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Depression is the most common type of neuropsychiatric illness and has increasingly
become a major cause of disability. Unfortunately, the recent global pandemic of COVID-
19 has dramatically increased the incidence of depression and has significantly
increased the burden of mental health care worldwide. Since full remission of the
clinical symptoms of depression has not been achieved with current treatments,
there is a constant need to discover new compounds that meet the major clinical
needs. Recently, the roles of sigma receptors, especially the sigma-1 receptor subtype,
have attracted increasing attention as potential new targets and target-specific drugs
due to their translocation property that produces a broad spectrum of biological
functions. Even clinical first-line antidepressants with or without affinity for sigma-1
receptors have different pharmacological profiles. Thus, the regulatory role of sigma-1
receptors might be useful in treating these central nervous system (CNS) diseases. In
addition, long-term mental stress disrupts the homeostasis in the CNS. In this review, we
discuss the topical literature concerning sigma-1 receptor antidepressant mechanism of
action in the regulation of intracellular proteostasis, calcium homeostasis and especially
the dynamic Excitatory/Inhibitory (E/I) balance in the brain. Furthermore, based on these
discoveries, we discuss sigma-1 receptor ligands with respect to their promise as targets
for fast-onset action drugs in treating depression.

Keywords: sigma-1 receptors, depression, E/I balance, proteostasis, calcium

INTRODUCTION

Mood disorders are the most common types of neuropsychiatric illness and are increasingly
becoming a major cause of disability (Zhao et al., 2022). Among them, depression is a mainly
persistent mood disorder that negatively impacts the social, vocational and educational aspects of
people’s life (Chen et al., 2021). Furthermore, people suffering from long-term mental stress can
develop mood disorders and they are especially vulnerable to cognitive impairment thus leading to a
poor quality of life. Depression is a commonly occurring and recurrent mood disorder worldwide
that is becoming a matter of global health (He et al., 2022). Unfortunately, the pandemic of COVID-
19 in recent years has only aggravated those conditions (Zhang et al., 2020; Hampshire et al., 2021).
Antidepressants are widely prescribed and act by increasing brain monoamine levels but they have a
disappointingly low response rate (around 50%) and a significant lag period (4-6 weeks) in their
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activities when compared to placebos in clinical trials (de Vries
et al., 2018). Thus, it is urgent to perform further research and
develop new and effective antidepressants.

Sigma receptors are divided into two subtypes (sigma-1 and
sigma-2 receptors) and recently, the sigma-1 receptor, a type of
chaperonin (28 kD), has attracted increasing attention for its
broad spectrum of biological functions and as a potential target
for drugs treating many medical conditions. Extensive research
has revealed that sigma receptors play pivotal roles in the etiology
of CNS diseases, including Alzheimer’s disease (Maurice et al.,
1998), Parkinson’s disease (Francardo et al., 2014), schizophrenia
(Hashimoto, 2009a; Takizawa et al., 2009), Huntington’s disease
(Bol’'Shakova et al., 2017; Vetel et al.,, 2021), ischemic stroke
(Urfer et al., 2014), drug addiction (Meunier et al, 2006),
analgesia (Davis, 2015; Shin et al., 2020), depression (Kulkarni
and Dhir, 2009; Salaciak and Pytka, 2022), anxiety (Kulkarni and
Dhir, 2009; Wang et al.,, 2019; Salaciak and Pytka, 2022) and
cognitive disorders (Salaciak and Pytka, 2022). Among them,
mental disorders and cognitive deficits are currently the most
widely studied areas. Agonist-associated ligands targeting the
sigma receptor system have entered clinical trials (Ye et al,
2020) and have already been shown to be beneficial for
patients suffering from these types of psychiatric disorders.
Herein, based on preclinical studies, we discuss the functions
and roles of sigma-1 receptors, mainly in depression, and we
highlight the potential mechanism of action involved and
therapeutic development as well as discussing future directions
in this field.

Sigma-1 Receptor Localization and Biologic
Effects

The sigma-1 receptor is encoded by the sigma-1 gene and was
initially classified as an opioid receptor subtype (Ye et al., 2020),
but subsequent research has illuminated a vast and unique array
of structural phenotypes and a unique amino acid sequence
distinct from other mammalian transmembrane proteins
(Kruse, 2017; Ossa et al., 2017). More information about the
discovery history of sigma-1 receptors has been published (Ye
et al, 2020). Sigma-1 receptors are resident proteins of the
endoplasmic reticulum (ER) and are predominantly localized
in the cholesterol-rich region of ER mitochondria-associated
membranes (MAM) (Schmidt and Kruse, 2019; Voronin et al.,
2020). This protein is identical in peripheral tissues and in the
brain, and probably is similar in other tissues as well (Rousseaux
and Greene, 2016; Schmidt and Kruse, 2019). In the brain, sigma-
1 receptors are distributed most abundantly in the hippocampus
and hypothalamus, followed by the cerebellar area, the dorsal
raphe nucleus (DRN) and the locus coeruleus (LC) (Voronin
et al., 2020; Salaciak and Pytka, 2022), and are mainly expressed
in neurons and glial cells in the brain (Nguyen et al., 2015). These
various sites are related to cognition and motor, emotion and
endocrine functions, and are also further involved in the
pathophysiology of psychiatric disturbances of depression
(Voronin et al, 2020). In normal conditions, sigma-1
receptors are able to form Ca®*-sensitive complexes with the
main ER chaperone binding immunoglobulin protein (Bip)
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(Weng et al, 2017; Schmidt and Kruse, 2019). However,
specific activation of sigma-1 receptors, upon ligand-directed
activation, leads to their separation from Bip, after which they
can translocate to multiple cellular destinations, including
mitochondrial membranes, nuclear membranes and plasma
membranes to elicit their biological functions such as
stabilizing IP3R, maintaining Ca®* flow from the ER to
mitochondria and producing ATP (Rousseaux and Greene,
2016; Kruse, 2017; Ossa et al., 2017; Weng et al., 2017;
Schmidt and Kruse, 2019; Voronin et al., 2020; Ye et al., 2020).

Sigma-1 Receptors Are Involved in

Proteostasis and Calcium Homeostasis
Many aspects of proteostasis have been shown to be critical to
normal cellular biological functions and disturbances in this
homeostasis can lead to abnormal cellular functions, shorter
cellular lifespans and can provide a pathological basis for
disease development (Suhm et al., 2018). Proteostasis has been
found to be closely involved in the pathogenesis of diseases such
as depression, Huntington’s chorea, Parkinson’s disease,
Alzheimer’s disease (Fornai and Puglisi-Allegra, 2021) and
most cancers (Arpalahti et al, 2020). The abnormal
aggregation of damaged proteins wusually occurs in
neurodegenerative diseases and other age-related disorders
(Kurtishi et al, 2019; Lopez-Otin and Kroemer, 2021).
Therefore, maintaining the protein homeostasis of cells is
essential to ensure normal brain conditions. Calcium ions are
essential in maintaining normal cell biology, regulating cell
membrane excitability by rapid depolarization, acting as
secondary messengers and regulating protein activity and gene
expression (Nicholls, 1986). In depression, calcium has been
reported to be involved in neuroplasticity within neuronal
circuits (Deutschenbaur et al, 2016), a significant role that
was confirmed in a clinical trial (Bertone-Johnson et al., 2012).
Available studies have revealed that sigma-1 receptors play an
important role in the regulation of both types of homeostasis
conditions. Herein we focused on the regulation of both types of
homeostasis by sigma-1 receptors in depression.

The Unfolded Protein Response (UPR)

Impaired cellular proteostasis contributes to the pathogenesis
of depressive disorders (Ii and Dwivedi, 2019; Mao et al,
2019). Long term chronic emotional stress eventually leads
to cellular stress, which is partly reflected in ER stress
(Hayashi, 2015; Seo et al., 2017). The universal cellular
response to ER stress is the activation of adaptation
processes aimed at maintaining proteostasis (Hetz, 2012).
Sigma-1 receptors have been shown to modulate the ER
stress response and the subsequent UPR, which can
influence protein stability and localization (Ho et al., 2018),
through binding and modulating the ER stress response via the
ER stress sensor inositol-requiring enzyme 1 (IRE1) (Rosen
et al., 2019; Delprat et al., 2020). In fact, a large number of
proteins that are included in the UPR are considered
promising targets for pharmacological regulation in various
deleterious conditions (Almanza et al., 2019).
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In a series of animal behavioral experiments, increases in the
expression of genes associated with the UPR and inflammation
account for the pronounced depressive-like behaviors
(Timberlake et al, 2019). In primary cultures of mouse
hippocampal neurons, glutamate-dependent induction of the
IRE1-XBP1 signaling pathway in distal dendrites facilitated the
expression of brain-derived neurotrophic factor (BDNF) in the
bodies of neurons. It has also been suggested that BDNF drives its
own expression via activation of the PKA-IRE1-XBP1 cascade in
dendrites thus regulating neurite development (Saito et al., 2018).
Mori et al. (Mori et al., 2013), revealed that a sigma-1 receptor
agonist stabilized IRE1 in the MAM region and activated the
transcription factor X-box-binding protein 1 (XBP1), which may
modulate BDNF expression and further regulate the anti-
depressive effect. In regard to the UPR involvement in
inflammation, sigma-1 receptors regulate IRE1 activity in vivo,
in LPS-treated sigma-1 receptor knockout mice, and enhance
IRE1 activation and the inflammatory response observed (Rosen
et al., 2019).

Together, these data demonstrate the substantial contribution
of UPR processes to the pathogenesis of depression. The agonistic
effect on sigma-1 receptors ensures the regulation of ER stress
sensors, the activation of transcription factors, the increased
expression of the BDNF gene, anti-inflammation proteins and
chaperones. The combination of these processes probably
contributes to the survival of neurons in target areas of the
brain and the development of antidepressant action.

Sigma-1 Receptors Directly Modulate the

Biophysical Properties of Ca®* lon Channels
Sigma-1 receptors have been shown to associate with and directly
regulate voltage-gated ion channels (VGICs) that belong to all
superfamilies (Na*, K" and Ca**) and ionotropic glutamate
receptors (NMDARs) (Aishwarya et al, 2021). These
considerations make Sigma-1 receptors powerful and
pluripotent regulators of neuronal activity, from synaptic
transmission to intrinsic excitability. Thus, sigma-1 receptors
may have great significance in the regulation of Ca®'-
dependent mechanisms of antidepressant action.

It is well known that Ca** controls neuronal activity and plays
an important role in many use-dependent forms of
neuroplasticity induced by BDNF and glutamatergic
mechanisms (Catterall, 2010; Baydyuk et al., 2015). Sigma-1
receptors were reported to modulate the intracellular Ca**
concentration through both the regulation of membrane
voltage-gated Ca®* channels and Ca®" mobilization from
endoplasmic stores (Monnet, 2005; Su et al, 2010). Tchedre
et al. (Tchedre et al, 2008) showed that sigma-1 receptor
activation with (C)-SKF-10047 inhibits Ca®* currents, while
that effect was reversed by a sigma-1 receptor antagonist BD-
1047, which appears to be mediated directly through sigma-1
receptor binding to L-type voltage-gated Ca** channels.
Consistent with these findings, sigma-1 receptors also inhibit
store-operated Ca*" entry by diminishing the coupling of stromal
interaction molecule 1 (STIM1) to calcium release-activated
calcium channel protein 1 (Orail) (Srivats et al., 2016).

Sigma-1 Receptors in Depression

Besides voltage-gated Ca®" channels, sigma-1 receptors also
regulate non-voltage-gated Ca**-permeable channels via direct
protein-protein interactions (PPI), including IP3 receptors at the
ER level and plasma membrane acid-sensing ion channels la
(ASICla) (Mari et al.,, 2015).

In an animal behavior model, Ca**-dependent mechanisms
have been proven to be involved in the mechanism of the
antidepressant effect. Urani et al. (Urani et al., 2002) reported
that EGTA, a Ca®" chelator, when administered to Swiss mice
10 min before a forced swim test (FST), had no effect on their
immobilization time, but abolished the antidepressant-like action
of igmesine (a selective sigma-1 receptor agonist) in a dose-
dependent manner. Similarly, verapamil, a Ca®* channel blocker,
had a comparable effect (Urani et al., 2002). In fact, intracellular
Ca®* modulators also play an important role in the action of
igmesine; more information is summarized in (Guo et al., 2020).

When it comes to the Ca** signal pathway, Calmodulin-
dependent protein kinases (CaMKs) are inevitably involved.
Among them, CaMKIV and CaMKII have been intensively
studied and are involved in the transcription factor CREB-
mediated BDNF signal pathway (Voronin et al, 2020).
CaMKIV/II is an intracellular Ca*'-sensitive sensor. High
concentrations of Ca®* activate CaMK IV/I, and then
eventually activate (phosphorylate) intermediates in the ERK1/
2 and mTOR pathways (Cabanu et al., 2022), thus inducing a
rapid synthesis of PSD95 as well as facilitating the
phosphorylation of CREB, thus boosting the expression of
BDNF involved in neuroplasticity (Fukunaga and Moriguchi,
2017) (Figure 1). Moriguchi et al. (Moriguchi et al., 2015) used a
CaMK deficiency strategy in vivo to reveal that the mechanism of
antidepressant action of sigma-1 receptors may be due to
regulation of the intracellular Ca®" level and activation of an
alternative CaMKII-dependent mechanism for controlling the
expression of BDNF. Moreover, chronic administration of
fluoxetine and paroxetine to CaMKIV ™'~ mice did not cause a
pronounced antidepressant-like effect or the induction of
neurogenesis in the hippocampal dentate gyrus (Moriguchi
et al,, 2015). In contrast, administration of the selective agonist
SA4503 or fluvoxamine (with a high affinity for Sigma-1 receptor)
for 2 weeks caused a decrease in the immobilization time of
CaMKIV ™~ mice in the FST and the tail suspension test (TST),
while those effects were abolished by preliminary treatment with
the sigma-1 receptor antagonist NE-100 (Moriguchi et al., 2015).
The abovementioned evidence indicates that a significant role of
sigma-1 receptors in regulating Ca**-dependent mechanisms of
antidepressant action may not only be related to extracellular
Ca®" influx but also to intracellular Ca®>" homeostasis (Urani
et al., 2002; Choi et al., 2022).

SIGMA-1 RECEPTORS REGULATE
EXCITATORY AND INHIBITORY BALANCE

The classic “monoamine hypothesis” underlies the development
of most clinical antidepressants that primarily exert their effects
by enhancing the function of monoamine transmitters (Li, 2020).
The translocation property of sigma-1 receptors allows them to
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(PSD95,GluA1)
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FIGURE 1 | Schema of intracellular signaling pathways involved in the antidepressant-like effects of sigma-1 receptors. (A) Sigma-1 receptors are activated and
translocated to the plasma membrane to interact with the NMDAR of pyramidal cells, which would result in a rapid intracellular activation of CaMKIl that would eventually
activate (phosphorylate) intermediates in the ERK1/2 and mTOR pathways, thus inducing a rapid synthesis of PSD95, BDNF etc; (B) Sigma-1 receptors are activated
and then disassociate from Bip thus stabilizing IP3R, maintaining the Ca®* flow from the ER to mitochondria and ATP production; (C) Sigma-1 receptor activates

and thus binds and modulates the ER stress response via ER stress sensors IRE1 and facilitates BDNF expression via the IRE1-XBP1 signaling pathway. (D) Sigma-1
receptors may also modulate 5HT1A function through sigma-1 receptor-5HT1A interaction.

Synaptic proteins

Antidepressant
effects

BDNF <

modulate proteins directly not only at the ER-mitochondrion
interface but also at the membrane where many ion channels,
receptors and kinases are found, rendering sigma-1 receptors a
unique inter-organelle signaling modulator in living tissues,
including the CNS that we focused on (Su et al, 2010). In
recent years, an increasing body of evidence suggests that
sigma-1 receptors directly interact with proteins at neuronal
cell membranes (more information is reviewed in (Ryskamp
et al,, 2019)) and enhance neurotransmission (Bermack and
Debonnel, 2001; Bermack and Debonnel, 2005; Sambo et al.,
2017; Sambo et al., 2018). The active roles of sigma-1 receptors in
the regulation of neurotransmission, including the glutamatergic,
GABAergic, serotonergic, dopaminergic (Sambo et al., 2018) and
noradrenergic systems (Dhir A. and Kulkarni SK., 2008), is well
documented. Those neurotransmission systems may form the
basis for the dynamic balance of E/I neural networks in the brain.
Especially, sigma-1 receptors have been reported to regulate
presynaptic glutamate release and modulate NMDA receptor
activity via direct PPI associations (Kourrich, 2017).
Furthermore, sigma-1 receptor activation can also lead to
alterations in NMDA receptors that upregulate and traffic to

the plasma membrane thus further modulating neuronal intrinsic
excitability (Pabba et al., 2014). In addition, Mtchedlishvil et al.
found that pregnenolone and a selective sigma-1 receptor agonist
(SKF-10047)  inhibit the GABA-dependent inhibitory
postsynaptic currents in rat hippocampal cell cultures
(Mtchedlishvili and Kapur, 2003). We therefore suggest that
sigma-1 receptors may regulate the E/I balance in direct or
indirect manners. Importantly, there is abundant evidence that
the medial prefrontal cortex (mPFC) or the hippocampus rely on
the dynamic balance between E/I neurotransmitters for various
advanced functions, such as emotion regulation and expression,
as well as cognitive functions. Those two neurotransmitters
achieve a dynamic balance to maintain normal physiological
function under normal circumstances (Ferguson and Gao,
2018). Preclinical studies have shown that chronic stress can
lead to decreased E/I neurotransmitter transmission in the mPFC
(Fee et al., 2017). Consistent with this, a recent study found that
chronic stress can lead to decreased glutamate and GABA
neurotransmitter transmission in rat mPFC (Fee et al., 2017;
Duman et al, 2019). In this context, GABAergic and
glutamatergic neurotransmission may be almost rebalanced

Frontiers in Pharmacology | www.frontiersin.org

June 2022 | Volume 13 | Article 925879


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Ren et al.

but the synapses remain impaired, thus the E/I rebalance may be
at a low level. However, we recently found in our laboratory that
regulation of the E/I rebalance in the mPFC may be an important
mechanism and rate-limiting step in the efficacy of
antidepressant effects (Yin et al., 2021).

The glutamatergic and GABAergic as well as serotonergic
systems are heavily implicated in antidepressant actions. In this
section, we mainly focused on the possible mechanisms by which
sigma-1 receptors exert their antidepressant effects through the
regulation of E/I balance by theseneurotransmitter systems.

Sigma-1 Receptors and Glutamatergic

Neurotransmission

Cortical excitability reflects a balance between E/I. Glutamate is
the main excitatory neurotransmitter in the mammalian cortex
(Petroff, 2002). Glutamate receptors have been pharmacologically
classified as ionotropic and metabotropic receptors. Ionotropic
glutamate receptors include the N-methyl-p-aspartic acid
(NMDA) receptor (GluNs/NMDAr, GluAs), a-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and
kinase families of receptors. In this review, we will focus on
NMDA and AMPA receptors due to their close link to depression
and/or antidepressant action (Bermack and Debonnel, 2005). It
appears that glutamatergic neurotransmission is altered during
depressive episodes (Sanacora et al, 2003; Bermack and
Debonnel, 2005; Duman et al., 2019). In addition, a clinical
study revealed that glutamate metabolism differed significantly
between depressed patients and controls (Paul and Skolnick,
2003), while those differences can be resolved with chronic
antidepressant treatments (Mauri et al., 1998).

Similarly, numerous studies have shown interactions between
sigma receptor and NMDA-receptor mediated responses in
neurotransmission. The regulation of sigma-1 receptors with
GluN1 can be explained by the PPI (Balasuriya et al., 2013)
and an increase in its phosphorylation by protein kinases A and C
(PK A/C) under sigma-1 receptor ligand activation of the
chaperone protein (Kim et al., 2008). Moreover, Pabba et al.
(Pabba et al, 2014) reported that a robust upregulation of
GluN2A and GluN2B subunit expression was observed after
treatment with the sigma-1 receptor agonist pentazocine
(PTZ) or SKF-10074 injection and chronic administration of
BD1047 prevented that effect. Conversely, a decreased protein
level of GIuN1 in the prefrontal cortex, hippocampus and
amygdala was observed in a depression rat model while a two-
week administration of SA4503 caused an anti-depressive-like
effect, accompanied by a restoration of the GluN1 level (Wang
et al.,, 2007).

Furthermore, in a sigma-1 receptor function deficient
mouse model, sigma-1 receptor knockout (KO) mice are
characterized by an inhibition of neurite outgrowth and
impaired GluN2b function in the hippocampal dentate
gyrus (Sha et al., 2013). Conversely, a study by Snyder
et al. (Snyder et al,, 2016), reported that compared to wild-
type (WT) mice, AMPA receptor and NMDA receptors were
unaffected in sigma-1 receptor KO mice. However, in regard
to NMDA receptor-dependent long-term potentiation (LTP)

Sigma-1 Receptors in Depression

and neuronal plasticity, sigma-1 receptor KO mice showed a
mild deficiency (Snyder et al.,, 2016; Zhang et al,, 2017).

Interestingly, sigma-1 receptor agonists increased the
expression of GluN2A and GluN2B subunits and
postsynaptic density protein 95 (PSD-95), which is

required for synaptic plasticity associated with NMDA
receptor signaling (Pabba et al, 2014). Thus, sigma-1
receptors may play an important role in NMDA-receptor
mediated functions, e.g., depression and cognitive disorder.
On the other hand, sigma-1 receptors involved in a “long
feedback loop” participated in the NMDA-receptor mediated
antidepressant effect. Sustained treatments with sigma-1
ligands lead to a potentiation of NMDA-receptor-mediated
responses in the mPFC and/or other brain regions, which in
turn could lead to the modulation of serotonergic
neurotransmission in the DRN (Peyron et al, 1998;
Bermack and Debonnel, 2005). Overall, sigma-1 receptors
have been indicated to be involved in the mechanism of
action of antidepressants via the regulation of
glutamatergic neurotransmission.

Sigma-1 Receptors and GABAergic

Neurotransmission
Chronic stress induced emotional disorders such as anxiety and
depression involve imbalances between the excitatory

glutamatergic system and the inhibitory GABAergic system in
the PFC, GABA being the main inhibitory neurotransmitter in
the mature mammalian CNS (Page and Coutellier, 2019)
(Figure 2). Moreover, the majority of data on GABAergic
deficiencies in depression have been gathered and
demonstrated by means of indirect/direct methods, such as
assessments of GABA levels in cerebrospinal fluid (CSF), brain
specimens obtained post-mortem, by brain imaging, or by other
pharmacological studies (Della et al., 2021). There is currently
little compelling evidence that any sigma receptor(s) interacts
with GABA receptors directly in vivo. Recent evidence has
revealed that sigma-1 receptors modulate GABA uptake,
transport-mediated release and exocytosis. Interestingly, a
sigma-1 receptor antagonist decreased glutamate release but
induced a biphasic response for GABA, while low doses of
NE-100 increased GABA uptake, and with increasing doses,
the uptake rate decreased (Pozdnyakova et al, 2020).
Neurosteroids are a class of endogenous steroids that have
potent effects on GABA receptors. In a circulating
neurosteroid deficient rat model, Ago et al. (Ago et al., 2016)
suggested that interactions between brain 5-HT1A and sigma-1
receptors may contribute to the treatment of GABA, receptor
deficit-related psychiatric disorders. On the other hand, a sigma-1
receptor deficiency reduces GABAergic inhibition in the
basolateral amygdala leading to long term depression (LTD)
impairment and depressive-like behaviors (Zhang et al., 2017).

Importantly, sigma-1 receptors may be involved in the
“long feedback loop” that projects from the dorsal DRN to
the mPFC and back to the DRN (Bermack and Debonnel,
2005). Hypidone hydrochloride (YL-0919) is a new
antidepressant with a novel chemical structure that was
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FIGURE 2 | Schema of the dynamic balance of GABAergic and glutamatergic neurotransmission. (A) In a normal mood status, GABAergic and glutamatergic
neurotransmission are balanced; (B) Acute stress can result inimbalances between GABAergic and glutamatergic neurotransmission; (C) Further adaptation to chronic
stress may result in a new balance of GABAergic and glutamatergic neurotransmission but at lower levels, contributing to depression; (D) Regulating 5-HT-Glu/GABA
long neural circuit through treatment with sigma-1 receptor ligands has the potential to rapidly restore the primary balance and level.

Chronic stress or Sigma-1 ligands

developed by our laboratory, which has been found to have a
high affinity for sigma-1 receptors (unpublished data). A
recent study suggested that YL-0919 preferentially inhibits
GABAergic neurons and reduces inhibitory input to
pyramidal neurons, and that 5-HT1A receptor participates
in the inhibition of GABA neurons thus regulating the E/I
balance related to depression (Zhang et al., 2021). In general,
inhibition of the spontaneous release of GABA may facilitate
the release of other neurotransmitters throughout the CNS,
thus altering the functions of other neurotransmitter systems.
However, further study is essential to investigate whether
sigma receptors are involved in this regulation in a direct
and/or indirect manner.

Effect of Sigma-1 Receptors on

Serotonergic Neurotransmission

When it comes to antidepressant effects, the 5-HT system is
necessarily involved. It is well known that 5-HT plays a key
role in depression and/or the mechanism of action of
antidepressants (Liu et al., 2017; Miquel-Rio et al., 2022).
Both animal behavioral experiments and electro-physiological
studies revealed that sigma-1 receptors increase 5-HT
neurotransmission exerting antidepressant effects through
various mechanisms. In a behavioral model, progesterone
and BD-1047 (a sigma-1 receptor antagonist) counteracted
the antidepressant-like effect induced by co-administration of
pramipexole and sertraline (Rogoz and Skuza, 2006). In
addition, in cell assays, classical antidepressants
(fluvoxamine, etc.) significantly potentiated the NGEF-
induced neurite outgrowth, and the effects of all these
drugs were antagonized by NE-100. Furthermore, the

similar effects of mirtazapine were abolished by the 5-
HTIA receptor antagonist WAY-100635 (Ishima et al,
2014). In another behavioral study, the sigma receptor
ligand EMD- 57445 did not affect several 5-HT related
parameters such as 8-OH-DPAT-induced behavioral
syndrome or L-5-hydroxytryptophan-induced head twitches
(Skuza et al., 1997). Thus, the effects of sigma-1 receptors on
the 5-HT system seem to be controversial and fortunately
electrophysiological experiments on 5-HT neurons have given
us more direct evidence that sigma-1 receptors enhance
serotonergic neurotransmission in a rapid manner
(Robichaud and Debonnel, 2004; Lucas et al., 2008).
Previous studies have shown that acute and short-term
treatments with SSRIs lead to a decreased firing activity of 5-HT
DRN neurons, while long-term treatments lead to the restoration of
5-HT firing activity and this phenomenon explains the delayed onset
of the action of SSRIs (Le Poul et al., 2000). Based on this model,
Bermack and Debonnel assessed the effects of sigma-1 receptor
ligands on the firing activity of 5-HT neurons in the DRN using an
electrophysiological model with in vivo extracellular recording. Their
study provided direct evidence that sigma-1 receptors are involved in
serotonergic neurotransmission (Bermack and Debonnel, 2001). In
that study, an increase in firing rates of 5-HT neurons of the DRN
was observed after short term (2-days) or long-term (21-days)
treatments with (+)-pentazocine, while those effects were
completely abolished by co-administration of NE-100 (10 mg/kg/
day) (Bermack and Debonnel, 2001). Similar evidence was found in
another study (Lucas et al, 2008), where a 2-days continuous
treatment with SA-4503 (1-40 mg/kg/day) increased the 5-HT
neuron firing rate in a dose-dependent manner. Moreover, the
firing rate of pyramidal neurons was recorded in the CA3
subfield of the hippocampus in further studies, the results
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suggesting that WAY100635 had a clear excitatory action in rats
receiving chronic treatment of SA- 4,503 (10 mg/kg/day) for 2 days
(Lucas et al., 2008; Maurice, 2021). Thus, facilitation of the 5-HT
neuron firing rate induced by 2-days treatment with SA-4503
translated into the appearance of a 5-HT1A-mediated tonic
inhibitory effect on CA3 pyramidal neurons, which may be
involved in a 5-HT-Glu/GABA long neural circuit. In this way,
sigma-1 receptors may be involved in modulating 5-HT neuronal
activity and the E/I balance by 5-HT transporter combined with
some receptors such as 5-HT1A (Li, 2020).

Importantly, these experiments show that sigma-1 receptor
ligands have the potential to work as antidepressants with a
rapid onset of action, due to an increase in 5-HT neuron firing
activity after drug administration in just 2 days, a more rapid
and robust anti-depressive effect than the majority of known
antidepressant medications (Bermack and Debonnel, 2001).

Sigma-1 Receptors and Other

Neurotransmission System

In addition to the three neurotransmitter systems mentioned
above, sigma-1 receptors also act on other neurotransmitter
systems in the brain, including dopamine (DA)
neurotransmission, noradrenaline (NE) neurotransmission and
acetyl choline (Ach) neurotransmission (Katz et al, 2016).
Among them, sigma-1 receptors modulate depression by
acting on dopamine neurotransmitters is widely reported. For
instance, PTZ enhances the antidepressant activity of the
dopamine reuptake inhibitor bupropion while sigma-1
receptor antagonist reversed the effects (Dhir A. and Kulkarni
S., 2008). Likewise, ropinirole (a D2/3 dopamine receptor
agonist), elicited a significant anti-immobility effect in FST or
EST, and the reduced immobility time exhibited by ropinirole
attenuated by a sigma-1 receptor antagonist (Dhir and Kulkarni,
2007). These results reflect the regulatory role of sigma-1 receptor
on the dopaminergic system in the brain. However, researchers
have not intensively explored the potential mechanism of this
unexpected results. Fortunately, the results of studies in recent
years on sigma-1 receptors and DA neurotransmission in other
disease models may help us to solve this confusion. Borroto-
Escuela et al. (Borroto-Escuela et al., 2017) reported that cocaine
self-administration induced a selective and significant increase in
the density of D2R-sigma-lreceptor positive clusters in the
nucleus accumbens shell. Furthermore, the formation of the
D2R-sigma-1 receptor heterodimer enhanced the ability of
acute cocaine to increase the function of the D2R protomer
and significantly reduced its internalization (Borroto-Escuela
et al, 2019). In fact, receptor-receptor interactions in
heterogeneous receptor complexes are widely present in CNS
and are involved in the regulation of a variety of neuropsychiatric
dysfunctions (Borroto-Escuela et al., 2020). Especially, the
translocator property of the sigma-1 receptors gives it the
opportunity to form heteroreceptor complexes with a variety
of receptors to enhance the function of the original receptors, and
this partly explains why sigma-1 receptor antagonists can block
many of the unexpected effects aforementioned. The sigma-1
receptor complexs appear to hold the highest promise, it not only

Sigma-1 Receptors in Depression

provides a new vision for our future research, but also a new
strategy for the treatment of depression.

SIGMA RECEPTOR LIGAND
DEVELOPMENT FOR TREATING CLINICAL
DEPRESSION

Sigma-1 receptors are recently explored targets for treating
depression and anxiety. Many antidepressants that are
currently marketed are known to act through the sigma-1
receptor pathway (Hashimoto, 2009b). Furthermore, some
novel compounds based on the sigma-1 receptor confirmation
are being synthesized and tested in depressive animal models,
more information reviewed in (Salaciak and Pytka, 2022).
Although the exact therapeutic contribution of sigma-1
receptor binding remains to be unraveled, available data
suggests that the anti-depressive efficacy is partly ascribed to
sigma-1 receptor modulation. Some of the ongoing or completed
clinical studies of sigma receptors are listed in Table 1. Herein, we
focus on clinical advances in the treatment of depression with
sigma-1 receptor ligands.

Igmesine (JO-1784), one of the first discovered sigma-1
receptor ligands, was investigated in a clinical study of major
depression in 1999 (Pande et al.,, 1999). Igmesine (25 mg/day)
showed a statistically significant superiority over the placebo in
the outpatient group, however, the compound ultimately failed to
be effective in phase III clinical trials (Pande et al., 1999). SA-4503
(Cutamesine) is an orally available, potent and highly selective
sigma-1 receptor agonist. Cutamesine not only decreased the
immobility time in the FST but also played an anti-depressive-like
behavior in an olfactory bulbectomized rat model of depression.
In 2007, a phase II clinical study of SA4503 was performed, where
SA4503 was given once daily for 8 weeks and then tested to
determine safety and efficacy in 150 subjects with major
depression. However, the trial data and outcome summaries
have yet to be released (NCT00551109).

The sum of these results suggests that sigma-1 receptors affect the
release of various neurotransmitter systems that have been shown to
be involved in the pathophysiology of depression. We conclude that
sigma-1 receptor agonists may have an antidepressant activity and are
expected to be effective drugs for treating depression in the future.
However, inconclusive results from different clinical trials have led to
setbacks in the further development of these molecules for the
treatment of depression.

DISCUSSION AND CONCLUSION

Depression is a common mental disorder that affects approximately
300 million people worldwide (Zhao et al, 2022). Even worse,
according to a scientific brief that was recently released by the
World Health Organization (WHO), the COVID-19 pandemic
triggered a 25% increase in the prevalence of anxiety and
depression globally, which poses a significant challenge to mental
health care (Who, 2022). Classical “monoamine strategy” drugs
mostly target a series of defects in clinical applications. Therefore,
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TABLE 1 | Sigma-1 receptor agonists in clinical studies.

Sigma-1 Agonist Conditions

SA-4503 Major depressive disorder

Acute ischemic stroke

Huntington disease
levodopa-induced dyskinesia
Huntington’s disease

Huntington’s disease

Alzheimer’s disease

Rett syndrome

Parkinson’s disease with dementia
Mild to moderate Alzheimer’s disease
Alzheimer’s disease

Mild to moderate Alzheimer’s disease
Mild cognitive impairment

Major depression

Pridopidine

ANAVEX2-73

T-817MA (Edonerpic Maleate)

lgmesine

there is an increasing interest in investigating modern monoamine
(optimized multi-targets) strategies with faster-acting and fewer side-
effects. In this way, sigma-1 receptors have entered the limelight, with
their translocation property allowing them to modulate proteins
directly.

To date, at least 49 proteins with highly divergent sequences and
structures have been reported to interact with sigma-1 receptors. Due
to the complicated nature of their effects on the downstream signaling
pathways, it is not surprising that sigma-1 receptors play a role in
maintaining the balance of glutamatergic, GABAergic, serotonergic,
noradrenergic, and dopaminergic systems in the brain (Katz et al,
2016). As mentioned earlier, in vivo electrophysiological recordings
revealed that sigma-1 receptor agonists, such as (+)-pentazocine or
SA-4503, markedly increased 5-HT neuron firing after 2 or 21 days of
treatment while a selective sigma-1 receptor antagonist, NE-100,
blocked those effects. In addition, SA-4503 at 10 mg/kg/day induced
the appearance of a 5-HT1A-mediated inhibitory tonus on
hippocampal pyramidal neurons, as revealed by intravenous
injections of the selective 5-HT1A antagonist WAY100635. In
fact, recent findings from our laboratory revealed a similar
phenomenon, where YL-0919 (mentioned above as a potential
sigma-1 receptor ligand) significantly inhibited the excitability of
GABAergic neurons in GAD67-GFP transgenic mice. Moreover, the
inhibition of GABAergic neurons by YL-0919 was abolished by
pretreatment with WAY100635 (Zhang et al., 2021). Although we
need to further investigate the specific regulatory mechanisms of this
discovery, it further strengthens the idea that the 5-HT system plays a
central role in the “antidepressant-like” properties of sigma-1
receptors. This antidepressant mechanism may be involved in the
“monoamine(5-HT)-Glu/GABA long neural circuit” (more
information is reviewed by Prof Li (Li, 2020)), and E/I
rebalancing should be the critical rate-limiting step for the onset
of action. It is important to note that available studies on sigma-1
receptors in relation to the 5-HT system are limited, and still lack
direct evidence that sigma-1 receptors regulate 5-HT release in the
brain. Moreover, some clues have suggested that sigma-1 receptors
play a positive role in regulating the 5-HT system, and many
antidepressants are known to act via the sigma-1 receptor
pathway, even classical SSRIs with or without affinity for sigma-1
receptors have different pharmacological profiles. In the future,

Clinic phase

Phase 2 unreleased
Completed

Phase 3 recruiting
Phase 2 recruiting
Completed
Completed

Phase 2b/3 recruiting
Phase 2 recruiting
Phase 2 recruiting
Phase 2 active
Completed

Phase 2 completed
Phase 2 recruiting
Completed
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ClinicalTrials.gov identifier

NCT00551109 (2007)

NCT00639249 (2008)

NCT04556656 (2020)

NCT03922711 (2019)

NCT00724048 (2008)

NCTO00665223 (2008)

NCT04314934 (2020) NCT03790709 (2018)
NCT04304482 (2020) NCT03941444 (2019)
NCT03774459 (2018)

NCT02756858 (2016)

NCT02244541 (2014)

NCT02079909 (2014) NCTO0663936 (2008)
NCT04191486 (2019)
https://doi.org/10.1016/S0924-977X(99)80011-X (1999)

whether sigma-1 receptors can interact directly with the serotonin
transporter (SERT), 5HTIA, etc. needs further confirmation
(Figure 1). Besides, if sigma-1 receptors are activated by pre-
administered sigma-1 receptor agonists, is it possible that there
will be a higher affinity with 5HT1A? These considerations may
be a breakthrough for clarifying the roles of sigma-1 receptors in the
regulatory mechanisms of depression.

The pharmacological antidepressant-like effects of sigma-1
receptor ligands tested in animal models and in human clinical
trials showed somewhat useful effects, and sigma-1 receptor
ligands seem to be potential psychotherapeutic agents.
However, there are no drugs that selectively target sigma-1
receptors on the market at this time, which does not mean
that the development of drugs targeting sigma-1 receptors is
not promising. In contrast, to clearly define the molecular
mechanisms of sigma-1 receptors in depression requires more
direct evidence and another major concern is regarding the safety
profiles of these potential drugs. In the circumstances of the
global COVID-19 pandemic, the “magic molecule” sigma-1
receptor may provide new hope. Sigma-1 receptors play an
important role in the replication of SARS-CoV-2 in cells and
thus serve as a promising therapeutic target for COVID-19
infections (Hashimoto et al, 2022). In this way, the
development of antidepressants based on sigma-1 receptor
targets appear to be “game changers” for people with COVID-
19, such as the widely available fluvoxamine etc.
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