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In utero hematopoietic cell transplantation (IUHCT) is considered a potentially

efficient therapeutic approach with relatively few side effects, compared to

adult hematopoietic cell transplantation, for various hematological genetic

disorders. The principle of IUHCT has been extensively studied in rodent

models and in some large animals with close evolutionary similarities to

human beings. However, IUHCT has only been used to rebuild human T cell

immunity in certain patients with inherent immunodeficiencies. This review will

first summarize the animal models utilized for IUHCT investigations and

describe the associated outcomes. Recent advances and potential barriers

for successful IUHCT are discussed, followed by possible strategies to

overcome these barriers experimentally. Lastly, we will outline the progress

made towards utilizing IUHCT to treat inherent disorders for patients, list out

associated limitations and propose feasible means to promote the efficacy of

IUHCT clinically.
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1 Introduction

Extensive progress has been made in the field of fetal interventions for congenital

disorders. Since its first description in 1982 (Harrison et al., 1982), fetal surgeries have

successfully treated various anatomical anomalies; however, they are limited to the

correction of structural anomalies. For some congenital hematopoietic disorders,

postnatal hematopoietic stem cell transplantation (HSCT) remains the only therapy;

however, it is often restricted by limited histocompatible donors and severe treatment-

associated morbidity and mortality. In recent years, remarkable advances in prenatal

screening and molecular diagnostics have improved the possibility of diagnosing

congenital disorders early during gestation. (Flake and Zanjani, 1999a). In utero
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hematopoietic cell transplantation is a non-myeloablative

approach that can avoid the concerns of postnatal treatment

and potentially cure various congenital disorders (Surbek et al.,

2001). Compared to postnatal therapy, IUHCT allowing

physicians to intervene in the treatment of diseases before

birth. Furthermore, certain biological advantages unique to

the fetal environment provide compelling reasons for favoring

prenatal therapy over postnatal therapy (Vrecenak and Flake,

2013). However, the clinical success of IUHCT has been limited

to severe combined immunodeficiency (SCID) over the last few

decades (Vrecenak and Flake, 2013). Herein, we review the

rationale, current progress, and potential clinical applications

of IUHCT. We also discuss the barriers to engraftment and

potential strategies to overcome them.

2 Rationale for in utero
hematopoietic cell transplantation

The IUHCT notion is supported by the first report of a

natural experiment studied by Owen in 1945, when he found that

dizygotic cattle twins with shared placental circulation were

chimeric postnatally (Owen, 1945). In 1953, Billingham

showed that introduction of foreign antigen into early

gestation fetuses resulted in the development of immunologic

tolerance towards the foreign antigen (Billingham et al., 1953).

The most compelling rationale for IUHCT is the induction of

fetal specific immunologic tolerance to donor cells due to the

naive immune system of the fetus. During the early gestation

period, the fetal immune system undergoes a self-education

process which occurs primarily in the fetal thymus. The outer

region of thymus (cortex) supports the positive selection of T

lineage progenitors whose TCRs react to self-major

histocompatibility complex (MHC) molecules in a proper

strength. The survival cells then travel to the inner thymus

(medulla), where negative selection induces apoptosis of the

progenitors that possess potential to response with self-

antigens, including self-MHC, presented on thymic antigen

presenting cells (APCs). The process results in deletion of

self-reactive T cells and in a state of self-tolerance (central

tolerance) (Palmer, 2003; Takahama, 2006). However, the

thymic deletion is incomplete, self-reactive T cells that escape

the deletion are suppressed by regulatory T cells (Tregs)

mediated peripheral tolerance (Vrecenak and Flake, 2013).

Central and peripheral tolerance leaves the fetus to recognize

self-antigens and eliminate foreign antigens (Tai-MacArthur

et al., 2021). Theoretically, introduction of allogenic cells by

IUHCT ahead of the formation of functional fetal adaptive

immune system could result in deletion of alloreactive T cells

and induction of Treg cells, resulting in complete donor-specific

immune tolerance (Vrecenak and Flake, 2013).

Another rationale for IUHCT is the potential hematopoietic

niches available for donor cell homing and engraftment during

the large-scale migration of hematopoietic stem cells (HSCs)

during fetal development (Vrecenak and Flake, 2013).

Hematopoiesis emerges from the yolk sac and aorto-gonadal-

mesonephros regions. HSCs then circulate to the fetal liver,

where HSCs undergo a dramatic expansion. Finally, HSCs

colonize the bone marrow (BM), where hematopoiesis takes

place throughout the adult life (Dzierzak and Speck, 2008;

Bertrand et al., 2010; Gao et al., 2018). Moreover, the fetal

environment also supports the expansion and differentiation

of donor stem cells (Sagar et al., 2019). Manipulation of

regular migration to selectively favor donor HSCs may help

overcome competition from the host hematopoietic

compartment and improve donor engraftment after IUHCT

(Almeida-Porada et al., 2016). In addition, before and during

the second trimester of gestation, the fetal BM is relatively empty,

allowing donor cell engraftment without requiring

myelosuppression, compared to postnatal HSCT (Surbek

et al., 2001).

The third advantage of IUHCT is the small fetus size. At

12–13 weeks of gestation, when IUHCT is ideally performed, the

human fetus weighs less than 50 g. Therefore, it is possible to

deliver a much larger donor cell dosage on a fetal weight basis

than could be provided postnatally.

3 Experimental models for in utero
hematopoietic cell transplantation

IUHCT has been performed in many different animal

models, of which murine models are most extensively used

(Table 1). In the late 1970s, Fleischman and Mintz reported

the first study of IUHCT (Fleischman andMintz, 1979), in which

an intraplacental injection of donor BM cells was administered at

gestational day 11 (E11) into fetal mice with genetic anemia

based on c-kit deficiency. The results showed complete

substitution with donor erythroid cells in homozygous anemic

mice. Later, studies conducted by Mintz and Blazar reported that

even a single normal donor HSC was sufficient to engraft and

reconstruct normal hematopoiesis in a c-kit-deficient mouse

model (Mintz et al., 1984; Blazar et al., 1995a). Blazer also

demonstrated only lymphoid reconstitution (split chimerism)

in a severe combined immunodeficiency (SCID) mouse model in

which donor lymphoid cells showed proliferative and survival

advantages (Blazar et al., 1995b). In normal mice without any

immune or stem cell deficiency, competitive pressure from the

host prevented donor cell engraftment and the level of chimerism

remained very low (Carrier et al., 1995; Kim et al., 1998; Donahue

et al., 2001). These studies highlight the importance of host cell

competition and the engraftment advantage achieved by immune

deficiency. The low level of chimerism in normal mice resulted in

donor-specific immune tolerance, which might form the basis of

postnatal cell transplantation (Carrier et al., 1995; Kim et al.,

1999). Further studies have shown that intravenous injection
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TABLE 1 IUT in murine model.

Ref (year) Donor Recepient Injection
site

Injection
time

Number
of source cell

Chimerism Disease

Fleischman and
Mintz (1979)

C57BL/6 or DBA/2 W/W or Wv/Wv Intraplacental E11 1 × 105 FL (E13-E15) In peripheral blood (PB) is more
in W/W than in Wv/Wv

NO

Mintz et al. (1984) C57BL/6 or BALB/c W/W or Wf/Wf Intraplacental E11 1–2 × 105 FL (E13) In PB is more in W/W than in
Wf/Wf

NO

Blazar et al. (1995a) C57BL/6 W41/W41 IP E13/14 1.5 × 106 BM In Multiple tissues (57%–80%
T cells, 10%–15% B cells,27%–

43% granulocytes

NO

Blazer et al. (1995b) C57BL/6 or B10.BR C57BL/6Sz-scid/scid IP E14/15 2 × 105–2 × 106 BM 100% T and B cell reconstituion NO

Carrier et al. (1995) C57BL/6 BALB/c or C57BL/6 IP,
intraplacental

E11-E13 5 × 105 FL (E15-E16) 0.0001% (spleen and liver)-
0.6% (PB)

NO

Carrier et al. (1997) C57BL/6 BALB/c or C57BL/6 IP,
intraplacental

E11-E13 5 × 105 BM, FL (E15-E16) 0.0003%–0.4% (liver and
spleen), 0.002%–2.4% (PB)

NO

Archer et al. 1997) C57BL/6 NOD/SCID IP E13.5 8 × 105 lin-depleted BM 17%–55% (PB), 8%–26% (BM),
and 20–68% (spleen)

NO

Blazer et al. (1998) C57BL/6 or BALB/c BALB/c-SCID IP E15/E16 1–4 × 106 T cell-depleted BM,
whole BM

High frequency engraftment in
PB, BM, thymus, and spleen

NO

Kim et al. (1998) C57BL/6 BALB/c IP E13-E16 1 × 106 BM Microchimerism (range<0.1%)
in PB

NO

Turner et al. (2015) Human NOD/SCID IP E13/E14 6–8 × 105 CD34+ cells (FBM, FL) 0·6%–0·9% (PB), 0.2%–15%
(BM), 0·2%–3·4% (spleen)

NO

Kim et al. (1999) DBA/2 BALB/c IP E14 1 × 106 BM Successful skin grafts in 2 of
3 mice

NO

Carrier et al. (2000) C57BL/6 BALB/c IP E12/E13 8 × 104–5 × 105 BM derived C-kit +
cells

Microchimerism (<0.01%) in
PB, liver and spleen

NO

Donahue et al.
(2001)

C57BL/6 BALB/c IP E11-E13 1–2 × 105 Spleen derived Sca-1+Lin-,
C-kit + Lin- cells

Microchimersim (<0.001%)
in PB

NO

Chou et al. (2001) C57BL/6 BALB/c IP E13-E15 1.5 × 106 (BM), 2 × 105 (BM derived
CD80lowCD86−pDC)

Significant Higher engraftment
in PB and 0.01%–4% (BM),
0.001%–1.21% (spleen) in BM +
pDC group

NO

Casal and Wolfe
(2001)

Mice transgenic for the human
genomic GUSB DNA and
mutant for murine GUSB (TG)

MPSVII intraplacental E13.5 1 × 105 or 1 × 106 FL (E13.5) Low-level chimerism (<0.1%)
in PB

Mucopolysaccharidosis
type VII

Mackenzie et al.
(2002)

Rosa26 Muscular dystrophy (MDX) IP E14 1 to 5 × 106 BM, FL (E14) 0.2%–9% (PB) Muscular dystrophy

Peranteau et al.
(2002)

C57BL/6 BALB/c IP E13/E14 5 × 106 T-cell depleted BM 2–6% (PB) improved to 80%
with low-dose TBI + same-
donor TCD BMT

NO

(Continued on following page)
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TABLE 1 (Continued) IUT in murine model.

Ref (year) Donor Recepient Injection
site

Injection
time

Number
of source cell

Chimerism Disease

Hayashi et al. (2002) C57BL/6 BALB/c IP E14/E15 5 × 106 T-cell depleted BM Blood macrochimerism (>3%) to
nearly 100% with same donor
lymphocyte infusion

NO

Waldschmidt et al.
(2002)

C57BL/6 or BALB/c BALB/c-SCID IP E15/E16 4 × 106 T cell-depleted, whole BM All B-cell subsets restores in PB
and BM

NO

Taylor et al. (2002) C57BL/6 BALB/c-SCID IP E15/E16 1 × 106 T-cell depleted BM, FL 74% (PB in FL group) 11% (PB
in BM group)

NO

Sefrioui et al. (2002) C57BL/6 BALB/c IP E13 5 × 104 cytokine-stimulated sca-1+lin-
cells

Undectectable in PB and spleen NO

Barker et al. (2003) C57BL/6 MPSVII IH E14 —FL (E14/E15) 1.1%–8.7% (PB) Mucopolycaccharidosis
type VII

Chen et al. (2004) B6D2F1 (C57BL/6 × DBA/2) C57BL/6 IP E13 1 × 106 Undectectable in PB and spleen
BM, T-cell depleted BM, T-cell depleted
BM with CD8

Low-level chimerism (<0.2%) in
PB, spleen and BM.

NO

Hayashi et al. (2004) C57BL/6 BALB/C IP E14 5 × 106 T-cell depleted BM, 0.25–1 × 106

splenocytes from B6 mice presensitized
to BALB/C alloantigen (pSPC)

Full chimerism in PB NO

Schoeberlein et al.
(2004)

C57BL/6 Human NOD/SCID IP E13.5 1 × 105 to 1 × 106 Undectectable in PB
and spleenFL (E13.5) or human CD34+

(Mouse FL group) 49.9% (PB),
5.2% (BM) and 86.2% (spleen)
(Human CD34+ group)
Undetected in PB

NO

Moustafa et al.
(2004)

R1 embryonic stem (ES) cells,
C57BL/6J

BALB/C IP E13.5 1 × 109/kg BM, FL (E13.5) Low-level chimerism in
PB (<0.4%)

NO

Rio et al. (2005) (B6.SJL-PtprcaPep3b/BoyJ ×
DBA/2J) F1

(C57BL/6J × DBA/2J) F1 IP E14.5 5 × 106 BM or 2 × 104 Lin-Sca-1+ 1.0%–6.2% (PB in BM group)
0.5%–35.5% (PB in Lin-Sca-1+
group)

NO

Frattini et al. (2005) CMV/GFP CD-1 transgenic
mice

oc−/− IP E14.5 5 × 106 BM Improved survival Autosomal recessive
osteopetrosis

Shaaban et al. (2006) BALB/c C57BL/6 IP E14 —BM with or without vascular
endothelial growth factor (VEGF) and
stem cell factor (SCF)

0.01%–0.1% (PB) NO

Peranteau et al.
(2006)

C57BL/6TgN (act-EGFP)
OsbY01 (B6GFP)

BALB/c or Swiss Webster IV E14 20 × 106 BM or 1 × 105 c-kit + sca-
1+lin-

Significant higher-level
chimerism with CD26 inhibition

NO

Peranteau et al.
(2007)

B6GFP BALB/c or C57BL/6 IV E14 20 × 106 BM 70% allogeneic recipient loss
chimerism

NO

Durkin et al. (2008) BALB/c B6Ly5.2 IP E14 2 × 104—2 × 106 FL (E14) 0.1%–10.5% (PB) NO

Chen et al. (2008) C57BL/6 FVB/N IP E14 1–10 × 106 BM or T-cell depleted BM 0.25%–2.06% (PB) NO

Guillot et al. (2008) Human oim/oim IP E13.5-E15 1 × 106 fetal blood mesenchymal stem
cells (MSCs)

More donor cells in bone tissues
compared with other organs

Osteogenesis imperfecta
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TABLE 1 (Continued) IUT in murine model.

Ref (year) Donor Recepient Injection
site

Injection
time

Number
of source cell

Chimerism Disease

Tondelli et al. (2009) CD-1 TG (ACTB-EGFP) oc/oc IH E13.5 2 × 105 FL (E12.5) Improved survival Autosomal recessive
osteopetrosis

Panaroni et al.
(2009)

CMV/GFP CD-1 BrtlIV mice IH E13.5/E14.5 5 × 106 BM Multiple tissues Osteogenesis
imperfecta (OI)

Merianos et al.
(2009)

B6GFP BALB/c IV E14 1 × 107 BM 1.35% (PB), 0.6% (Spleen),
0.38% (BM)

NO

Chen et al. (2009b) HS23-eGFP transgenic mice Kun-Ming Bai IP E12.5,
E13.5 or E14.5

5 × 104 BM derived Sca-1+ 1.55% (PB) NO

Liuba et al. (2009) C57/B16 X-SCID mice IP E14-E16 200 or 1,000 LMPPs
(LSKCD34+FLT3hi), 200 HSC
(LSKCD34- FLT3-)

33% or 53% (PB in LMPPs
group) 43% (PB in HSC group)

NO

Chen et al. (2010) C57BL/6 FVB/N IP E14 5–10 × 106 T-cell depleted BM 0.01%–8.75% (PB), 0.04%–

3.46% (multiple tissue)
NO

Troeger et al. (2010) B6GFP C57/BL6 or BALB/c IP E12 or E13.5 1 × 105 FL (E14) (E12) Microchimerism in
maternal tissues

NO

Nijagal et al. (2011a) NOD.CD45.1.uGFP C57BL/6 × BALB/c (F1) IH E14.5 2.5 × 106 FL (E13.5-E14.5) Increased maternal cell
chimerism in fetal PB

NO

Nijagal et al. (2013) BALB/c (B6 × TCR-TgB6.Thy1.1.4C) or
(B6 ×B6.Thy1.1.TCR75) (F1)

IH E14.5 2.5 × 106 FL (E13.5-E14.5) Equivalent chimerism in PB NO

Chen et al. (2013) C57BL/6 FVB/N IP E14 1–10 × 105 splenic lymphocytes Low-level chimerism (<0.1%) in
PB, spleen and thymus

NO

Chen et al. (2015) C57BL/6 FVB/N IP E14 5–10 × 106 T-cell depleted BM 0.01%–10% (PB) NO

Peranteau et al.
(2015)

SJL/J SCD and Thal mice IP E14 5 × 106 T-cell depleted BM 1–4% (PB) Sickle cell disease and β-
thalassemia

Kim et al. (2016) B6GFP BALB/c IP E14 10×106 BM <10% (PB) NO

Boelig et al. (2016) B6GFP C57BL/6 IV, IP, IH E14 5 × 106 BM 4%–6% (PB in IV group),2%–4%
(PB in IP, IH group)

NO

Shangaris et al.
(2018)

B6 (CD45.1) or BALB/cJ C57BL/6J IP E13.5 1 × 104 or 5 × 104 amniotic fluid stem
cells (AFSC) (E13.5)

5%–10% (PB), 5%–10% (BM),
nearly 5% (spleen)

NO

Riley et al. (2018) B6GFP BALB/c IV E14 1 × 107 BM 10%–20% (PB) NO

Witt et al. (2018a) Human NSG IH E13.5/E14.5 2.5–5 × 104 CB CD34+ 1%–10% (PB) NO

Borhani-Haghighi
et al. (2019)

C57BL6J C57BL6J Lateral
ventricle

E17 1 × 105 Neural stem cells (NSCs) Improved survival and injury Prenatal white matter
injury

Vrecenak et al.
(2020)

B6GFP BALB/c IV E14 10 × 106 BM, 5 × 106 BM derived Lin-,
1 × 105 LSK

20%–30% (PB) 15%–20% (Liver,
spleen, BM)

NO

Loukogeorga et al.
(2019b)

B6GFP or BALB/c C57BL/6J or BALB/c IV E14 1 × 104 AFSC (E13) 19.2% (PB), 17.6% (BM), 17.9%
(spleen), 6.4% (thymus)

NO
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allows for the delivery of much higher cell numbers, resulting

in increased chimerism (Peranteau et al., 2007; Boelig et al.,

2016).

Murine models are also used to study the mechanisms of

donor-specific tolerance induction by IUHCT and various

strategies to postnatally improve donor cell engraftment.

Previous studies have shown that clonal deletion, anergy, and

induction of donor-specific Tregs are essential for the induction

of immune tolerance (Kim et al., 1999; Hayashi et al., 2004;

Merianos et al., 2009; Nijagal et al., 2011a; Nijagal et al., 2011b).

Further studies that administered low-dose total body irradiation

(TBI) or busulfan to chimeric recipients followed by T-cell-

depleted bone marrow transplantation (BMT) resulted in

complete donor cell chimerism without the graft-versus-host

disease (GVHD) (Peranteau et al., 2002; Ashizuka et al., 2006).

Moreover, another strategy of using postnatal donor-specific

lymphocyte infusion combined with IUHCT without BMT

also resulted in complete donor cell chimerism without

GVHD (Hayashi et al., 2002). These results highlight the

crucial roles of host immune barrier and resident

hematopoietic stem cell competition in compromising IUHCT

efficacy, and implicate potential strategies to promote postnatal

chimerism after successful induction of donor specific tolerance

by IUHCT in clinical applications.

In addition to murine models, large animal models are also

valuable and necessary preclinical tools for IUHCT study. The

sheep model was the first large animal model to demonstrate

sustained allogeneic engraftment after in utero transplantation of

fetal stem cells (Flake et al., 1986) (Table 2). Moreover, ex vivo

incubation of donor cells with growth factors enhanced

engraftment of allogeneic stem cells (Zanjani et al., 1992a).

Increasing the proportion of donor T cells also resulted in

increased level of allogeneic chimerism, and approximately 1%

donor T cells allowed significant engraftment without GVHD

(Crombleholme et al., 1990). In sheep model, donor specific

immune tolerance could also be induced by IUHCT, and

postnatal injection of cells from the same donor enhanced the

engraftment of donor cells (Zanjani, 1994). However, though

3%–5% stable chimerism was achieved, tolerance to renal

transplantation was not observed in chimeric sheep (Hedrick

et al., 1994). The sheep model also demonstrated persistent

xenogeneic engraftment after transplantation of human HSCs

(Zanjani et al., 1992b; Srour et al., 1992; Srour et al., 1993; Zanjani

et al., 1994; Liechty et al., 2000; Noia et al., 2003; Noia et al., 2008;

Tanaka et al., 2010; Goodrich et al., 2014; Jeanblanc et al., 2014).

In addition, intracelomic transplantation of human CD34+ cells

into fetal sheep resulted in more significant engraftment than

that described in peritoneal transplantation (Noia et al., 2003).

However, unlike the murine model results, the efficacies of

intravenous and intraperitoneal transplantation were not

significantly different in the sheep model (Tanaka et al.,

2010). Moreover, cotransplation of stromal cell with HSC

resulted in an increased level of chimerism in both xenogeneicT
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and allogeneic sheep models (Almeida-Porada et al., 1999;

Almeida-Porada et al., 2000).

The canine model is an attractive large-animal model. The

dog model demonstrated microchimerism after in utero

transplantation of paternal dog BM or human HSCs

(Omori et al., 1999; Blakemore et al., 2004) (Table 3).

Moreover, IUHCT combined with postnatal same-donor

boosting strategy using a low-dose busulfan conditioning

regimen increased the level of chimerism from 1% to

35–45%, and cured leukocyte adhesion deficiency in a

canine model (Peranteau et al., 2009). Vrecenak et al.

(2014) demonstrated that intracardiac injection resulted in

much higher levels of chimerism than intraperitoneal

injection in normal canine models, without any

conditioning or evidence of GVHD. Studies also showed

that high doses of donor T cells with CD34+ resulted in

microchimerism without GVHD (Petersen et al., 2007).

More recently, Vrecenak et al. (2018) reported that a clear

threshold of 1%–3% donor T cells allowed excellent

engraftment without GVHD.

Stable allogeneic and xenogeneic multilineage engraftment

was also achieved in swine models (Lee et al., 2005b; Abellaneda

et al., 2012; Fisher et al., 2013) (Table 4). IUHCT-induced

chimerism in fetal swine resulted in donor-specific tolerance

to renal and vascularized composite allograft transplantation

without conditioning (Lee et al., 2005a; Mathes et al., 2005;

Mathes et al., 2014). These studies support the possibility of

using this strategy to cure fetuses that require postnatal organ

transplantation.

Finally, low levels of allogeneic chimerism were also achieved

in non-human primates (Michejda et al., 1992; Asano et al., 2003;

Shields et al., 2003; Mahieu-Caputo et al., 2004; Shields et al.,

2004; Shields et al., 2005) (Table 5). Fetal immune suppression

resulted in an increased level of chimerism, but the level

remained low (Shields et al., 2004). Moreover, the level of

long-term chimerism was not improved with postnatal donor

cell infusion (Shields et al., 2004). The non-human primate

model also allowed multilineage engraftment of human HSCs

(Tarantal et al., 2000). In addition to these large animal models,

chimerism was also observed in rats (Chen et al., 2009a; Li et al.,

2012; Lazow et al., 2021), rabbits (Wengler et al., 2005; Martínez-

González et al., 2012; Moreno et al., 2012), and cats (Abkowitz

et al., 2009). These studies in mice and large-animal models

established the foundation for clinical application of IUHCT.

4 Barriers to in utero hematopoietic
cell transplantation

Despite the compelling rationale of IUHCT, poor

engraftment in most animal models suggests the existence of

significant barriers to successful engraftment after IUHCT

(Figure 1).

4.1 Host cell competition

In the c-kit-deficient mouse model, in which the donor cells

have a competitive advantage, a single normal donor HSC is

sufficient to engraft and reconstitute normal hematopoiesis

(Mintz et al., 1984). Moreover, though the number of donor

HSCs in the BM remains relatively low, nearly complete

lymphoid lineage reconstitution is achieved in SCID mouse

models and X-SCID patients (Blazar et al., 1995b; Flake et al.,

1996), in which donor lymphoid cells have a proliferative and

survival advantage. These studies have demonstrated the

effectiveness of this competitive advantage in the setting of a

proliferative defect in one or more lineages. In contrast, in

normal mouse models, donor BM cells migrate to the fetal

liver rapidly after IUHCT, followed by a rapid decrease of

engraftment level, demonstrating host fetal cells outcompete

donor BM cells (Shaaban et al., 1999). Because the host fetal

HSCs have a distinct competitive advantage over donor adult

HSCs due to their rapid cycling and expansion kinetics (Jordan

et al., 1995; Leung et al., 1999; Shaaban et al., 1999; Rosler et al.,

2000). Peranteau et al. (2007) reported how this competition

limits long-term donor cell engraftment by transplantation of

massive doses of BM cells (2 × 1011 cells/kg) in a congenic mouse

model, which resulted in long-term donor cell engraftment levels

below 10%.

4.2 Limited niches within the host

Although the fetal microenvironment is fundamentally

different from any postnatal system, a relatively valid

comparable model is the postnatal nonmyeloablative

syngeneic mouse model. In this mouse model, similar to

syngeneic IUHCT, the host hematopoietic compartment is

intact and the donor and recipient cells are genetically equal.

Studies in this model have demonstrated a dose-dependent

increase in donor cell engraftment with repetitive large doses

of syngeneic donor cells (Stewart et al., 1993; Rao et al., 1997). A

further study in this model demonstrated that administration of

the donor cells over several separate infusions, rather than in one

injection, did not increase engraftment levels (Ramshaw et al.,

1995). Recently, Shimoto et al. (2017) demonstrated that

transplantation of a vast number of HSCs (up to 390% of the

total number of endogenous HSCs) into unconditioned mice

resulted in a two-fold increase in the total number of HSCs

(endogenous plus transplanted). Strikingly, they found that these

donor cells did not compete with host HSCs, but engrafted

distinct niches. These collective studies convincingly show that

there are a large number of empty niches in normal BM, and

donor HSCs can engraft into the BM without competing with

host HSCs (Ding, 2017).

During fetal development, since the large migration of HSCs

from yolk sac and aorto-gonadal-mesonephros regions to BM,
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there is an associated rapid expansion of the hematopoietic

niches for the homing and engraftment of circulating HSCs. It

is reasonable to suppose the niches available in prenatal

microenvironment might exceed the niches in the postnatal

environment (Flake and Zanjani, 1999a).

However, in the fetal sheep model, increasing the allogeneic

and xenogeneic donor cell doses (106 to 1010 cells/kg) results in an

eventual plateau of engraftment efficiency, and a further increase

in donor cells does not affect the donor engraftment (Zanjani

et al., 1997). Thus, the available studies illustrate that there is not

an abundance of niches available in the fetal microenvironment

compared with those in the postnatal BM microenvironment.

In adult SCID mice, selective depletion of host HSCs with a

c-kit antibody (ACK2) before BM transplantation results in

engraftment levels of up to 90%. However, the chimerism

level is only about 0.1%–1% in unconditioned recipients

(Czechowicz et al., 2007). A recent study indicated that in

utero depletion of host HSCs with ACK2 before neonatal

TABLE 2 IUT in ovine model.

Ref (year) Donor Recepient Injection
site

Injection time Number
of source cell

Chimerism Disease

Flake et al. (1986) Sheep Sheep IP 45–65 gestational
day

2–5 × 108/kg FL (35–50 days of
gestation)

14%–29% (PB) NO

Crombleholme
et al. (1990)

Sheep Lamb IP 90 gestational day 2 × 109/kg T-cell depleted BM, BM 18% (PB in BM group),
6% (PB in T-cell depleted
BM group)

NO

Zanjani et al.
(1992a)

Sheep Sheep IP 48–54 gestational
day

2 × 109/kg FL (<60 days of
gestation)

15%–25% (PB) NO

Zanjani et al.
(1992b)

Human Sheep IP 48–54 gestational
day

2 × I09−1 × 1010/kg FL
(12–15 weeks of gestation)

0% (PB), 4%–9% (BM),
0–2% (liver)

NO

Srour et al. (1992) Human Sheep IP 42–48 gestational
day

2–4 × 104 CD34+HLA-DR- BM PB, 1.5% and 3.8% (BM) NO

Srour et al. (1993) Human Sheep IP 45–50 gestational
day

4–10 × 104 CD34+HLA-DR- BM PB, 8.5%,11% < 0.1%
(BM) chimerism

NO

Zanjani et al.
(1993)

Sheep,
Human

Sheep IP 50 gestational day 1–2 × 109/kg sheep FL (<60 days of
gestation) 4–20 × 107/kg human FL
(12–14 weeks of gestation)

0%–3% (PB), 3%–
6% (BM)

NO

Zanjani et al.
(1994)

Human Sheep IP 58–49 gestational
day

4.8 × 106 CD45+ BM (previous
chimeric sheep with human FL)

0.5%–3.2% (PB), 2.9%–

8.8% (BM)
NO

Almeida-Porada
et al. (1999)

Sheep Sheep IP 55–60 gestational
day

3 × 106 (T-cell depleted FL),1 × 107

(T-cell depleted BM), 7.5 × 105

(stromal cell)

4.3%–15.8% (PB), 9.8%–
15.9% (BM)

NO

Almeida-Porada
et al. (2000)

Human Sheep IP 55–60 gestational
day

0.7–6.5 × 104 (CD34+ BM), 5 ×
104–7.5 × 105 (stromal cell)

18.9% (PB), 2% (BM) NO

Liechty et al. (2000) Human Sheep IP 65–85 gestational
day

1–2 × 108/kg MSCs Multiple tissues NO

Noia et al. (2003) Human Sheep Intracelomic 40–45 gestational
day

50 × 106 (T-cell depleted), 1–2 × 105

(CD34+)
Multiple tissues NO

Noia et al. (2008) Human Sheep Intracelomic 40–47 gestational
day

10 × 104–30 × 106 CD34+ (BM
or CB)

Multiple tissues NO

Tanaka et al. (2010) Human Sheep IV or IP 59–61 gestational
day

1.4–6.3 × 105 CD34+ (CB) 1.3% (PB) NO

Abe et al. (2012) Human Sheep (Busulfan
conditioned)

IH 45–49 gestational
day

0.72–2.4 × 106 CD34+ (CB) 1.1%–3.3% (BM) NO

Goodrich et al.
(2014)

Human Sheep IH 53–75 gestational
day

1.0–1.8 × 106 (MSC), 0.8–8 × 105

(CD34+)
1.45%–22.37% (PB) NO

Shaw et al. (2015) Sheep Sheep IP 60–64 gestational
day

2 × 104 CD34+ AFSC, BM 1.6%–4.5% (PB) NO

Jeanblanc et al.
(2014)

Sheep,
Human

Sheep IP 45 or
65 gestational day

5 × 105 (Sheep T-cell depleted BM),
1.4 × 106 (Sheep CD34+ BM), 4 ×
104–5 × 105 (human CD34+ BM)

3%–14% (PB in sheep
donor group), 1%–3%
(PB in human donor
group)

NO

Mokhtari et al.
(2016)

Sheep Sheep IP 60–65 gestational
day

2.5 × 106/kg (CD146+CXCL12 +
VEGFR2-), 7.1 × 106/kg
(CD146+CXCL12 + VEGFR2+),
2.1 × 106/kg (HSC)

15% (PB in 3 + group),
20% (BM in 3 + group)

NO
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congenic hematopoietic cell transplantation leads to higher

engraftment levels (Derderian et al., 2014). These collective

studies suggest that vacating host HSC niches may lead to

high engraftment levels after IUHCT.

4.3 Immunological barriers

Peranteau et al. (2007) demonstrated that after

transplantation of high doses of allogeneic or congenic BM

cells into fetal mice, only 30% of allogeneic recipients

sustained long-term chimerism, whereas 100% of congenic

recipients remained chimeric. Recently, studies by Shangaris

et al. (2018) and Loukogeorgakis et al. (2019b) showed that

100% of congenic recipients remained macrochimerism

compared to 29% or 0% of allogeneic recipients with

microchimerism after in utero transplantation of amniotic

fluid stem cells. These results strongly suggest the engraftment

advantage of congenic stem cells over allogeneic stem cells and

the existence of immune barriers resulting in the elimination of

allogeneic cells after IUHCT.

In 2008, Merianos et al. (2009) first demonstrated the

existence of a maternal immune barrier after IUHCT, and an

adaptive alloimmune response was induced by the transfer of

maternal antibodies to pups via breast milk, resulting in the loss

of chimerism in allogeneic recipients. In this study, chimerism in

allogenic recipients remained at 100% when the pups were

fostered by a naive mother. The most important observation

of this study was that in the absence of the maternal immune

response, the recipients were tolerant of allogeneic donor cells via

partial deletion of donor-specific T cells and the induction of

Tregs.

A subsequent study by Nijagal et al. (2011a) demonstrated

that maternal leukocytes increased significantly in murine fetuses

after IUHCT. More importantly, donor engraftment improved

dramatically in the fetuses of T cell-deficient mothers, indicating

that the maternal T cells limited donor engraftment.

Furthermore, when the donor cells were matched to the

mother, there was no difference in engraftment between the

syngeneic and allogeneic fetal recipients.

Recently, Riley et al. (2018) demonstrated that after in utero

transplantation of donor HSCs in a novel murine model, in

which donor-specific antibodies were already present at the time

of injection, the maternal donor-specific IgG was transferred to

the fetus in utero and caused rapid rejection of allogeneic donor

cells, resulting in a mean engraftment level of 0%. These

collective studies suggest that the maternal immune response

may be a significant barrier to the success of engraftment after

IUHCT in some murine models. Whether maternal

immunization is a limitation for engraftment in large animal

models and clinical applications requires further investigation.

Despite unsolved issues, we hypothesize that it may be prudent to

use donor cells either from the mother or matched to the

mother’s stem cells to avoid maternal immunization and

TABLE 3 IUT in canine model.

Ref (year) Donor Recepient Injection
site

Injection time Number
of source cell

Chimerism Disease

Omori et al.
(1999)

Human Canine Yolk sacs 37 gestational day 5 × 106 BM with a reporter
retroviral vector in long-
term marrow cultures
(LTMCs)

0.5%–5% (PB), 0.1%–

1.3% (BM)
NO

Blakemore
et al. (2004)

Paternal canine Canine IP 30–41 gestational
day

1.3 × 108–2.5 × 1010/kg
CD34+ BM

Microchimerism (<1%)
in multiple tissues

NO

Petersen et al.
(2007)

Male canine Canine IP 35–38 gestational
day

4.5 × 108–1.3 × 109/kg
(CD34+ BM), 8 × 106–8.8 ×
108/kg (T cells)

Microchimerism (0%–

2%) in multiple tissues
NO

Peranteau
et al. (2009)

Parental canine
leukocyte adhesion
deficiency (CLAD)

CLAD IP 63 gestational day 1.7–4.8 × 108/kg CD34+ BM 0.2%–1.6% (PB) leukocyte
adhesion
deficiency

Vaags et al.
(2011)

Canine Canine Yolk sacs 25 or
35 gestational day

1–5 × 106 (MSC), 0.1–2.5 ×
107 (BM)

Detection of labeled
cells in liver and BM

NO

Petersen et al.
(2013)

Parental canine Canine IP 31–50 gestational
day

0.09–3.4 × 109/kg (CD34+

BM), 0.11–1.1 × 109/kg
(T cells)

0%–10% (multiple
tissues)

NO

Vrecenak
et al. (2014)

Maternal canine Canine IP or
intracardiac
(IC)

39–42.5 gestational
day

2.5–4.1 × 108/kg (CD3+

BM), 5.7 × 108 to 1.7 ×
109/kg (CD34+ BM)

3%–39% (PB in IC
group)

NO

Vrecenak
et al. (2018)

Maternal canine Canine IC 38–43 gestational
day

3.7 × 108 to 2.7 × 109/kg
(CD3+ BM), 5.0 × 108 to
5.8 × 109/kg (CD34+ BM)

2%–40% (PB) NO
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improve engraftment in IUHCT for the treatment of many

congenital diseases.

In addition to thematernal immune barrier, early studies also

support the existence of a fetal immune barrier to IUHCT.

Clinical success has been observed in the treatment of x-SCID

patients with paternally derived stem cells (Touraine et al., 1989;

Flake et al., 1996; Wengler et al., 1996), and failure in the

treatment of sickle cell disease and thalassemia (Orlandi et al.,

1996; Westgren et al., 1996). The maternal immune response in

these cases was intact regardless of their clinical outcome, but the

effect of maternal immune barrier was not apparent.

Some previous studies suggested a significant role for NK

cells in immune rejection (Carrier et al., 2000; Donahue et al.,

2001), and also suggested that NK cells may pose the earliest

barrier to engraftment following allogeneic IUHCT (Alhajjat

et al., 2010; Alhajjat et al., 2015). Recently, Durkin et al.

(2008) proved that engraftment or rejection after IUHCT

correlated with the level of initial chimerism. All mice

exhibiting >1.8% chimerism demonstrated allogeneic NK cell

tolerance; however, mice with <1.8% chimerism underwent NK

cell-mediated rejection. Furthermore, rejection did not occur

when NK host cells were depleted from mice with <1.8%

TABLE 4 IUT in swine model.

Ref (year) Donor Recepient Injection
site

Injection time Number
of source cell

Chimerism Disease

Rubin et al. (2001) Swine Swine IV 50–55 gestational
day

1.5 × 108–1.5 × 109 BM (whole),
T-cell depleted BM

0.8%–0.95% (PB),1.1%
(liver), 0.7% (spleen)

NO

Fujiki et al. (2003) Human Swine IP 33–52 gestational
day

1 × 107–2.4 × 108 (T-cell depleted
CB), 3.9 × 105–4 x 106 (CD34+ CB)

Microchimerism (<1%) in
PB and BM

NO

Lee et al. (2005b) Swine Swine IV 50–55 gestational
day

5 × 108 T-cell depleted BM Multiple tissues NO

Lee et al. (2005a) Swine Swine IV 50–55 gestational
day

5 × 108 T-cell depleted BM Microchimerism in PB NO

Mathes et al.
(2005)

Swine Swine IV 50–55 gestational
day

5 × 108 T-cell depleted BM 0.16%–1.6% (PB) NO

Abellaneda et al.
(2012)

Human Swine IP 50 gestational day 2–15 × 106 MNC (CB), MSC (BM) Microchimerism in PB NO

Fisher et al. (2013) Human Swine IH 40 gestational day 1 × 107 hepatocytes Human albumin production NO

Mathes et al.
(2014)

Swine Swine IV 50–55 gestational
day

5 × 108 T-cell depleted BM 1.8%–90% (PB), multiple
tissues

NO

Navarro Alvarez
et al. (2015)

Baboon GalT-KO
Swine

IV 65 gestational day 18.5 × 106 T-cell depleted BM No detactable chimerism NO

TABLE 5 IUT in primate model.

Ref (year) Donor Recepient Injection
site

Injection time Number
of source cell

Chimerism Disease

Michejda et al.
(1992)

Primate Primate IP 118, 120, and
125 gestational day

5 × 107/kg BM PB chimerism NO

Tarantal et al. (2000) Human Primate IP 50–56 gestational day 5 × 106 CD34+ PBMC (with or
without T cells)

0.1%–1.7% (BM) NO

Shields et al. (2003) Primate Primate IP 0.34–0.38 gestation 9.9 × 108–4.4 × 109/kg (CD34+

BM), 2.6 × 105–1.1 × 108/kg
(T cells)

0.4%–10.7% (PB),
0.1–16.8% (BM)

NO

Asano et al. (2003) Primate Primate IP or IV 49–61 gestational day 3.6–4.8 × 106 embryonic stem
cells

Multiple tissues NO

Shields et al. (2004) Primate Primate IP 0.34–0.38 gestation 2.6–5.2 × 109/kg CD34+ BM Microchimerism (<1.0%)
in PB and BM

NO

Mahieu-Caputo
et al. (2004)

Primate Primate IH 89, 90, and
120 gestational day

12–30 × 106 fetal hepatocytes
(89–120 days of gestation)

Donor Hepatocyte
chimerism

NO

Shields et al. (2005) Primate Primate IP 0.34–0.38 gestation 1.18–5.2 × 109/kg CD34+ BM
or PB

Microchimerism (<1%)
in PB and BM

NO
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chimerism but reoccurred when NK cells were allowed to

recover. The same team also demonstrated that depletion of

fetal but not maternal NK cells enables stable engraftment of

allogeneic cells following IUHCT and donor-to-host MHC

transfer (trogocytosis) as an intrinsic mechanism regulating

the development and maintenance of NK cell tolerance in

prenatal chimeras (Alhajjat et al., 2013; Alhajjat et al., 2015).

Although these data still need to be studied in large animal

models, they illustrated the importance of NK cells in the fetus

for clinical IUHCT success.

5 Strategies to overcome
engraftment barriers

During the last few decades, efforts have been made to

overcome the barriers to successful IUHCT in normal

recipients and improve the engraftment of donor cells

without GVHD. These strategies fall into three categories:

1) providing competitive advantage for donor cells, 2)

increasing receptive niches for donor cells, 3) overcoming

immune barriers (Figure 2).

5.1 Providing competitive advantage for
donor cells

5.1.1 Using fetal sources of stem cells
Hematopoietic stem cells can be isolated from fetal liver,

umbilical cord blood, and adult BM. Taylor et al. (2002) and

Harrison et al. (1997) demonstrated that fetal liver cells had a

higher competitive engraftment advantage than adult BM in

allogeneic SCID mouse models and xenogeneic sheep models. In

addition to these sources, many studies demonstrated the

hematopoietic characteristics of amniotic fluid stem cells

(AFSCs) and achieved long-term engraftment with AFSC after

IUHCT in congenic mouse and autologous sheep model (Shaw

et al., 2015; Shangaris et al., 2018; Loukogeorgakis et al., 2019b).

But whether AFSCs can engraft in allogeneic or xenogeneic

animal models needs further studies. Due to the fetal origin of

AFSCs, long-term engraftment was also significantly higher than

that achieved with BM (Loukogeorgakis et al., 2019b). These

studies suggest that fetal donor cells are more competitive to

some extent.

5.1.2 Proper routes and time of injection of
donor cells

Administration of donor cells can be accomplished through

intravenous (IV), intraperitoneal (IP), intrahepatic (IH),

intracelomic and intracardiac routes. Compared with IP and

IH route, intravenous administration of donor cells resulted in

higher levels of chimerism in murine models (Boelig et al., 2016).

However, no difference was detected in sheep models (Tanaka

et al., 2010). In addition, intracelomic and intracardiac injection

of donor cells resulted in higher level of chimerism than that

achieved in intraperitoneal injection in sheep and canine models.

(Noia et al., 2003; Vrecenak et al., 2014). It is still a question

which route is the most suitable. Prior to clinical application,

more studies of injection routes need to be evaluated in the

nonhuman primate model.

FIGURE 1
Barriers to IUHCT. Diagram representing the current barriers to IUHCT. Firstly, in normal recipients, the fetal HSCs compete with donor HSCs.
Secondly, there are limited niches available in the fetal microenvironment. Thirdly, maternal T cells, maternal alloantibodies transferred through
breastmilk and fetal NK cells consist of immune barriers.
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The injection time is crucial, especially for non-

immunodeficient fetuses. As mentioned previously, the

“window of opportunity” has been a major concern for the

experimental and clinical success of IUHCT. The evidence

suggests that although the transplant can occur outside the

window of opportunity, significant modifications to the

technique or the conditions of the transplant are needed to

achieve a successful transplant. If donor cells were introduced

in the early gestation period when the immune system of the

host was naïve, the foreign antigen could be recognized as

“self” and not rejected. In the murine model, most of the

studies have been performed at E13.5 or E14.5 (Table 1). Chen

et al. (2009b) performed IUHCT at E12.5, resulting in the

highest chimerism rate compared to those at E13.5 and E14.5;

however, the average engraftment was not high (1.55%). In the

canine model, studies proved that the initial thymic selection

started at around 40 days of gestation and obtained maximal

engraftment at 42 days of gestation (Petersen et al., 2013;

Vrecenak et al., 2014). In the sheep model, Jeanblanc et al.

(2014) found between 45 and 51 days of gestation, the

osteoblastic/endosteal niche started developing, and their

number increased with gestational age. Moreover,

significantly higher engraftment was observed at 65 days of

gestation, indicating that a fully functional BM

microenvironment improved engraftment. In humans, this

period correlates with events that occur from 12 to 14 weeks of

gestation (Darrasse-Jeze et al., 2005; Alhajjat et al., 2010).

Further studies are needed to evaluate the appropriate time for

IUHCT in humans.

5.1.3 Increasing donor cell dosage or
repopulating competency

Studies from sheep model showed that engraftment after

IUHCT was dose-dependent, which seemed to reach a plateau

above the optimal dose (Zanjani et al., 1997). Moreover,

Vrecenak et al. (2020) demonstrated that increasing doses of

Lin-cells combined with BM could dramatically improve both

allogeneic early and late engraftment after IUHCT.

Recently, Loukogeorgakis et al. (2019a) performed IUHCT of

HSCs decorated with glycogen synthase kinase-3 (GSK3)

inhibitor-loaded nanoparticles, which enhanced the

repopulating capacity of donor cells and dramatically

improved long-term allogeneic engraftment. Shaaban et al.

(2006) demonstrated that pre-incubation of donor cells with

vascular endothelial growth factor (VEGF) and stem cell factor

(SCF) resulted in improved short-term chimerism. Moreover,

Goodrich et al. (2014) and Almeida-Porada et al. (2000) proved

that cotransplantation BM with stromal cells could also improve

allogeneic and xenogeneic engraftment (Almeida-Porada et al.,

1999).

5.2 Increasing receptive niches for donor
cells

5.2.1 Mobilize hematopoietic stem cells from the
host niches

Peranteau et al. (2006) found that ex vivo inhibition of

CD26 in donor cells increased donor cell homing to the fetal

liver and increased short- and long-term allogeneic engraftment.

The CXCR4|SDF-1α and α4β1|VCAM-1 pathways are critical for

HSC recruitment into the BM after postnatal transplantation.

Kim et al. (2016) observed that maternal administration of

AMD3100 (a CXCR4 antagonist) and firategrast (an

α4β1 antagonist) prior to IUHCT would mobilize host HSCs

from fetal liver and increase long-term allogeneic engraftment

significantly in a mouse model. Goodrich et al. (2004) performed

fetal cotransplantation with AMD3100 and human CD34+ cells

in sheep model resulted in improved chimerism.

5.2.2 Maternal immunosuppressants
administration

Studies in sheep models showed that maternal

administration of busulfan before IUHCT increased

engraftment of donor cells (Abe et al., 2012). Similarly,

Shields et al. (2004) proved that fetal administration of

corticosteroids and antithymocyte globulin (ATG) before

IUHCT is associated with an increase in the level of

progenitor and BM chimerism in nonhuman primate models.

However, whether these immunosuppressants can be safely used

for clinical application needs further studies.

5.2.3 Administration of antibodies targeted to
host hematopoietic stem cells

Derderian et al. (2014) proved that in utero depletion of host

HSCs with a c-Kit receptor antibody led to significantly increased

engraftment after neonatal congenic hematopoietic cell

transplantation. Chhabra et al. (2016) and Witt et al. (2018b)

demonstrated that preconditioning with an anti-c-Kit antibody

and CD47 antagonist markedly improved long-term engraftment

in both prenatal and postnatal mouse models. Palchaudhuri et al.

(2016) showed that conditioning with CD45 blockage enable

long-term donor cell engraftment (>90%) in immunocompetent

mice and complete correction of a sickle-cell anemia model. A

recent study showed that administration of anti-human

CD117 antibody resulted in the depletion of host HSCs and

the improvement in donor cell engraftment in nonhuman

primates and humanized NSG mice (Kwon et al., 2019). The

above mentioned studies support the notion that depleting host

HSC niches through “silver bullet” may be a viable method of

improving donor cell chimerism after IUHCT, though further

studies are needed in more prenatal animal models.
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5.3 Overcoming immune barriers

With a better understanding of the maternal and fetal

immune barriers, some promising strategies may be applied to

improve the engraftment of donor cells. Firstly, donor cells

harvested from the mother or matched to the mother’s stem

cells are most likely to be used in initial clinical trials. Aiming

for an initial chimerism threshold of >1.8% with host NK cell

tolerance may improve engraftment of donor cells (Durkin

et al., 2008). Deleting NK cells within the fetus before IUHCT

may also facilitate engraftment of donor cells (Durkin et al.,

2008). However, further studies are required in large animal

models. The absolute number and concentration of donor

T cells also dramatically affects engraftment. This strategy

focuses on inducing a graft-versus-hematopoietic effect with

the use of donor T cells, but without GVHD. Previous studies

in murine, sheep, canine, swine, and non-human primate

models emphasized the importance of T cells and

demonstrated that approximately 1%–2% donor T cells are

felicitous in facilitating donor cell engraftment without

GVHD (Crombleholme et al., 1990; Shields et al., 2003; Lee

et al., 2005b; Chen et al., 2008; Vrecenak et al., 2018). In

addition, using donor T cells presensitized to the recipient

with donor HSCs can also provide an engraftment advantage

to donor cells without GVHD (Bhattacharyya et al., 2002;

Hayashi et al., 2004). A recent study also showed that in utero

injection of BM with regulatory T cells, either from chimeric

mice or from naive donors, could promote allogeneic

engraftment in late-gestation mouse models (Riley et al.,

2020). However, further studies are needed to understand

the role of T cells and Tregs in large animal models before

their clinical application.

6 Clinical application of in utero
hematopoietic cell transplantation

Since the first clinical application of IUHCT in a bare

lymphocyte syndrome fetus (Touraine et al., 1989), there

have been approximately 50 reported cases of IUHCT during

the past 30 years, targeting various diseases with different

donor cell sources and transplantation protocols.

Unfortunately, the success of this process has been limited

mainly to fetuses with SCID (Flake et al., 1996; Wengler et al.,

1996; Westgren et al., 2002). However, in successful IUHCT

cases, the patients manifested engraftment only in the T-cell

lineage (split chimerism), similar to postnatal results in

HSCT treatment (Buckley et al., 1999). Thus far, there is

little evidence demonstrating the advantages of prenatal

treatment over postnatal treatment in patients with

X-linked SCID (Flake and Zanjani, 1999b). As for other

immunodeficiency disorders, such as chronic

granulomatous disease and Chediak-Higashi syndrome, no

detectable engraftment was achieved in the treated children

(Cowan and Golbus, 1994; Flake and Zanjani, 1997; Muench

et al., 2001).

Similarly, the use of IUHCT to treat hemoglobinopathies

has mostly been unsuccessful. There have been 12 attempts to

treat β-thalassemia with IUHCT, and only two have showed

detectable postnatal engraftment (Slavin et al., 1992; Orlandi

et al., 1996; Westgren et al., 1996; Sanna et al., 1999; Vrecenak

and Flake, 2013). In α-thalassemia, three attempts at IUHCT

were made, where only one demonstrated microchimerism

and donor-specific immune tolerance (Cowan and Golbus,

1994; Westgren et al., 1996; Hayward et al., 1998). Currently,

Horvei et al. (2021) are performing a phase I clinical trial

FIGURE 2
Strategies to Succeed IUHCT. Diagram representing the possible strategies to overcome the barriers. (A)Host cell competition. a. Proper routes
(intravenous, intraperitoneal, intrahepatic, intracelomic and intracardiac) and time of administration; b. Increasing cell doses. c. Cotransplantation
with stromal cells. d. Using fetal sources of stem cells (fetal liver, amniotic fluid stem cells, etc.); (B) Limited niches. a. Mobilize HSCs from niches. b.
Antibodies targeted to host HSCs. c. Maternal immunosuppressants administration; (C) Immune barriers. a. Matched maternal HSCs. b.
Induction of host NK cells tolerance.

Frontiers in Pharmacology frontiersin.org13

Shi et al. 10.3389/fphar.2022.851375

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.851375


(NCT02986698) of IUHCT using maternal cells as donors for

treatment of α-thalassemia. As discussed previously, the

presence of maternal cells in the fetus result in fetal

tolerance, transplantation of maternal cells provides the

highest likelihood of success. If the one-step protocol

results in low levels of chimerism, a combined strategy

would be performed with postnatal maternal cells

transplantation.

In sickle cell anemia, fetal liver cells were injected to a

female fetus at 13 weeks of gestation, however, engraftment

was not detected at 3 months after her birth (Westgren et al.,

1996). In another two unpublished clinic cases that applied

IUHCT for sickle cell anemia therapy also failed in donor cell

engraftment (Westgren, 2006). Metabolic storage diseases,

another type of inherited disorder, may also benefit from

IUHCT. Seven attempts were made and two cases showed

engraftment (Bambach et al., 1997; Flake and Zanjani, 1997;

Touraine et al., 1997; Touraine et al., 2004); however, one

patient showed no improvement, while the other died

prenatally, probably due to GVHD. For other genetic

disorders, such as osteogenesis imperfecta, two attempts

resulted in microchimerism and transient clinical effects

(Le Blanc et al., 2005; Götherström et al., 2014). To date,

the results of clinical cases demonstrated that clinical

IUHCT, along with current methods, is not able to

establish therapeutic levels of engraftment in recipients

without significant immunodeficiency. Because of this,

only a few recent clinical attempts at IUHCT have been

reported. These clinical cases used various donor cell

sources and IUHCT was performed at different times

during gestation. These inconsistencies have made it

impossible to determine the specific factors responsible for

the low donor engraftment or failure in clinical practice.

Therefore, it is vital to perform more controlled IUHCT in

animal models to optimize the protocols before clinical

application. In 2015, MacKenzie et al. (2015) produced an

international consensus statement describing guidelines for

IUSCT clinical trials.

Currently, two strategies can be used in clinical applications.

The first is to perform IUHCT alone to achieve therapeutic

engraftment levels; however, such a strategy might only be

possible for diseases that require very low levels of

engraftment for therapeutic success. The most favorable target

disease for this approach is X-linked SCID, and other diseases,

such as chronic granulomatous disease, hyper-IgM syndrome,

and leukocyte adhesion deficiency, which are characterized by an

SCID phenotype, may benefit from such a strategy. However,

further studies on such diseases are required to optimize the

current strategy. For diseases requiring high levels of engraftment

for therapeutic success, such as hemoglobinopathies, the most

compelling strategy is performing IUHCT to induce donor-

specific tolerance, followed by postnatal minimal or non-toxic

conditioning of HSCTs from the same donor to increase donor

engraftment. As mentioned before, this strategy significantly

reduces the initial chimerism required for clinical success to

1%–2%. From the studies of murine, sheep, and canine models

discussed earlier (Zanjani, 1994; Hayashi et al., 2002; Peranteau

et al., 2002; Ashizuka et al., 2006; Peranteau et al., 2009), on the

basis of the initial chimerism after IUHCT, donor engraftment

can be enhanced dramatically to complete or near-complete

levels. More importantly, this strategy lowers the chimerism

threshold, which may be required for clinical success.

Recently, Peranteau et al. (2015) showed that IUHCT

combined with the same donor non-myeloablative

allogeneic BM transplants corrected the disease phenotype

in mice with β-thalassemia and sickle cell disease. Moreover,

IUHCT-induced donor-specific tolerance may allow for

postnatal organ transplantation without

immunosuppression. Chen et al. (2010) demonstrated that

the success of postnatal donor skin transplantation was

dependent on the level of donor cell chimerism after

IUHCT in murine models. Studies in swine and canine

models support the combined strategy for successful

postnatal renal transplants from the same donor without

immunosuppression (Lee et al., 2005a; Mathes et al., 2005;

Vrecenak et al., 2014). These results highlight the therapeutic

potential of IUHCT combined with postnatal same-donor

“boosting” transplantation in the clinical setting.

7 Conclusion and perspectives

IUHCT has great potential for the treatment of numerous

congenital hematological, genetic, and immunological disorders.

However, this therapy has so far only been successfully achieved

in fetuses with SCID. There are many hurdles remaining for

IUHCT to overcome before it can be used as a therapeutic

alternative for specific diseases. Challenges for IUHCT are

mainly related to overcoming the competitive barriers to

engraftment in the fetus and to better understand the

maternal and fetal immune barriers to engraftment in large

animal models and humans. Studies in murine and large

animal models suggest that, under limited circumstances, a

single IUHCT may result in high levels of donor cell

engraftment to ameliorate the target disease. However, it

seems unlikely to reach a therapeutic level of engraftment

without the development of safe myeloablative drugs or

options in the human fetus. Hopefully, through a greater

understanding of induction and maintenance of immune

tolerance and stem cell biology, new innovative methods and

diverse source of donor cells can be applied to achieve high donor

chimerism. Although limited clinical studies at the current time,

the strategy of prenatal tolerance induction followed by postnatal

HSC transplantation from the same donor to enhance

engraftment is promising in the future. Further insights into

the fetal hematopoietic ontogeny will further facilitate the
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improvement of therapeutic strategies based on IUHCT in the

future.
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