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UDP-GlcNAc is a sugar substrate necessary for the O-GlcNAcylation of proteins.
SLC35B4 is one of the nucleotide sugar transporters that transport UDP-GlcNAc and
UDP-xylose into the endoplasmic reticulum and Golgi apparatus for glycosylation. The
roles of SLC35B4 in hepatocellular carcinoma (HCC) tumorigenesis remain unknown. We
find that the expression levels of SLC35B4 are higher in HCC tissues than adjacent non-
tumor tissues. SLC35B4 is important for the proliferation and tumorigenesis of HCC cells.
Mechanistically, SLC35B4 is important for the O-GlcNAc modification of c-Myc and thus
the stabilization of c-Myc, which is required for HCC tumorigenesis. Therefore, SLC35B4 is
a promising therapeutic target for treating HCC.
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INTRODUCTION

Liver cancer is one of the most common human cancers and the third leading cause of cancer death
in 2020 (Sung et al., 2021). Hepatocellular carcinoma (HCC) is the major type of primary liver cancer
(Sung et al., 2021). The main risk factors causing HCC include chronic infection with hepatitis B
virus or hepatitis C virus, heavy alcohol use, and non-alcoholic fatty liver disease usually associated
with obesity and type 2 diabetes (Rawla et al., 2018). Available therapeutic options for HCC include
tumor resection, liver transplantation, percutaneous ethanol injection, and radiofrequency ablation
(Karaman et al., 2014; Llovet et al., 2021). However, the effective therapies for advanced HCC are
limited due to the lack of understanding of the pathways driving HCC (Jeng et al., 2015). Therefore,
to develop more effective HCC therapy, it is important to identify new therapeutic targets that drive
HCC tumorigenesis.

O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a common post-translational
modification of the serine or threonine residues of protein, which occurs in the endoplasmic
reticulum (ER) and Golgi apparatus using UDP-N-acetylglucosamine (UDP-GlcNAc) as the
substrate (Hart et al., 2011). This modification is catalyzed by O-GlcNAc transferase (OGT) and
removed by O-GlcNAcase (OGA) (Ong et al., 2018). Previous studies have shown that
O-GlcNAcylation, the new hallmark of cancer, promotes tumorigenesis via multiple
mechanisms, including the regulation of cell cycle, chromatin dynamics, and tumor metastasis
(Fardini et al., 2013). Elevated O-GlcNAcylation enhances glycolysis by regulating the activity of key
glycolytic enzymes, including GLUT1, PFK1, and PGK1 (Bacigalupa et al., 2018; Nie et al., 2020).
O-GlcNAcylation has been shown to regulate the stability of c-MYC and HIF-1α via direct or
indirect manners, which are two oncogenic transcriptional factors critical for tumor progression
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(Itkonen et al., 2013; Ferrer et al., 2014). Nucleotide sugar
transporters (NSTs) are a family of transport proteins that
move the glycosylation substrates across the ER or Golgi
apparatus membranes (Handford et al., 2006; Hadley et al.,
2014). Solute carrier family 35 member B4 (SLC35B4) is one
member of NSTs that can transport both UDP-GlcNAc and
UDP-xylose (Ashikov et al., 2005). A previous study has
demonstrated that SLC35B4 is regulated by oncoprotein YAP1
and promotes gastric cancer development and progression (Liu
et al., 2019). However, the roles of SLC35B4 in promoting
tumorigenesis remain unknown.

In this study, we showed that the expression levels of SLC35B4
in HCC are higher than normal liver tissues, and the
overexpression of SLC35B4 is correlated with the poor
prognosis of cancer patients. SLC35B4 knockdown dramatically
decreased the proliferation and migration of HCC cells.
Mechanistically, while SLC35B4 knockdown did not affect the
mRNA levels of c-Myc, it significantly decreased c-Myc protein
levels. In addition, we discovered that SLC35B4 knockdown in
HCC cells decreased the O-GlcNAcylation of c-MYC that is known
to stabilize c-Myc. Therefore, SLC35B4 drives HCC progression by
stabilizing c-Myc through O-GlcNAc modification of c-Myc.

MATERIALS AND METHODS

Cell Lines and Cell Culture
Hepatocellular carcinoma cell line (HepG2) was obtained from
ATCC. Hepatocellular carcinoma cell line (QGY-7703) was
provided by the Pathology Department of Sun Yat-sen
University Cancer Center. HEK 293FT was purchased from
Thermo Fisher Scientific. All of the cell lines were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) containing 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37°C
with 5% CO2.

Animals and Human HCC Samples
All animal experiments were performed according to the
protocols approved by the Institutional Animal Care and Use
Committee (IACUC) of Southern Medical University. For
xenograft tumor growth, 5 × 106 cells were injected
subcutaneously into the left (control group) and the right
(SLC35B4 knockdown group) flanks of the immunodeficient
NSG mice (purchased from Shanghai Model Organisms,
Shanghai, China. n = 6), respectively. For inducible gene
knockdown, the drinking water containing 2 mg/L of

FIGURE 1 | SLC35B4 is overexpressed in HCC and inversely correlated with prognosis of HCC patients. (A) The heat map of mRNA expression profile in 268 non-
tumor adjacent tissues and 243 HCC tissues in GSE25097 dataset. The mRNA expression level of SLC35B4was indicated by a white line. (B) The box plot of SLC35B4
expression levels in non-tumor tissues (268) and HCC tissues (243) in GSE25097 dataset. P-value is indicated. (C,D) The relative mRNA expression levels of SLC35B4 in
42 paired adjacent normal tissues (ANT) and HCC tissues. P-value is indicated. (E) The mRNA expression levels of SLC35B4 in HCC cell lines. N = 3. Data are
presented as mean ± SD. (F) Kaplan–Meier survival curve of the overall survival of HCC patients with high and low SLC35B4 expression levels. The SLC35B4 expression
levels were inversely correlated with the overall survival of HCC patients. P-value is indicated.
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doxycycline was supplied with doxycycline (20 mg/kg body
weight) injected intraperitoneally every day.

After obtaining adequate informed consent, HCC tissue and
adjacent normal tissue (ANT, exceeding the edge of the tumor by
at least 2 cm) were obtained from HCC patients who underwent
curative resection for HCCs in Nanfang Hospital of Southern
Medical University, Guangzhou, China, between November 2010
and May 2015. This study was approved by IRB of Nanfang
Hospital at Southern Medical University and was performed
according to the Declaration of Helsinki (6th revision, 2008).

Data Analysis From TCGA
GSE25097 dataset analysis was obtained from Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE25097). Kaplan–Meier survival curves of
overall survival in HCC patients were plotted according to the
data from a previous study (Nagy et al., 2021).

Cellular Proliferation and Clonal Formation
Assays
HCC cells were digested by 0.25% trypsin at 37°C for 3 min and
washed with PBS. For cellular proliferation assay, cells (2,000
cells/well or 5,000 cells/well) were seeded into a 96-well plate.
Twenty-four hours later, 10 μl of CCK8 solution was added into
each well and incubated at 37°C for 1 h before the absorbance was
detected at 450 nm using a microplate reader. Every experiment
at least had three repetitions. For clonal formation assay, cells
(500 cells/well) were seeded into a 6-well plate and incubated at
37°C for about 2 weeks. After fixation by 100% methanol at room
temperature for 15 min, the cell colonies were stained with 0.1%
crystal violet for 1 h at room temperature and counted. Every
experiment at least had three repetitions.

Cell Lysis and Western Blotting Analysis
After washing with PBS and harvested, HCC cells were sonicated
at 4°C in RIPA buffer (50 mM Tris–HCl pH 8.0, 150 mM NaCl,
1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS)
containing 1% protease inhibitor cocktail (Thermo Fisher
Science). Lysate suspension was obtained after centrifugation
at 4°C for 10 min and the protein concentration determined
using BCA assay kit (Sigma). Protein denaturation was
performed at 100°C for 5 min in 1× sample buffer (Bio-Rad).
For Western blotting, the same amount of protein was loaded
onto PAGE gel and transferred to a PVDF membrane (Merck) by
tank transfer system (Bio-Rad). After being blocked by 5%milk at
room temperature for 1 h, primary antibody was incubated with
the membrane at 4°C overnight. Immunoblot signal was detected
using ChemiDoc Touch Imaging System (Bio-Rad) after the
incubation with secondary antibody at room temperature for 1 h.

Real-Time PCR
Total RNA from cells was extracted using RNeasy Mini Kit
(Invitrogen) according to the manufacturer’s instruction. Briefly,
cells were lysed in RLT lysis buffer and homogenized using a 1-ml
syringe with needle. RNA was purified with RNeasy Mini Kit
columns and finally dissolved in RNase-free water. cDNA synthesis

from total RNA was performed using PrimeScript RT reagent Kit
(Takara) following the manufacturer’s protocol. TB Green Premix
Ex Taq II (Takara) was used for Real-Time PCR detection
according to the manufacturer’s instruction. Every experiment
at least had three repetitions.

Construct and Lentivirus Production
For SLC35B4 knockdown, two different SLC35B4 shRNA target
sequences were synthesized and inserted into pLKO.1-puro
vector (Addgene 8453) and tet-pLKO-puro vector (Addgene
21915). For lentivirus production, package plasmid psPAX2
(Addgene 12260), envelop plasmid pMD2.G (Addgene 12259),
and the pLKO.1 vectors were co-transfected into HEK
293FT cells. Forty-eight hours after transfection, the
supernatant was harvested and concentrated with Lenti-X
concentrator (Clontech). The lentivirus was stored at −80°C.

Cell Migration Assay
For cell migration assay, culture media (500 μl) containing 10%
FBS was added into the wells of a 24-well plate with 1 × 105 cells
cultured in the inside compartment of a Transwell insert
supplemented with DMEM media without FBS. Twenty hours
after incubation, the cells attached to the membrane of the
Transwell insert were fixed and stained by 0.1% crystal violet.
Every experiment at least had three repetitions.

Immunoprecipitation Assay
HCC cells were harvested and were lysed using Pierce IP lysis
buffer (25 mM Tris–HCl pH 7.4, 150 mM NaCl, 1 mM EDTA,
1% NP-40, and 5% glycerol). Protein concentration was
determined by BCA assay. For immunoprecipitation assay,
1 mg of total lysate was incubated with anti-c-Myc or anti-O-
GlcNAc antibody 4°C overnight. After the incubation with
Protein A and G magnetic beads at room temperature for 1 h,
the beads were collected and washed 3 to 5 times using lysis
buffer. The beads were heated at 100°C for 5 min with 2× sample
buffer and stored at −80°C.

Statistical Analysis
The statistical significance of Kaplan–Meier survival plot was
determined by log-rank analysis. The other statistical significance
was detected by t-test. All of the statistical analyses were
performed in GraphPad Prism. *p < 0.05, **p < 0.01, ***p <
0.001, and ****p < 0.0001; n.s. means non-significant.

RESULTS

SLC35B4 is Overexpressed in HCC and
Correlated With the Poor Prognosis of HCC
Patients
To examine the potential involvement of SLC35B4 in HCC, the
GSE25097 dataset of HCC patients was analyzed, indicating that
the SLC35B4 gene was significantly higher in HCC than in
adjacent normal tissues (Figures 1A,B). In addition, the
analysis of SLC35B4 mRNA levels in 42 paired HCC tissues
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and adjacent non-tumor tissues further confirmed this
conclusion (Figures 1C,D). SLC35B4 was also widely
expressed in HCC cell lines, including HepG2, PLC, and 7703
cells (Figure 1E). The overexpression of SLC35B4 is correlated
with the poor prognosis of the HCC patients (Figure 1F). These
findings suggest that SLC35B4 plays important roles in driving
HCC development.

SLC35B4 Promotes the Proliferation and
Migration of HCC Cells
To study the roles of SLC35B4 in HCC progression, we knocked
down SLC35B4 in HCC cell lines 7703 and HepG2 using two
specific short hairpin RNAs (Figures 2A,B). The results showed
that SLC35B4 knockdown significantly suppressed the

proliferation and colony formation capability of HCC
cells (Figures 2C–F). In addition, SLC35B4 knockdown
suppressed the migration of HCC cells (Figure 2G).
Consistent with these findings, the inducible knockdown of
SLC35B4 dramatically suppressed tumor growth in the
immunodeficient NODSCID mice (Figures 2H,I). These
results demonstrate that SLC35B4 is important for HCC
tumorigenesis in vitro and in vivo.

SLC35B4 Stabilizes c-Myc via O-GlcNAc
Modification
c-Myc is a critical oncogenic transcription factor that directly
binds to the promoters of oncogenes and plays key roles in
driving cancer progression (Dang, 2012). O-GlcNAc

FIGURE 2 | SLC35B4 promotes HCC cell proliferation andmigration. (A,B)Relative mRNA expression levels of SLC35B4 in HCC cells after SLC35B4 knockdown.
N = 3. Data are presented as mean ± SD. (C,D) SLC35B4 knockdown significantly decreased the cellular proliferation of HCC cells as determined by CCK8. N = 3. Data
are presented as mean ± SD. (E,F) SLC35B4 knockdown dramatically decreased the clonal formation ability of 7703 (E) and HepG2 (F) cells. N = 3. Data are presented
as mean ± SD. (G) SLC35B4 knockdown inhibited the migration of HCC cells in vitro. N = 3. Data are presented as mean ± SD. (H) The volume of xenograft tumors
after the inducible knockdown of SLC35B4. iSC, inducible scrambled control; iKD, inducible knockdown. (I) The image and weight of xenograft tumors formed by HCC
cells with or without inducible SLC35B4 knockdown in NSG mice 37 days after inducible knockdown. N = 6. Data are presented as mean ± SD. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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modification of c-Myc protein by O-linked β-N-acetylglucosamine
transferase (OGT) can stabilize c-Myc protein in cancer cells
(Itkonen et al., 2013). Considering the involvement of SLC35B4
in glycosylation, we speculated that SLC35B4 could regulate the
expression of c-Myc. Therefore, we examined the mRNA and
protein levels of c-Myc in HCC cells before and after SLC35B4
knockdown. While SLC35B4 KD had no impact on the mRNA
levels of c-Myc, it significantly reduced c-Myc protein levels by
destabilizing c-Myc (Figures 3A–C). Mechanistically, we showed
that SLC35B4 knockdown dramatically decreased the protein
stability and the O-GlcNAc modification of c-Myc (Figures
3D–G). Considering the important roles of c-Myc in driving

the turnorigenesis of NPC, these results demonstrate that
SLC35B4 drives HCC progression by stabilizing c-Myc
through O-GlcNAcylation.

DISCUSSION

HCC remains one of the most lethal malignancies that lack
effective therapy. To develop effective therapies and new
therapeutics to treat HCC, extensive international effort has
been devoted to identify new pathways that drive HCC
tumorigenesis. In this study, we provide compelling evidence

FIGURE 3 | SLC35B4 stabilizes c-Myc viaO-GlcNAcmodification. (A,B) Relative mRNA expression levels of c-Myc in 7703 (A) and HepG2 (B) cells with SLC35B4
knockdown. N = 3. Data are presented as mean ± SD. n.s., non-significant. (C) The protein levels of c-Myc in 7703 (upper) and HepG2 (bottom) cells with SLC35B4
knockdown. The relative protein levels are indicated. (D) The protein levels of c-Myc protein in 7703 (upper) and HepG2 (bottom) cells after CHX treatment. (E,F)
Quantification of the protein levels of c-Myc in 7703 (E) and HepG2 (F) cells with or without SLC35B4 knockdown at different time points after CHX treatment. The
relative protein levels are indicated. (G) The O-GlcNAcylation of c-Myc after SLC35B4 knockdown. c-Myc in 7703 (left) and HepG2 (right) cells with or without SLC35B4
knockdown was immunoprecipitated and the levels of the O-GlcNAcylation were detected with anti-O-GlcNAc antibody. The relative levels of O-GlcNAcylated versus
total c-Myc are indicated.
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that SLC35B4, one member of the nucleotide sugar transporters
required to transport nucleotide sugars into the ER or Golgi
apparatus for protein glycosylation (Bazan et al., 2018), is
overexpressed in HCC and drives HCC tumorigenesis. In this
context, the knockdown of SLC35B4 inhibits the proliferation
and migration of HCC cells in vitro, and the acute depletion of
SLC35B4 in HCC tumors significantly suppresses the tumor
growth in vivo. Therefore, SLC35B4 represents a promising
new therapeutic target to treat HCC.

To understand the mechanism underlying SLC35B4-
dependent tumorigenesis, based on the physiological functions
of SLC35B4 in transporting substrates of O-GlcNAc modification
into the Golgi and ER, we investigated oncogenic proteins that are
regulated by O-GlcNAc modification. Our study demonstrates
that SLC35B4 is important to stabilize c-Myc by promoting its
O-GlcNAc modification.

c-Myc is a critical oncoprotein that is overexpressed in many
types of human cancer and plays key roles in driving
tumorigenesis (Pelengaris et al., 2002). Therefore, c-Myc could
be an ideal therapeutic target to treat various types of cancers.
However, due to the critical roles of c-Myc in normal cellular
processes, the complete inactivation of c-Myc will have lethal
effects on normal cells (Carabet et al., 2018). Therefore, c-Myc
remains an undruggable target in cancer drug discovery. The
destabilization of c-Myc protein in human cancers has become a
promising strategy to target c-Myc. Therefore, while it remains to
be confirmed, our findings that SLC35B4 depletion could
destabilize c-Myc provide an alternative approach to target
c-Myc in many types of human cancer.
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