DP47
data points (Figure 7C). It is evident that there is very little
difference in the early dynamics between the two conditions

FIGURE 5 | (A) Visualisation of the mathematical model exhibiting a good fit to the experimental data for conditions with 10 μg/ml of DP47. The cell counts for each
bin at each time point are shown by the red dots. The model is simulated up to 80 h using the optimal parameters found using Algorithm 1 (given in Supplementary
Table S2 in the supplementary material). The solution surface for the PBMC density, ρ, is scaled to account for the bin width and overlaid with the data points. The purple
region denotes the position of the interface between the middle and top channels of the in vitro system. (B) Comparison of simulated cell count distributions (red
bars) in 10 h intervals with experimental data (blue bars) for the same data and simulation shown in Figure 5. The scaled simulated PBMC density ρ is overlaid for
reference (red line).
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with a notable increase in infiltration in the cytotoxic TCB
conditions occurring after approximately 12 h. We note that
this discrepancy appears to coincide with the progress of the
first infiltrating cells. This suggests that the second, increased
infiltration phase in the D66-ESK dynamics may result from
the effects of target engagement by the first infiltrating PBMCs
mediated by a chemotactic signal that is distinct from that provided
by the resident macrophages in the ECM channel. Consequently,
PBMCs are able to first moderately infiltrate in response to a pro-
inflammatory stimulus, and subsequently increase infiltration
upon target engagement.

4 DISCUSSION

In this paper, we have presented a novel microphysiological system
which recapitulates the dynamics of infiltrating T cells into tissues.
The in vitro model includes the effects of a resident immune
compartment and exhibits observable differences in the dynamics
in the presence of different immune modulatory compounds. The
multiple components that constitute the in vitro model—primary
intestinal epithelium, resident immune cells and matched circulating
T-cells—enable us to introduce controlled modulations that can
allow for a simplified representation of variations in patient
physiological status within the system, such as chronic
inflammation, common asymptomatic infections, microbiome
changes, autoimmune susceptibilities or even tissue damage, and
immune reprogramming due to cancer or chemotherapy. Thus, we
created a complex immune-competentmodel of the intestine, and the
first to incorporate T-cell infiltration as a crucial step of the cancer
immunity cycle. We also demonstrated the model’s competence to
recapitulate TCB-mediated T-cell activation and epithelial cell killing.
As such, our system provides a highly promising setting in which to
test new drugs and provide predictions for safety and efficacy in vivo.

Live imaging of the in vitro system allows for the observation
of such dynamics at a high temporal resolution. Image analysis
techniques can provide a rich dataset for quantitative analysis of

the complex biological processes involved. Simple analysis of the
imaging data confirmed greater infiltration of PBMCs was oberved
in the presence of a cytotoxic TCB at 48 h when compared to
control, non-toxic conditions. No significant difference, however,
was observed in the distribution of distances travelled by infiltrating
PBMCs between the two conditions. In both scenarios, infiltrates
were spread throughout the middle matrix channel with cells
observed to accumulate upon reaching the interface with the
epithelial cells. When in the presence of the cytotoxic TCB this
target-engagement with the epithelial cells was observed to trigger
apoptosis.

However, reduction of the complete, spatiotemporal dataset to
summary statistics in this manner, does not utilise the data to its
full extent or maximise the insight which may be gained into the
spatiotemporal dynamics. To that end, we developed a
mathematical model to describe the infiltration of PBMCs in
response to chemotactic signals pertaining to the particular
geometry and components of our in vitro system. We
implemented a surrogate-based optimisation algorithm in
order to fit the model to the experimental data. We observed
that the model may provide a good description of the PBMC
infiltration dynamics and can characterise an initial infiltration
phase that subsequently settles to a steady state distribution of
PBMCs throughout the system whereby infiltrating cells are
spread throughout the middle, matrix channel but do not
significantly penetrate the top, epithelial tissue channel.

Inspection of the model equations and subsequent analysis of a
subspace of the full parameter space revealed that the model is not
practically identifiable with respect to the current imaging data.
This limits the extent to which we may make quantitative
conclusions about specific parameters and the magnitude of
influence of different processes. We thus have identified that
additional data is necessary to further inform the mathematical
model in order to ultimately make more quantitative predictions.
In particular, the ability to robustly estimate the model
parameters may allow for further, quantitative understanding
for the TCB dose dependence on the infiltration dynamics, for
example. Although not available for the experimental data
presented here, it is feasible to measure cytokine readouts at
discrete timepoints within the top and bottom channels of each
well. As such, the use of the current model to inform the design of
future experiments is an important avenue for future work. The
model may be used to inform the types of data which should be
measured as well as identifying the most informative time points
at which to sample. This is of particular relevance for cytokine
readouts which may not be continuously monitored as for the
imaging data and are therefore more costly to sample.

By analysing the quality of fit of the mathematical model to the
data we identified differences between the conditions in the
presence of a cytotoxic TCB, D66-ESK, versus a control, non-
toxic TCB, DP47. The discrepancies between the model and data
with the cytotoxic TCB do not arise simply as a result of uniformly
increased numbers of infiltrating PBMCs. Under the hypothesised
mechanisms described by the model, in order to achieve the large
numbers of infiltrating PBMCs at steady state at later times, the
initial infiltration phasemust also necessarily be accelerated. This is
evident in the heatmap of the residuals in the cytotoxic TCB

FIGURE 6 | Contour plot for the parameter subspace of the pool size of
PBMCs, ~ρ ∈ [0, 250], and the cytokine outflux rate, ζ ∈ [0, 1]. The contours
represent the quality of fit to the data shown in Figure 5 as given by the sum of
squares residual error and is shown on a log scale. All other model
parameters are fixed to those used for the simulation in Figure 5.
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conditions whereby themodel fit is compromised with a significant
overestimation of the initial dynamics in order to accomodate the
steady state profile. Further analysis of the differences between the
control and cytotoxic TCB conditions showed that in both cases
the initial phase is almost identical, with acceleration of the
dynamics in the cytotoxic TCB case occurring after ~10–12 h
coincident with the first PBMCs reaching the interface with the
epithelial cell channel. The relatively poor fit of the model to these
dynamics suggests that the cytokine signalling as a result of this
target engagement must act as a distinct chemotactic cue for the
infiltrating PBMCs, rather than as an amplification of the existing,
initial chemotactic trigger provided by the resident macrophages.
Extending the model to account for these mechanisms will further
increase the complexity of the system. An exploration of these
model dynamics for the cytotoxic TCB conditions is an important
area of future work in combination with further experiments to
supplement data available for model calibration as discussed above.

In this paper we focus on PBMC infiltration dynamics towards
epithelial tissue and thus, for simplicity, we model the cellular
distribution in a single spatial dimension perpendicular to the
direction of each channel of the in vitro system. The model
equations naturally generalise to higher dimensions, and
simulations of such are an avenue for future work in order to

validate the work presented in this paper and subsequent
extrapolation to geometries beyond that imposed by the in vitro
system considered here. By contrast, typical pharmacokinetic/
pharmacodynamic (PKPD) models used in drug development
context are often formulated as systems of ODEs. It is likely
feasible to reduce the mathematical model in this paper to an
ODE description of the total number of infiltrating PBMCs in the
manner presented by Alt and Lauffenburger (1987). Such an
analysis would facilitate integration of these dynamics with
commonly-used PKPD modelling frameworks.

The in vitro system, experimental data, mathematical model and
analysis presented in this paper may be used provide insight and
understanding of the spatiotemporal dynamics of PBMC infiltration
and how they are influenced by novel immune-modulatory
compounds. This is of fundamental interest for understanding the
interrelated signalling mechanisms involved. However, perhaps of
more importance for drug development, is the potential for these
systems to predict the consequent apoptosis induced by target-
engagement with these compounds in both a safety and an efficacy
context. Thus, an important future extension of the current
modelling will be to incorporate a description of the epithelial
cell population to investigate the influence of the spatiotemporal
infiltration dynamics on target-mediated cell death with the aim of

FIGURE 7 | (A) Boxplots showing the distribution of the best model fits to the data across all experimental conditions separated by compound between the control
TCB, DP47, and the cytotoxic TCB, D66-ESK. (B) Heatmap of the discrepancy between the model simulations and the data for each data point aggregated across all
conditions in the presence of D66-ESK. The purple dashed line marks the position of the interface between the middle and top channels. (C)Waterfall plot showing the
difference in distribution of infiltrating PBMCs at each time point between the D66-ESK conditions and the DP47 conditions. The red region shows the plane where
the difference in cell count is zero. The location of the interface between the middle and top channels of the plate is marked by the purple dashed line.
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quantitative in vivo predictions for the safety and efficacy of novel
cancer immunotherapy drugs.

In conclusion, mathematical approaches to modelling in vitro
systems, such as the one presented in this paper, can aid in the
design and analysis of complex experiments representing in vivo
biology, provide insights into interrelated biological mechanisms
and, ultimately, provide more quantitative predictions to develop
safe, efficacious drugs.
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