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Pinelliae rhizoma (PR), one kind of commonly-used Chinese herbs, is generally

prescribed to treat various respiratory diseases, including acute lung injury (ALI).

However, the accurate bioactive ingredients of PR and the underlying

pharmacological mechanism have both not been fully elucidated. Therefore,

this study aimed to identify the bioactive ingredients that could alleviate

lipopolysaccharide (LPS)-induced ALI and explore the possible mechanism

involved. Our results confirmed that LPS infection indeed caused acute

inflammatory damage in mice lung, accompanying with the enhancement of

IL-1β contents and the activation of the NLRP3 inflammasome in lung tissue and

macrophagocyte, all of which were remarkably ameliorated by PR treatment.

Next, mechanistically, LPS was found to trigger endoplasmic reticulum (ER)

stress and downstream cellular calcium ions (Ca2+) release via activating Bip/

ATF4/CHOP signaling pathway. Like PR, 4-PBA (a specific inhibitor of ER stress)

not only obviously reversed Bip/ATF4/CHOP-mediated ER stress, but also

significantly attenuated LPS-induced activation of the NLRP3 inflammasome.

Furthermore, the bioactive ingredients of PR, which generated the anti-

inflammatory effects, were screened by metabolomics and network

pharmacology. In vitro experiments showed that chrysin, dihydrocapsaicin,

and 7,8-dihydroxyflavone (7,8-DHF) notably suppressed LPS-induced ER
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stress and following NLRP3 inflammasome activation. In conclusion, our

findings suggested that PR alleviated LPS-induced ALI by inhibiting ER

stress-mediated NLRP3 inflammasome activation, which is mainly relevant

with these three bioactive ingredients. This study provided a theoretical basis

for the clinical application of PR to treat ALI, and these bioactive ingredients of

PR would be promising therapeutic drugs for the treatment of ALI.

KEYWORDS

Pinelliae rhizoma, acute lung injury, NLRP3 inflammasome, metabolomics,
endoplasmic reticulum stress

Introduction

The global pandemic of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) causes numerous severe

pneumonia (named coronavirus disease 2019, COVID-19) and

death, both of which are associated with SARS-CoV-2 induced

acute lung injury (ALI) or its wilder form, acute respiratory

distress syndrome (ARDS) (Habashi et al., 2021). Several

Traditional Chinese Medicine (TCM) formulas have been

reported to perform well against progressing to severe or

critical COVID-19, largely because these prescriptions

generated immune regulatory effects to prevent ALI or further

ARDS (Huang et al., 2021). Of these TCM formulas used for the

treatment of COVID-19, five kinds of herbs were documented as

clinical commonly-used Chinese medicinal materials to treat and

prevent various pulmonary diseases, including Glycyrrhiza

uralensis Fisch ex DC. [Fabaceae], Scutellaria baicalensis

Georgi [Lamiaceae], Pinellia ternata (Thunb.) Makino

[Araceae], Forsythia suspensa (Thunb.) Vahl [Oleaceae], and

Semen Armeniacae Amarum [Rosaceae] (Xiong et al., 2020;

Luo et al., 2022). In particular, for its excellent efficacy in the

therapy of chronic obstructive pulmonary disease (COPD),

asthma, and respiratory tract infections, Pinelliae rhizoma

(PR) has been widely used in many East Asian countries (Du

et al., 2016; Hu et al., 2019). Growing studies are paying attention

to the material basis and mechanism involved in the treatment of

ALI using PR.

In general, ALI is considered to be an adverse outcome of

immunological responses to bacterial or viral agents’ infection, in

addition to the key event in deciding deterioration of diseases

(Mokra, 2020). Next, pathologically, ALI is characterized by

elevated alveolar permeability and protein-rich edema, both of

which are always caused by hyper-activated pro-inflammatory

responses and following tissue damage (Kumar, 2020). Hence,

it’s not difficult to spot that controlling inflammatory injury

would be the crux of ALI therapy. Previous studies found that PR

exerts protective effects via attenuating allergic airway

inflammation and mucus excessive secretion in asthma

murine models and also relieves chronic airway inflammation

in rats with COPD (Lee et al., 2013; Lyu et al., 2020). Moreover,

Tang X et al. reported that the combination of PR or its bioactive

ingredient (β-sitosterol) with another herb indeed decreased the

contents of inflammatory factors and ameliorated lung injury in

lipopolysaccharide (LPS)-infected rat (Tang et al., 2018).

However, the molecular mechanisms underlying PR-generated

anti-inflammatory effects during the therapy of ALI are not fully

elucidated. Besides, accumulating evidence demonstrated that PR

contains plenty of bioactive ingredients, for example, alkaloids,

anthraquinone glycosides, and their derivatives (Mao and He,

2020). Therefore, an urgent need also exists to identify the

bioactive ingredients of PR that are associated with ALI

treatment.

NF-κB signaling and the downstream nucleotide-binding

oligomerization domain, leucine-rich repeat, and pyrin

domain-containing 3 (NLRP3) inflammasome act as the core

modulators that mediate the outbursts of pro-inflammatory

cytokines, including IL-1β, TNF-α, and IL-18, and subsequent

cell death during the over-activated inflammatory process of ALI

(He et al., 2016). In recent times, endoplasmic reticulum (ER)

stress, a cellular response to ensure proteins fold correctly, was

initiated upon sensing LPS or virus infection to participate in the

occurrence and development of ALI by regulating

immunological recognition, macrophage activation, and

alveolar endothelial function (Hrincius et al., 2015; Zhang

et al., 2018; Zhao et al., 2020). Next, typically, the activation

of ER stress triggers unfolded protein response (UPR) to restore

cellular homeostasis (Kim et al., 2015) and programmed

apoptosis via C/EBP homologous protein (CHOP) once

protein misfolding occurs beyond repair capacity (Delbrel

et al., 2018). Besides, over-activation of ER stress causes the

cytoplasmic release of calcium ions from ER, resulting in the

activation of the NLRP3 inflammasome and mitochondrial

dependent death (Li et al., 2020; Mishra et al., 2021). Latest

studies also showed that the cross-talk between ER stress and

IKKbeta/NF-κB signaling cascade was relevant to many

pathological events, for instance, energy imbalance, autophagy,

and apoptosis (Zhu et al., 2017; Lee et al., 2021). Thus, the

interplay among ER stress and these pro-inflammatory signals

would promote and exacerbate ALI. However, whether ER stress

is targeted by bioactive ingredients of PR during ALI treatment

remains unknown.

Here, we speculate that PR may alleviate lung injury via

inhibiting ER stress-mediated pro-inflammatory responses. In

this study, we confirmed that PR treatment alleviated LPS-
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induced ALI in vivo and in vitro, and we also identified the

relevant bioactive ingredients by metabolomics. Next,

mechanistically, PR and these bioactive ingredients provided

relief from acute inflammatory injuries mainly by inhibiting

ER stress-mediated NLRP3 inflammasome, which could be a

novel therapeutic target for ALI. The flow chart of the research

processis shown in Figure 1.

Materials and methods

Chemicals and reagents

LPS (L8880, HPLC ≥ 99%, China), 7,8-dihydroxyflavone

(7,8-DHF, CAS: 38183038, HPLC ≥ 98%), and

dihydrocapsaicin (DHC, CAS:19408845, HPLC ≥ 98%) were

obtained from Beijing Solarbio Science & Technology Co. Ltd.

Chrysin (CAS: 480400, HPLC ≥ 98%), 2-aminoethoxydiphenyl

borate (2-APB, #9754, HPLC ≥ 97%), Phosphate Buffered Saline,

and formic acid (LC-MS grade) were all purchased from Sigma-

Aldrich (Merck, United States). Next, Sodium 4-phenylbutyrate

(4-PBA, T1535, HPLC ≥ 99%) was purchased from Topscience

Co. Ltd. Sodium chloride injection was obtained from

Shijiazhuang NO.4 Pharmaceutical Co. Ltd., (Shijiazhuang,

China). Methanol (LC-MS grade) and acetonitrile (LC-MS

grade) were obtained from CNW Technologies (Shanghai,

China). 2-Chloro-L-phenylalanine (≥ 98%, HPLC) was

purchased from Hengbai Co, Ltd. (Shanghai, China), and

other reagents were HPLC grade.

Anti-IL-1β (511369) and anti-Caspase-1 (342947) were

purchased from Zen-bioscience Biotechnology Co. Ltd.

(Chengdu, China). Anti-NLRP3 (ab263899) was obtained from

Abcam (Cambridge, MA, United States). Anti-ASC/TMS1

(67824), anti-Bip (3177), anti-ATF4 (11815), anti-IKKβ (8943),

anti-phospho-IκBα (14D4), anti-IκBα (L35A5), anti-phospho-NF-

κB p65 (93H1), anti- NF-κB p65 (8242), and anti-GAPDH (5174)

were all obtained from Cell Signaling Technology (Beverly, MA,

United States). Anti- ALOX12 (A02275) was purchased fromBoster

Biological Technology Co. Ltd. (Wuhan, China). Anti-CHOP

(15204) and anti-TRPV1 (66983) were obtained from

Proteintech (Wuhan, China).

Preparation of the Pinelliae rhizoma
aqueous extract

PR used in this study was Pinelliae rhizoma Praeparatum

Cum Alumine, the processed product of the dried rhizome of

Pinellia ternata (Thunb.) Makino [Araceae], and it was

purchased from Minghui-Hengtong Pharmaceutical Co. Ltd.

(LOT NO.: 20030102, Beijing, China). Professor Yan Jin,

National Resource Center for Chinese Materia Medica

authenticated the PR according to the Pharmacopeia of the

People’s Republic of China (2020, volume I). The extraction

procedures of PR used for in vivo experiments are as follows: PR

(50 g) was immersed in distilled water (1 L) for 30 min, followed

by boiling and decocting twice for 30 min each time. All

decoctions were combined, and the extracts were filtered

through a Buchner funnel. For in vivo experiments, the

filtrates were concentrated under reduced pressure to 500 mg/

ml at 60–70°C and stored at −20°C. For in vitro experiments, the

filtrates were freeze-dried to obtain a dry fluffy powder (the drug

extract ratio based on the mass was 6.5 g: 50 g) and stored

at −20°C. In addition, we also carried out quality control of

PR extract samples and listed the peaks of major ingredients of

PR. Researchers identified by mass spectrometry that the water

extract of PR contains succinate, adenine, ferulic acid, baicalein,

and coumarin. For detailed data, please refer to Supplementary

Data Sheet S1 and Supplementary Table S3.

Instruments

UHPLC system (Vanquish, Thermo Fisher Scientific,

United States); Chromatographic column (ACQUITY UPLC

BEH C18 (1.7 μm 2.1*100 mm), Waters, United States); High

resolution mass spectrum (Orbitrap Exploris 120, Thermo Fisher

Scientific, United States); Analytical Balance (Mettler Toledo,

Swiss); High-throughput tissue grinder (Shanghai, China); Pure

water filter (Merck Millipore, United States); Ultrasonic cleaner

(Fangao Co., Ltd., Shenzhen, China); CO2 incubator

(ThermoFisher, United States); Multifunctional enzyme

marker (PerkinElmer, United States); Ultra low temperature

refrigerator (Haier, China).

Cell culture and treatments

RAW264.7 cells were obtained from the National

Infrastructure of Cell Line Resource. Cells were grown in

DMEM medium (Gibco, ThermoFisher Scientific,

United States) containing FBS (10%) and penicillin-

streptomycin (1%). Next, RAW264.7 cells were cultured in a

cell incubator at 37°C with 5% CO2. When the cell density

reached 80%, drug treatment was performed.

Animals and experimental design

C57BL/6 mice (8–10 weeks) were ordered from Beijing Vital

River Laboratory Animal Technology (Beijing, China). Mice were

kept in standard laboratory with unlimited access to standard diet

and water. They were randomly divided into five groups (n = 6):

control group, LPS-stimulated model group, PR-low dosage groups

(1 g/kg/day), PR-medium dosage groups (2 g/kg/day), and PR-high

dosage groups (4 g/kg/day). The Pharmacopeia of the People’s
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Republic of China (2020, volume I) stipulates that the maximum

dose of PR is 9 g per person per day. According to the dose

conversion guideline between mice and human stipulated by the

FDA (Reagan-Shaw et al., 2008), the dose of PR administered in

mice was 2 g/kg/d, so the low dose (1 g/kg/d) and high dose (4 g/kg/

d) were 0.5 times and 2 times that of the middle dose group,

respectively. The applied dose of this study demonstrates guiding

significance for clinical medication. The mice model of ALI was

established by intranasal inhalation of LPS at 5 mg/kg. Also, daily

changes in weight and clinical signs were recorded during

administration. Mice were killed by euthanasia at the end of

administration, and the samples were saved for subsequent studies.

Hematoxylin-eosin staining of lung tissue

Mice were sacrificed after treatment, and lungs were collected

and fixed in 10% neutral buffered formalin. Next, the fixed lungs

were embedded in paraffin and cut into sections, followed by

H&E staining to detect pathological damage inmouse lung tissue.

Western blot analysis

Group assignment and drug administration were performed

according to the above method. Lung tissue and RAW264.7 cells

were homogenized ice-cold RIPA lysis buffer. Total proteins for

each group were separated on PAGE gel by electrophoresis and

then transferred onto PVDF membrane (Millipore,

United States) using the Bio-Rad protein assay system (Bio-

Rad, United States). The PVDF membranes were blocked with

5% BSA in TBST buffer for 3 h and then incubated with the

corresponding primary antibody overnight at 4°C. The next day,

PVDF membranes were washed with TBST and incubated with

secondary antibody for 1 h. After thorough washing with TBST,

the immunoreactive protein was visualized with an enhanced

chemiluminescence assay and captured on ImageQuant™ LAS

500 (Healthcare BioSciences AB, United States). Data were

standardized with the corresponding GAPDH. All

experiments were repeated in triplicate.

Measurement of cytokine

Mice in each group were euthanized after 7 days treatment of

PR, and their serum were harvested from the abdominal aorta

using a syringe. The content of cytokine was measured using

ELISA kits (IL-1β, MM-0040M1). The absorbency was examined

at 540 nm. Next, each value was calculated and presented by

deducting the background value.

Detection of the level of cytoplasmic
calcium (Ca2+)

Fluo 4-AM (F312, Dojindo, Japan), a Ca2+ -specific vital dye,

was used to measure intracellular calcium levels. Dilute 1 mM

Fluo 4-AM stock solution to 5 μM Fluo 4-AM working solution

using HBSS buffer. The working solution (Fluo 4-AM) was

incubated in cell incubator for 0.5 h. After washing the

FIGURE 1
Flowchart of the research process. PR alleviates the damage caused by LPS, and its active ingredients were explored by metabolomics and
validated in vitro.
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RAW264.7 cells three times with HBSS buffer, 1 ml of HBSS

buffer was added to continue incubation for 30 min in a cell

incubator. After the end, the content of calcium ions in each

sample was detected according to the fluorescence intensity using

a laser confocal microscope.

Metabolites extraction

Mice in each group were euthanized after 7 days treatment

of PR, and their serum were harvested from the abdominal

aorta using a syringe. The blood of the mice in the Con, LPS,

and LPS_PR (2 g/kg/d) were centrifuged at 12,000 rpm for

15 min at 4°C. The serum was transferred to another new

centrifuge tube, and the extract containing the internal

standard solution was added. The samples were centrifuged

at 4°C for 15 min, and the supernatant was filtered through a

0.22 μm microporous membrane. 100 μl from each sample

was taken and mixed into QC samples. Next, hydrochloric

acid (2 mol/L) was added to the serum sample, and it was

allowed to stand at 4°C for 15 min. After repeating this for

four times, acetonitrile was added. After centrifugation, the

supernatant was aspirated to dry with nitrogen. Dried

samples were dissolved in 80% methanol, vortexed and

centrifuged, and the supernatants were taken for LC/MS

detection.

FIGURE 2
PR exhibits anti-inflammatory efficacy in LPS stimulation. (A) body weight change of mice in 7 days during administration. (B) Serum IL-1β levels
were detected by Elisa kits (n = 5–6). (C) Immunoblot was employed to evaluate the expression of IL-1β in lung tissue of mice. (D) RAW264.7 cells
were treated with LPS or/and PR for 12 h, followed by Western blot analysis using IL-1β antibody (n = 3). (E) Representative HE staining of lung tissue
from ALI mice that were treated or untreated with PR (n = 6). Scale bar = 100 μm *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. Control
groups; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs. LPS-treated groups.
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LC-MS/MS conditions

LC-MS/MS analysis was carried out an UHPLC system coupled

with a Waters UPLC BEH C18 column. During the analysis, the

injection speed and volume were 0.4 ml/min and 5 μl, respectively.

The mobile phase was a combination of 0.1% formic acid in water

(A) and 0.1% formic acid in acetonitrile (B). After linear elution, MS

and MS/MS data were harvested in IDA acquisition form using an

Orbitrap Exploris 120 mass spectrometer.

Metabolome data processing and analysis

The raw data were processed by Progenesis QI. The area-

under-the-curve of each peak was quantified as peak intensity.

Peaks with missing values in more than ¼ of the samples were

removed. For filtered peaks, missing values were replaced by 1/5 of

the min positive value for each variable. To improve the power of

subsequent results (Hackstadt and Hess, 2009), further peak

filtering was based on interquartile range by R package

MetaboAnalystR (version 3.2.0) (Pang et al., 2020). To conclude,

the quantile normalized, and log transformed peak intensities were

scaling by mean centering. Metabolites were identified by

automated comparison using CAMERA (Kuhl et al., 2012).

Next, partial least squares-discriminant analysis (PLS-DA) was

applied for visualizing group separation and finding significantly

changed metabolites by MetaboAnalystR. Welch’s t-test was

performed for comparing the expression differences of

metabolites between each two groups. Metabolites with p < 0.05

and variable importance in projection (VIP, a weighted sum of

squares of the PLS loadings taking into account the amount of

explained Y-variation in each dimension) in component 1 >
1.0 were considered as potential biomarkers (Pang et al., 2020).

Network pharmacology analysis

The targets of PR were forecasted by the webtool

SwissTargetPrediction (Daina et al., 2019) with probability >
0.5 in Homo sapiens. Also, the ALI-related targets in Homo

sapiens were obtained from GeneCards (Safran et al., 2010) and

OMIM (online mendelian inheritance in man) (Amberger et al.,

2015; Amberger et al., 2019). The intersection between the two

target sets were the final PR targets for ALI. The PR-target-

pathway network was constructed by Cytoscape (version 3.4.0)

(Shannon et al., 2003).

Metabolic pathway and function
enrichment analysis

The metabolic pathway analysis was performed via the

webtool MetaboAnalyst 5.0 (Pang et al., 2021). The R package

ClusterProfiler (version 4.2.1) (Wu et al., 2021) was used for gene

function enrichment analysis. Each p value was corrected by the

Benjamini-Hochberg method.

Molecular docking

The protein structures of ALOX12 (ID: 3d3l), IKKB (ID:

3brt) and TRPV1 (ID: 3sui) were downloaded from RCSB PDB.

The ligands and solvent molecules in protein structures were

removed via AutoDockTools (v 1.5.6). 7,8-DHF (ID: 1880) were

download from https://pubchem.ncbi.nlm.nih.gov. The

corresponding metabolite structures of chrysin (ID:

MOL002560) and DHC (ID: MOL008698) were download

from TCSMP. AutoGrid4 in Autodock Vina (v 1.2.2) was

used for molecular docking of the proteins (as receptors) and

metabolites (as ligands). Default input parameters were used in

all computations. Binding energy between each ligand and

receptor was calculated by Autodock Vina.

Statistical analysis

All values were expressed as mean ± SEM, and statistical

analyses were implemented using GraphPad Prism 8. A one-way

ANOVA followed by Tukey’s test was conducted to analyze the

data for significant differences. N represents the number of mice

in each group and the number of independent experiments. p <
0.05 indicated statistically significant.

Results

Pinelliae rhizoma exhibited
anti-inflammatory efficacy in
lipopolysaccharide-induced acute lung
injury

LPS-induced ALI mice model was treated with PR for 7 days.

The weight changes of the mice were recorded daily, and the

results showed that LPS reduced the body weight of mice, and PR

treatment alleviated the weight loss in ALI mice and recovered

the body weight in the following 7 days gradually (Figure 2A).

Pro-inflammatory cytokine IL-1β is known to mediate the

initiation of the immune response, which promotes the release

of other pro-inflammatory cytokines and disrupts immune

homeostasis (Kandasamy et al., 2019). Therefore, suppressing

excessive IL-1β will help to attenuate the inflammation response.

IL-1β is a secretory protein released by macrophages, so the

effects of PR on the level of IL-1β were examined in serum and

lung tissue in ALI mice. As expected, PR not only effectively

reduced the concentration of IL-1β in serum (Figure 2B), but it

also inhibited the expression of IL-1β in lung tissue (Figure 2C).
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FIGURE 3
PR inhibits LPS-induced ER stress and NLRP3 inflammasome activation. (A) The expressions of IL-1β, NLRP3, Caspase-1, and ASC in the lung
tissue ofmice were determined byWestern blot (n= 3). (B) RAW264.7 cells were challenged with LPS and treated with PR for 12 h. The expressions of
IL-1β, NLRP3, Caspase-1, and ASC in RAW264.7 cells were examined byWestern blot. (n= 3). (C) The expression levels of ATF4, Bip, and CHOP in lung
tissue were detected by Western blot. (D) RAW264.7 cells were challenged with LPS and treated with PR for 12 h. The expressions of ATF4, Bip,
and CHOP in RAW264.7 cells weremeasured byWestern blot (n= 3). (E) Intracellular Ca2+ content was detectedwith Fluo 4-AM. Scale bar = 100 μm.
(F) After 12 h LPS treatment with/without 4-PBA co-treatment, the expressions of Bip, ATF4, and NLRP3 were detected by Western blot (n = 3). *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. Control groups; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs. LPS-treated groups.
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In this study, the dose of LPS was selected to be 10 ng/ml, and

the dose of PR was in the range of 0.5 mg/ml to 2 mg/ml,

according to the references and preliminary experiment

(Zhang et al., 2015; Arikawa et al., 2016). Then, we detected

the expression of IL-1β in RAW264.7 cells after treatment with

LPS and PR. As shown in Figure 2D, co-treatment with PR

markedly reversed LPS-increased expression of IL-1β in vitro and
in vivo, suggesting that PR exerts an anti-inflammatory effect by

acting on the upstream mediators of IL-1β in response to LPS

stimulation. Besides, histopathological examination of lung tissue

was conducted by H&E staining. Researchers observed that

severe infiltration of inflammatory cells and neutrophils in the

alveolar space, diffuse edema in alveolar spaces and interstitium,

and the alveolar walls were congested and thickened in LPS-

induced ALI. The PR treatment group showed clearly

ameliorated lesions in lung tissue with increased alveolar air

space and reduced infiltration of inflammatory cells (Figure 2E).

Pinelliae rhizoma inhibited the activation
of endoplasmic reticulum stress and
NLRP3 inflammasome

Given that ER stress and NLRP3 are critical in LPS-induced

ALI, we investigated relevant protein expressions via

immunoblotting. As shown in Figures 3A,B, LPS stimulation

elevates NLRP3, Caspase-1, and ASC levels in RAW264.7 cells

and lung tissue. Next, interestingly, PR co-treatment decreased

the levels of NLRP3, Caspase-1, and ASC in LPS-treated

RAW264.7 cells and lung tissue (Figures 3A,B). Meanwhile,

another significant inflammation-related signaling pathway

known as the NF-κB was stimulated by LPS, while PR

treatment efficiently reduced its phosphorylation (Figure 3B).

Also, co-treatment with PR significantly reversed LPS-increased

the expressions of ATF4, CHOP, and Bip (Figures 3C,D).

Further, collectively, these data demonstrated that PR

demonstrates a significant inhibitory effect on ER stress and

NLRP3 activation in vitro and in vivo. In addition,

RAW264.7 cells were stained with Fluo-4 AM to detect

changes in intracellular Ca2+ levels after LPS and PR

treatments. Our results showed that the cytoplasmic Ca2+

loading in the LPS-treated group was significantly enhanced,

while the cytoplasmic Ca2+ content in the PR and 2-APB (the

inhibitor of calcium ion) treated groups decreased (Figure 3E).

To investigate whether ER stress regulates NLRP3 inflammasome

activation, we used 4-PBA (the inhibitor of ER stress) to inhibit

ER stress and examined the expression of ER stress and NLRP3-

related proteins. Our data showed that 4-PBA inhibited the

expression of Bip and ATF4, while down-regulating the

expression of NLRP3 (Figure 3F). These results displayed that

inhibition of ER stress suppressed NLRP3 inflammasome

activation, that is, NLRP3 activation is closely related to ER stress.

Effects of Pinelliae rhizoma on serum
metabolites of lipopolysaccharide-
induced acute lung injury model

Serum metabolome is a new approach that combined TCM

theory with advanced systematic pharmacology technology to

study the TCM. In order to consider whether some bioactive

ingredients were found in PR, which play the anti-inflammatory

roles in the regulation of ER stress and NLRP3 inflammasome,

serum metabolome can be used to overcome the difficulty of

multi-ingredients and multi-targets in the research of PR. After

quality control and data processing, the PLS-DA result showed

FIGURE 3
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that samples in the same group were clustered together, and the

three groups were clearly distinguished (Supplementary Figure

S1A), indicating that high-confidence metabolomes were

obtained which could be used for downstream analysis. A

total of 98,067 peaks were detected in the three types of

experimental samples, 566 metabolites were identified

(Figure 4A and Supplementary Table S1), and most (82.9%,

469/566) metabolites were co-identified in three groups. Next,

subsequently, we focused on the expression changes of

metabolites in the LPS model before and after PR

administration. Significant differences were found between

the LPS and LPS_PR groups (Supplementary Figure S1B).

The differential analysis identified a total of 46 differentially

expressed metabolites (p < 0.05 and VIP >1), of which 24 were

up-regulated and 22 were down-regulated (Figure 4B and

Supplementary Table S1), suggesting that PR alters mouse

serum metabolome in the presence of ALI. These

differentially expressed metabolites tend to be involved in

steroid biosynthesis and arachidonic acid metabolism

pathways (Figure 4C), which are closely related to

inflammation (Riad et al., 2002; Mariotto et al., 2007; Wang

et al., 2019).

FIGURE 4
PR changed the serummetabolites of LPS-stimulated mouse. (A) Number of identified metabolites in the three types of experimental samples.
(B)Heatmap of 46 differentially expressed metabolites in LPS and LPS_PR. Purple represents low expression and orange represents high expression.
Due to the long names of some ingredients, abbreviations are used for display (indicated by asterisks on the right side of the heat map). Compound 1:
[(1S,6S,7R)-6-acetyloxy-1-(3-methylbutanoyloxy)spiro[4a,5,6,7a-tetrahydro-1H-cyclopenta[c]pyran-7,2′-oxirane]-4-yl]methyl 3-
methylbutanoate; Compound 2: Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(1-methylethyl)-; Compound 3:
(1S,2R,4aS,6aR,6bR,10S,12aR,14bS)-1,2,6b,9,9,12a-hexamethyl-10-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-
2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a,6a-dicarboxylic acid; Compound 4: (2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(5-
hydroxy-4-oxo-2-phenylchromen-7-yl)oxyoxane-2-carboxylic acid; Compound 5: 2,4,6-trihydroxy-5-[1-(4-hydroxy-1,1,4,7-tetramethyl-
1a,2,3,4a,5,6,7a,7b-octahydrocyclopropa[h]azulen-7-yl)-3-methylbutyl]benzene-1,3-dicarbaldehyde; Compound 6:
(1S,4aR,6aS,6bR,10R,11R,12aR,14bS)-1,10,11-trihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-
4a-carboxylic acid. (C) Pathway enrichment results of differentially expressed metabolites. The darker the color, the more significant the p value.
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FIGURE 5
Network pharmacological analysis showed that potential anti-inflammatory ingredients are found in PR. (A) PR network pharmacology.
39 targets of seven metabolites and KEGG pathways closely related to inflammation were displayed in the network. Squares represent metabolites,
circles represent potential targets, and triangles represent KEGG pathways. The size of the shape is positively correlated with the degree, and the
thickness of the line is positively correlated with probability. (B) Functional enrichment results of targets of differentially expressed metabolites.
(C) Pathway enrichment results of targets of differentially expressed metabolites. The darker the color, the more significant the p value. The red
vertical bar indicates that p value is 0.05. (D) overlap of identified metabolites in LPS_PR and PR in vitro. (E) Abundance of seven metabolites in four
groups in Con, LPS, LPS_PR and PR in vitro. Welch’s t-test was performed for compare the expression differences of metabolites between each two
groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Network pharmacology revealed
important bioactive ingredients in
Pinelliae rhizoma and their possible
targets

In order to explore the PR regulatory network, through

network pharmacological analysis (see methods), we found that

seven of the 24 up-regulatedmetabolites in LPS_PR regulate a total

of 39 ALI-related targets, of which chrysin, isopalmitic acid, and

vitamin D3 demonstrate the most targets, 22, 7, and 4, respectively

(Figure 5A and Supplementary Table S2). Functional enrichment

analysis showed that these 39 targets tend to be involved in the

functions closely related to lipid and energy metabolism and

transport, cell cycle, response to stimulation and regulation of

inflammatory response (Figure 5B), and tend to participate in

metabolic pathway, PPAR signaling pathway, cell cycle, and

p53 signaling pathway (Figure 5C). To explore which of these

seven metabolites (Supplementary Data Sheet S2) are ingredients

in PR, we identified all ingredients in PR using UHPLC-QE MS.

381 ingredients are found in PR, including 97 terpenoids,

65 alkaloids, 38 flavonoids, 26 phenylpropanoids, 23 phenols,

21 amino acid derivatives, and 111 other components

(Supplementary Table S3). 241 metabolites were identified in

both LPS_PR and PR_in_vitro (Figure 5D). Among them,

chrysin, isopalmitic acid, DHC, and 7,8-DHF demonstrate

relatively high expression levels in PR in vitro (Figure 5E),

FIGURE 6
Molecular docking results. (A,B) Schematic diagram of the binding mode of chrysin to ALOX12 protein (left panels) and details of the binding
pose (right panels). (C,D) Schematic diagram of the binding mode of 7,8-DHF to IKKB protein (left panels) and details of the binding pose (right
panels). (E,F) Schematic diagram of the binding mode of DHC to TRPV1 protein (left panels) and details of the binding pose (right panels).
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suggesting that these ingredients in PR may regulate and treat

inflammation through the above corresponding pathways. Since

7,8-DHF and chrysin demonstrate very similar chemical results,

we speculated that the high abundance of 7,8-DHF in LPS_PRmay

be derived from the metabolism of chrysin in PR. These results

suggested that these ingredients in PR may regulate and treat

inflammation through the above corresponding pathways.

To further explore whether genes closely related to

inflammation could be bound by ingredients and potential

metabolic outcomes from PR, we carried out molecular

docking on chrysin with ALOX12, 7,8-DHF with IKKB, and

DHC with TRPV1. Binding energies between chrysin and

ALOX12, 7,8-DHF with IKKB, and DHC with

TRPV1 are −6.45, −6.37, and −5.91 kcal/mol, respectively.

Chrysin binds to ALOX12 in the pocket between the one

chain (Figure 6A). Hydroxyl groups of chrysin form hydrogen

bonds with GLN-353 and HIS9425 in ALOX12 (Figure 6B). 7,8-

DHF binds to IKKB in the pocket between the two chains

(Figure 6C). Carbonyl group of 7,8-DHF form hydrogen

bonds with GLU-729 and GLN-730 in chain A (Figure 6D).

Hydroxyl groups of 7,8-DHF form hydrogen bonds with GLN-

86, and carbonyl group of 7,8-DHF form hydrogen bonds with

LYS-90 in chain B (Figure 6D). DHC binds to TRPV1 in the

pocket between the two chains (Figure 6E). Hydroxyl group of

DHC form hydrogen bonds with GLU-47, and amino groups of

DHC form hydrogen bonds with GLU-54 in chain A (Figure 6F).

Carbonyl group of DHC form hydrogen bonds with ASP-78 in

chain B (Figure 6F).

Bioactive ingredients of Pinelliae rhizoma
suppressed endoplasmic reticulum stress
and NLRP3 inflammasome

Next, we continued to investigate the effects of chrysin, DHC

and 7,8-DHF on ER stress, respectively. LPS induced ER stress and

NLRP3 inflammasome activation in cells, while both DHC (Figures

7A,B) and chrysin (Figures 7C,D) significantly down-regulated the

expression of NLRP3, Caspase-1, Bip andATF4. Also, co-treatment

with DHC significantly reversed LPS-increased the expressions of

FIGURE 7
Validation of the effects of DHC, chrysin, and 7,8-DHF on inflammation-related proteins. RAW264.7 cells were exposed to LPS and treated with
DHC, chrysin, or 7,8-DHF for 12 h. (A,B) The effects of DHC on the expressions of TRPV1, NLRP3, Caspase-1, p-NF-κB, Bip, and ATF4 were examined
by Western blot (n = 3). (C,D) The effects of chrysin on the expressions of ALOX12, p-IκBα, IκBα, p-NF-κB, NLRP3, Caspase-1, Bip, and ATF4 were
detected by Western blot. (n = 3). (E,F) Western blot was employed to detect the effects of 7,8-DHF on the expressions of IKKB, p-IκBα, IκBα,
p-NF-κB, NLRP3 and Caspase-1 (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. Control groups; #p < 0.05, ##p < 0.01, ###p < 0.001,
####p < 0.0001 vs. LPS-treated groups.
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TRPV1 and p-NF-κB (Figures 7A,B). As shown in Figures 7C,D,

compared with the LPS group, the expressions of p-IκBα and p-NF-
κB were distinctly decreased, but that of IκBα was obviously

increased in the chrysin-treated group. Also, no changes were

found in ALOX12 expression between the Control, LPS-treated,

and the chrysin-treated group (Figures 7C,D).Moreover, compared

with the LPS group, the expressions of p-IκBα, p-NF-κB, NLRP3,
and Caspase-1 were significantly decreased, and the expression of

IκBα was increased in the 7,8-DHF-treated group (Figures 7E,F).

Also, no changes were found in IKKB expression among the LPS-

treated group and the 7,8-DHF treated group (Figures 7E,F). Taken

together, these results indicated that chrysin, DHC, and 7,8-DHF

are the effective ingredients of PR regulating inflammation-related

signaling pathways and ion channels.

Discussion

ALI is one of the most common critical diseases in clinics, with

rapid onset and high mortality (He et al., 2021). Severe ALI or

improper treatment could lead to further ARDS. Previous studies

showed that TCM demonstrates its unique advantage in the

treatment of lung injury, which is mainly reflected in the

regulation of immune function (Ding et al., 2020). PR has been

used to treat lung diseases for thousands of years, and it effectively

suppressed pro-inflammatory cytokines and relieved airway

inflammation (Du et al., 2016; Hu et al., 2019). This study

identified that LPS triggered ER stress and increased cytoplasmic

Ca2+ content via activating Bip/ATF4/CHOP signaling pathway. Also,

PR effectively relieves ALI induced by LPS,mainly via suppressing ER

stress-mediated NLRP3 inflammasome and excessive expression of

IL-1β. In addition, the bioactive ingredients of PR exerting anti-

inflammatory effects were screened. Among them, chrysin, DHC, and

7,8-DHF significantly inhibited LPS-induced ER stress and

NLRP3 inflammasome activation.

The infiltration of inflammatory cells and excessive release of

pro-inflammatory cytokines are key events that trigger ALI

(Belchamber and Donnelly, 2017). With the pathogenic

microorganisms invading the lungs, cytokines were released to

repair lung injury; however, overwhelming cytokines are

FIGURE 7
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destructive and cause serious injury (Parekh et al., 2011). Therefore,

inhibition of cytokine release is necessary to alleviate lung injury.

Consistent with previous reports and our hypothesis, this study

confirmed that PR alleviated LPS-induced lung pathological injury

and inhibited the excessive expression of cytokine IL-1β. Besides,
NLRP3 mediates the outbursts of pro-inflammatory cytokines and

PR down-regulated the expression of NLRP3 in lung tissue and

RAW264.7 cells, indicating that PR limited the activation of

NLRP3 inflammasome caused by LPS. Also, importantly, ER

stress-mediated NLRP3 inflammasome also participates in

cytokine release (Talty et al., 2019). The ER is a reservoir of

Ca2+, and a large amount of Ca2+ flow from the ER into

mitochondria and cytoplasm during ER stress, resulting in

mitochondrial Ca2+ overload and damage (Liu et al., 2018). Next,

subsequently, damaged mitochondria produce excess mtROS and

mtDNA and cause cardiolipin damage, thus promoting the

assembly and activation of the NLRP3 inflammasome to release

cytokines (Lee et al., 2012). In addition, elevated Ca2+ levels of

cytoplasmic also directly activate the NLRP3 inflammasome

(Murakami et al., 2012). Hence, inhibition of the activity of ER

stress-mediated NLRP3 inflammasome is a fresh target for the cure

of ALI. Not surprisingly, PR significantly down-regulated Bip/

ATF4/CHOP signaling pathways in LPS-treated cells and lung

tissue, and it reduced cytoplasmic Ca2+ loading in LPS-

stimulated cells. Together, these results proved the effect of PR

in abolishing inflammationmainly through inhibiting ER stress and

suppressing the NLRP3 inflammasome.

Bioactive ingredients of TCM are presented in the form of

prototype components or metabolites in the body (Shi et al., 2016).

To observe whether bioactive ingredients in PR were absorbed by

mice and entered the blood to exert potent anti-inflammatory effects

after administration, we determined themetabolites inmouse serum

before and after LPS stimulation, and the ingredients of PR.

46 differentially expressed metabolites were identified, which tend

to participate in inflammation-related pathways, such as steroid

biosynthesis and arachidonic acid metabolism pathways. Network

pharmacology and molecular docking analysis screened three

prototype and metabolic components of PR and their target

proteins, chrysin and ALOX12, DHC and TRPV1, 7,8-DHF, and

IKKB. Further in vitro experiments demonstrated that chrysin,

DHC, and 7,8-DHF treatment suppress ER stress and the

activation of NLRP3 inflammasome.

Chrysin, 7,8-DHF, and DHC demonstrate significant

biological properties, including anti-inflammatory and

immune modulation (Chen et al., 2011; Janyou et al., 2017;

Byun et al., 2021). The latest research shows that chrysin

improved LPS-induced ALI in mice by inhibiting ER stress

and NLRP3 inflammasome activation (Chen et al., 2021).

Meanwhile, 7,8-DHF can inhibit the LPS-induced release of

inflammatory mediators in RAW264.7 cells (Park et al., 2012).

FIGURE 7
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TRPV1 is a non-selective cation channel (Zhai et al., 2020). The

activation of TRPV1 promotes Ca2+ influx, leads to intracellular

calcium overload, and affects ER stress and a series of

inflammatory responses (Stock et al., 2012; Stueber et al.,

2017). From this, it seems that the suppression of ER stress

by PR may benefit from the inhibition of TRPV1 activation by

DHC. Next, interestingly, chrysin and 7,8-DHF demonstrated no

effect on the expression of their target proteins ALOX12 and

IKKB but inhibited the NF-κB signaling pathway. However,

ALOX12 accelerates inflammatory responses and promotes

cytokine production through the p38 mitogen-activated

protein kinase (MAPK) and NF-κB pathways (Funk and

Cyrus, 2001; Nieves and Moreno, 2008). Also, accordingly, PR

inhibition of NF-κB phosphorylation in RAW264.7 cells may be

related to chrysin and 7,8-DHF.

Further, collectively, chrysin, DHC, and 7,8-DHF are the

potential key bioactive ingredients of PR to regulate

inflammatory response by inhibiting ER stress-mediated

NLRP3 inflammasome activation, thereby conferring protection

to the lungs and maintaining lung function and lung homeostasis.

FIGURE 8
Schematic of PR relieving ALI by inhibiting ER stress. PR and its active ingredients alleviated inflammatory injury via regulating ER stress-
mediated NLRP3 and NF-κB signaling pathways.
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Given that NLRP3 is one of the targets for the treatment of

COVID-19 and inhibition of NLRP3 inflammasome activation

could effectively alleviate infection-induced lung injury (Xian et al.,

2021), this study not only elucidates the mechanism and

components of PR in the treatment of ALI, but it will also

contribute to the development of COVID-19 therapeutic drugs.

Conclusions

In summary, this study confirmed that LPS infection indeed

caused acute inflammatory damage in mouse lung, and it is

accompanied with the enhancement of IL-1β contents and the

activation of the NLRP3 inflammasome in lung tissue and

macrophagocyte, all of which are remarkably ameliorated by

PR treatment. PR not only obviously reversed Bip/ATF4/CHOP-

mediated ER stress, but it also significantly attenuated LPS-

induced activation of the NLRP3 inflammasome. Based on

metabolome analysis and molecular docking, chrysin, 7,8-

DHF, and DHC were found to notably suppress LPS-induced

ER stress and NLRP3 inflammasome activation (Figure 8).

Hence, this research provided a theoretical basis for the

clinical application of PR to treat ALI, and these bioactive

ingredients of PR would be promising therapeutic drugs for

the treatment of ALI.
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