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CYP21A2 deficiency represents 95% of congenital adrenal hyperplasia (CAH)

cases, a group of genetic disorders that affect steroid biosynthesis. The genetic

and functional analysis provide critical tools to elucidate complex CAH cases.

One of the most accessible tools to infer the pathogenicity of new variants is in

silico prediction. Here, we analyzed the performance of in silico prediction tools

to categorize missense single nucleotide variants (SNVs) of CYP21A2. SNVs of

CYP21A2 characterized in vitro by functional assays were selected to assess the

performance of online single and meta predictors. SNVs were tested separately

or in combination with the related phenotype (severe or mild CAH form). In

total, 103 SNVs ofCYP21A2 (90 pathogenic and 13 neutral) were used to test the

performance of 13 single-predictors and four meta-predictors. All SNVs

associated with the severe phenotypes were well categorized by all tools,

with an accuracy of between 0.69 (PredictSNP2) and 0.97 (CADD), and

Matthews’ correlation coefficient (MCC) between 0.49 (PoredicSNP2) and

0.90 (CADD). However, SNVs related to the mild phenotype had more

variation, with the accuracy between 0.47 (S3Ds&GO and MAPP) and 0.88

(CADD), andMCC between 0.18 (MAPP) and 0.71 (CADD). From our analysis, we

identified four predictors of CYP21A2 variant pathogenicity with good

performance, CADD, ConSurf, DANN, and PolyPhen2. These results can be

used for future analysis to infer the impact of uncharacterized SNVs inCYP21A2.
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1 Introduction

One of the most common autosomal recessive genetic

disorders is the impairment of the steroid 21-hydroxylase

(CYP21A2). The CYP21A2 deficiency represents about 95% of

cases in congenital adrenal hyperplasia (CAH), a group of

enzymatic disorders that affect cortisol biosynthesis. The

CYP21A2 enzyme is a member of the cytochrome

P450 superfamily (CYPs) and catalyzes the conversion of 17α-
hydroxyprogesterone (17OHP) into 11-deoxycortisol and

progesterone into 11-deoxycorticosterone. Other enzymes

subsequently convert these steroids into cortisol and

aldosterone (Miller and Auchus, 2011).

Clinically, the CYP21A2 deficiency in humans has a wide

spectrum of phenotypes, from severe to mild or asymptomatic

(New et al., 2013; Witchel, 2017). The classic severe CAH has

salt-wasting (SW) and simple-virilizing (SV) forms. The classical

SW form has no enzyme activity and is related to severe

virilization and electrolyte imbalance. In contrast, the classical

SV form has enough residual enzyme activity to prevent adrenal

crisis (Witchel, 2017). Mild CAH is the non-classical (NC) form

of CAH and has CYP21A2 activity associated with

hyperandrogenism and mild late-onset CAH (New et al.,

2013). Furthermore, there is a relatively good genotype-

phenotype correlation for CYP21A2 deficiency, which allows

the categorization of variants according to the residual enzyme

activity (obtained from in vitro studies) and their expected

phenotype (New et al., 2013). The classical CAH (CL) has less

than 10% of wild-type (WT) enzyme activity in 95% of the cases,

while the NC form has an activity of between 10 and 78% of the

WT in 90% of the cases, as reported by Simonetti et al.,

(Simonetti et al., 2018).

The CYP21A2 gene is a tandemly arranged module (RCCX:

RP-C4-CYP21-TNX) and shows 96–98% of sequence identity

with its pseudogene, CYP21A1P (Rodrigues et al., 1987). These

features make the CYP21A2 gene analysis a complex endeavor,

with many different types of mutations—from single nucleotide

variants (SNVs) to genetic rearrangements—and further

complicated by the fact that most carriers have compound

heterozygous mutations (New et al., 2013). However, only ten

mutations described in the general population are sampled by

CYP21A2 deficiency screening programs. Whole gene sequence

analysis by Sanger sequencing is an alternative method in

exceptional cases due to the cost and time-consuming nature

of such studies (Stenson et al., 2017; Baumgartner-Parzer et al.,

2020).

So far, with the whole CYP21A2 gene sequenced, genetic

studies have reported more than 1,300 variants in the CYP21A2

gene. Out of the 230 variants reported as affecting human health,

153 are missense variants (Simonetti et al., 2018). The

advancement of next-generation sequencing (NGS) to analyze

a large number of genes has facilitated the detection of rare single

nucleotide variants (SNVs). A few years ago, this technology was

not applied to screen the CYP21A2 gene defects due to its high

sequence identity with CYP21A2P, which hampers the proper

analysis of this genomic region (Rodrigues et al., 1987). However,

recently, some groups have found alternative ways to perform

NGS for the CYP21A2 gene through a combination with other

methods, such as multiplex ligation-dependent probe

amplification (Gangodkar et al., 2021; Lee et al., 2021). These

genetic analysis strategies of the CYP21A2 gene with NGS

technology represent a promising tool for the future, opening

the window to identify new variants while improving the

diagnosis of CYP21A2 deficiency and establishing a more

reliable estimate of mutation frequencies.

The gold standard for the characterization of new

CYP21A2 variants is the in vitro functional assay. However,

this approach takes too much time, and it is not a viable option

for the analysis of all the new variants detected by sequencing

studies. One of the most accessible tools to predict the

pathogenicity of variants is in-silico analysis, which usually

has free access, a friendly interface, and provides quick results.

Many online predictors are available that have different

features and approaches, from single characteristic analysis

to meta-predictors with different compositions and

algorithms. Some studies have shown the general

performance of these tools against a whole database with

few predictors (Hicks et al., 2011; Tang et al., 2020).

However, studies with variants on protein-specific analysis

showed that general analysis results cannot be extrapolated for

all proteins as each protein has unique characteristics, which is

a key limitation of predictor programs (Pshennikova et al.,

2019; Hart et al., 2020; Montenegro et al., 2021). Therefore, it

is essential to be careful when choosing the prediction tools

and to consider their variable accuracies for each gene (Tang

et al., 2020).

Here we have done a meta-analysis of the performance of

online predictor tools to classify missense SNVs of CYP21A2.

Missense SNV is the most common group of variants in the

human genome, one at every kilobase. In the CYP21A2 gene, this

type of SNV represents about 60% of the CYP21A2 variants in

The Human Gene Mutation Database (HGMD, RRID:

SCR_001888) (Stenson et al., 2017) and 65% of those affecting

human health (Simonetti et al., 2018). Additionally, missense

SNV is one of the hardest variant types to interpret (Khan and

Vihinen, 2007; Simonetti et al., 2018; Pignatelli et al., 2019). In

total, we analyzed 17 predictors with multiple algorithms,

approaches, and datasets. Thirteen of these were based on

single features: CADD (RRID:SCR_018393) (van der Velde

et al., 2017), ConSurf (RRID:SCR_002320) (Ashkenazy et al.,

2016), DANN (Quang et al., 2015), FATHMM (Shihab et al.,

2013), MAPP (RRID:SCR_014375) (Stone and Sidow, 2005),

MutPred2 (RRID:SCR_010778) (Pejaver et al., 2020),

PANTHER-PSEP (RRID: SCR_005145) (Tang and

ThomasPANTHER-PSEP, 2016), PhD-SNPg (RRID:

SCR_010782) (Capriotti and FariselliPhD-SNPg, 2017),
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PolyPhen-2 (RRID:SCR_013189) (Adzhubei et al., 2013),

PROVEN (RRID: SCR_002182) (Choi et al., 2012), SIFT

(RRID:SCR_012813) (Vaser et al., 2016), SNAP2 (RRID:

SCR_002127) (Hecht et al., 2015), and SNPs&GO (RRID:

SCR_005788) (Calabrese et al., 2009). Four meta-predictors:

PredictSNP (Bendl et al., 2014), PredictSNP2 (Bendl et al.,

2016), Meta-SNP (Capriotti et al., 2013), and S3Ds&GO

(Capriotti and Altman, 2011)) (Figure 1). We excluded

nonsense and frameshift variants from our analysis since they

have specific settings in some predictors which are not applied for

single amino acid substitution and a high agreement ratio

between tools.

2 Results

2.1 Data of the selected SNVs

From variants in the CYP21A2 gene reported in the literature

and databases, we selected missense SNVs with clinical

significance, using the criteria described in Section 4.1. We

obtained 96 valid SNVs out of 299 missense variants in the

list (Simonetti et al., 2018), 85 out of 614 missense variants in

dbSNP, 66 out of 459 missense variants in Ensembl, 45 out of

71 missense variants in GeneCards, 47 out of 83 missense

variants in ClinVar, 26 in OMIM, and 81 found in the

UniProt database.

By removing SNVs that were duplicated and with no

functional characterization, we obtained 103 SNVs,

51 classified as classical, 39 as non-classical, and 13 as neutral.

The SNVs selected with the respective enzyme activity are

described in Supplementary Table S1. All studies presented

the CYP21A2 activity measured by the hydroxylation of

17OHP, while 86 also measured progesterone hydroxylation.

Mutations of the CL group have a mean enzyme activity for the

17OHP hydroxylation of 1.5 ± 2 (SD)% and the progesterone

hydroxylation of 1.3 ± 1.6%. While mutations of the NC group

have 17OHP hydroxylation activity of 42.9 ± 23% and

progesterone hydroxylation activity of 37.4 ± 21%. Finally,

mutations in the neutral group have 17OHP hydroxylation

FIGURE 1
Composition of the four meta-predictors studied. The PredictSNP algorithm comprises the outputs of six single-predictors, the PredictSNP2 of
six, the Meta-SNP of 4, and the S3Ds&GO of three predictors.
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FIGURE 2
Frequency of hit and miss obtained for each SNV by mutation group. Each SNV (vertical list) was analyzed by seventeen predictors (horizontal
measurement) performed with the default setting for missense mutation. Please, refer to Supplementary Table S2–S4 for details. TP, true positive;
TN, true negative; FN, false negative; FP, false positive.
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activity of 100.17 ± 11% and progesterone hydroxylation activity

of 94.1 ± 8.25%.

2.2 General analysis of mutation groups

We obtained 22 SNVs in the CYP21A2 gene with the correct

prediction for all tested predictors, although the exact number

was incorrectly predicted for at least half of them (Figure 2).

There was no SNV, as wrongly predicted by all predictors. We

compared the hit and miss by the 17 predictors for all SNVs

affecting CYP21A2 activity, the CAH group, and all the non-

pathogenic SNVs of the neutral group. We showed that 24%

(22 of 90) SNVs from the CAH group obtained the correct score

by all predictors, while 23% (21 of 90) were wrongly predicted by

at least nine tools. The neutral group got two of its 13 SNVs

(15.4%) rightly predicted by all and one by nine predictors.

Moreover, we divided the SNV of the CAH group into the CL and

NC groups. We got 37% (out of 51 SNVs) from the CL and 2.6%

(of 39 SNVs) from the NC group of SNVs correctly predicted by

all tools. While 5.9% and 46% of CL and NC groups, respectively,

were wrongly predicted by nine tools.

Some critical amino acid positions have two or three

pathogenic replacements (e.g., p.P31Q/L, p.V282G/L, and

p.R357W/Q/P) (Figure 2). Two tools of prediction were able

to identify the critical amino acid position for all of those double/

triple mutants: CADD and ConSurf (Supplementary Table

S2–S4). As those variants have the functional data available,

CADD was able to use that information together with gene

annotation, epigenetic and evolutionary data, outputting the

right prediction. On the other hand, ConSurf obtained the

same result using structural, phylogenetic, and evolutionary data.

2.3 Performance of predictors to identify
SNVs detrimental to CYP21A2 activity

We analyzed the performance of 17 predictors to identify the

90 SNVs that affect CYP21A2 function against the 13 SNVs with

a neutral effect (Table 1). All the predictors tested obtained a

good PPV rate (>0.90). However, only CADD (0.73) and DANN

(0.56) showed negative predictive values (NPVs) higher than 0.5.

The PANTHER-PSEP found no result for the NPV, as it could

not identify benign variants.

We obtained both sensitivity and specificity higher than

0.8 for three predictors, CADD (sensitivity, e, = 0.96 and

specificity, sp, = 0.85), ConSurf (se = 0.88 and sp = 0.90), and

PolyPhen-2 (se = 0.87 and sp = 0.85). Moreover, five predictors

obtained accuracy between excellent and good: CADD (0.94),

PANTHER-PSEP (0.91), DANN (0.89), ConSurf (0.88), and

PolyPhen-2 (0.86) (Table 1). The Matthews’ correlation

coefficient (MCC) test showed positive values for that of

almost all predictors (except by PANTHER-PSEP), being five

of them with anMCC >0.5 (Table 1). The greatest performance, a

TABLE 1 Performance of 17 programs to predict the effect SNVs in the CYP21A2. We performed the analysis with 103 functionally characterized
variants, 90 damaging the protein functionality, and 13 neutral—Color scores from blue (good result) to yellow (not good).

Predictors TP FN TN FP PPV NPV Se Sp Ac MCC

Meta-SNPa 60 30 13 0 1.00 0.30 0.67 1.00 0.71 0.45

PredictSNPa 58 32 13 0 1.00 0.29 0.64 1.00 0.69 0.43

PredictSNP2a 44 46 13 0 1.00 0.22 0.49 1.00 0.55 0.33

S3Ds&GOa 58 32 8 0 1.00 0.20 0.64 1.00 0.67 0.36

CADD 86 4 11 2 0.98 0.73 0.96 0.85 0.94 0.75

ConSurf 79 11 9 1 0.99 0.45 0.88 0.90 0.88 0.58

DANN 83 7 9 4 0.95 0.56 0.92 0.69 0.89 0.56

FATHMM 62 28 13 0 1.00 0.32 0.69 1.00 0.73 0.47

MAPP 54 36 10 2 0.96 0.22 0.60 0.83 0.63 0.28

MutPred2 62 28 13 0 1.00 0.32 0.69 1.00 0.73 0.47

PANTHER-PSEP 90 0 0 9 0.91 nr 1.00 0.00 0.91 Nr

PhD-SNPg 62 28 12 1 0.98 0.30 0.69 0.92 0.72 0.42

PolyPhen2-HumVar 79 11 12 1 0.99 0.52 0.88 0.92 0.88 0.64

PROVEAN 66 24 13 0 1.00 0.35 0.73 1.00 0.77 0.51

SIFT 70 20 11 2 0.97 0.35 0.78 0.85 0.79 0.45

SNP2 59 31 13 0 1.00 0.30 0.66 1.00 0.70 0.44

SNPs&GO 54 36 13 0 1.00 0.27 0.60 1.00 0.65 0.40

ameta-predictor. Nr, no result; PPV, positive predictive value; NPV, negative predictive value; Se, sensitivity; Sp, specificity; Ac, accuracy; MCC, Matthews’ correlation coefficient test.
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value closer to +1, was obtained by CADD (0.75), followed by

ConSurf (0.58), PolyPhen-2 (0.57), DANN (0.56), and PROVEN

(0.51). Figure 3 shows a Venn diagram of the four predictors with

better accuracy and MCC values.

2.4 Performance of predictors to identify
SNVs affecting the specific CAH groups

We analyzed the performance of the selected predictors to

identify 51 SNVs of the CL group and 39 SNVs of the NC group

against 13 SNVs with a neutral effect (Table 2). Seventeen

predictors obtained an excellent positive predictive value

(PPV) rate (>0.90) for the SNV CL group and 15 for the SNV

NC group. Four tools obtained excellent-good (>0.8) negative
predictive values (NPV) values for the CL group: CADD (1.0),

DANN (0.9), PolyPhen-2 (0.85), and ConSurf (0.82). However,

for the NC group, only CADD (0.73), DANN (0.6), and

PolyPhen-2 (0.52) showed NPV >0.5. Taking the sensitivity

and specificity balance, we obtained 12 tools with excellent-

good values (>0.8) for the CL group. However, for the NC

group, only CADD (se = 0.9 and sp = 0.85) obtained both

sensitivity and specificity with excellent-good values. The

accuracy was excellent for seven predictors in the CL group:

CADD (0.97), ConSurf (0.95), PolyPhen-2 and PROVEN (0.94),

DANN andMutPred2 (0.92), andMeta-SNP (0.91); and good for

four tools in the NC group: CADD (0.88), DANN and

PANTHER-PSEP (0.81), and ConSurf (0.8).

Finally, the MCC test with positive values was obtained by

almost all predictors (except for PANTHER-PSEP). The MCC

was higher than 0.5 for 16 predictors in the CL group and five in

the NC group (Table 2). For the CL and NC groups, the same

predictor, CADD, got the MCC value closer to +1, with MCC =

0.9 for the CL group and MCC = 0.71 for the NC group.

3 Discussion

Genetics analysis is an essential approach for elucidating complex

CYP21A2 deficiency cases, mainly to confirm asymptomatic carriers

and unfollow false-positive cases (Pignatelli et al., 2019; Baumgartner-

Parzer et al., 2020). Therefore, fast and accessible tools to infer variants’

pathogenicity are essential to quickly deduce the harm of unknown

variants. In silico prediction is one of the most accessible tools to infer

the pathogenicity of SNVs. Here, for the first time, we analyzed the

performance of in silico prediction tools to discriminate between

pathogenic and neutral variants of CYP21A2. We focus on the

performance of 13 single predictors and four meta predictors

chosen accordingly to the popularity and performance of free-

access programs. Although some programs are based on the same

data set, each one has particular features (e.g., evolutionary, epigenetic,

functional, gene annotation, protein structure), algorithms (e.g.,

TABLE 2 Performance of 17 programs for the specific CYP21A2 groups. We predict the effect of SNVs in the CYP21A2 by dividing them by the two
levels of protein damage: severe (classical mutation, CL group) and mild (non-classical mutation, NC group). We performed the analysis with
103 SNVs of known effect, 51 being CL, 39 NC, and 13 neutral. Color score from blue (good result) to yellow (not good).

Specifics
groups

PPV NPV Se Sp Ac MCC

CL NC CL NC CL NC CL NC CL NC CL NC

Meta-SNPa 1.00 1.00 0.68 0.35 0.88 0.38 1.00 1.00 0.91 0.54 0.78 0.37

PredictSNPa 1.00 1.00 0.65 0.34 0.86 0.36 1.00 1.00 0.89 0.52 0.75 0.35

PredictSNP2a 1.00 1.00 0.39 0.33 0.61 0.33 1.00 1.00 0.69 0.50 0.49 0.33

S3Ds&GOa 1.00 1.00 0.53 0.24 0.86 0.36 1.00 1.00 0.88 0.47 0.68 0.29

CADD 0.96 0.95 1.00 0.73 1.00 0.90 0.85 0.85 0.97 0.88 0.90 0.71

ConSurf 0.98 0.97 0.82 0.50 0.96 0.77 0.90 0.90 0.95 0.80 0.83 0.56

DANN 0.93 0.89 0.90 0.60 0.98 0.85 0.69 0.69 0.92 0.81 0.75 0.51

FATHMM 1.00 1.00 0.52 0.45 0.76 0.59 1.00 1.00 0.81 0.69 0.63 0.51

MAPP 0.95 0.88 0.48 0.29 0.78 0.36 0.83 0.83 0.79 0.47 0.51 0.18

MutPred2 1.00 1.00 0.72 0.36 0.90 0.41 1.00 1.00 0.92 0.56 0.81 0.38

PANTHER-PSEP 0.85 0.81 nr nr 1.00 1.00 0.00 0.00 0.85 0.81 nr nr

PhD-SNPg 0.98 0.95 0.57 0.39 0.82 0.51 0.92 0.92 0.84 0.62 0.64 0.38

PolyPhen2-HumVar 0.96 0.94 0.85 0.52 0.96 0.74 0.85 0.85 0.94 0.77 0.81 0.52

PROVEAN 1.00 1.00 0.76 0.39 0.92 0.49 1.00 1.00 0.94 0.62 0.84 0.44

SIFT 0.96 0.92 0.69 0.42 0.90 0.62 0.85 0.85 0.89 0.67 0.70 0.40

SNP2 1.00 1.00 0.59 0.37 0.82 0.44 1.00 1.00 0.86 0.58 0.70 0.40

SNPs&GO 1.00 1.00 0.59 0.33 0.82 0.31 1.00 1.00 0.86 0.48 0.70 0.32

ameta-predictor. Nr, no result; PPV, positive predictive value; NPV, negative predictive value; Se, sensitivity; Sp, specificity; Ac, accuracy; MCC, Matthews’ correlation coefficient test.
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machine learning, matrix of effect, alignment), and databanks (e.g.,

ClinVar, SwissVar, UniProt, UniRef90, HumVar). Furthermore, they

also differ in the input data (protein change, nucleotide change,

chromosomal position, and accession number of the gene). The

17 programs chosen in the present study are composed of distinct

combinations of features, databanks, and algorithms (Supplementary

Table S5). All of them were able to identify pathogenic variants.

Nonetheless, only PANTHER-PSEP could not distinguish neutral

variants, which is unacceptable for testing variants of the CYP21A2.

Moreover, all tools showed better performancewith variants of the CL

group than the NC group, as expected, since the CL group gathers the

most harmful variants.

Our databank for performance tests comprises all missense

variants of CYP21A2 that are functionally characterized. With this

strategy, we could get a more realistic result on the prediction

evaluation. However, the number of variants was imbalanced

between the two categories, with 90 pathogenic and 13 neutral.

Therefore, the primary statistics data considered for the

performance evaluation were the accuracy and MCC, which

consider all values—true positive (TP), true negative (TN), false

positive (FP), and false negative (FN) (Vihinen, 2012; Chicco et al.,

2021). As sensitivity and specificity are calculated with half of the

information, they cannot represent all the performance by

themselves, so we considered the sensitivity-specificity balance.

Additionally, we calculated PPV and NPV but, as both are more

sensitive to data disbalance, they were not considered for the

program performance (Vihinen, 2012).

The main feature assessed bymost single predictors tested is the

evolutionary data since residue conservation over time can indicate

critical residues for the protein function. Four of the tools tested use

only this feature for the prediction calculation, FATHMM (Shihab

et al., 2013), PhD-SNPg (Capriotti and FariselliPhD-SNPg, 2017),

PROVEAN (Choi et al., 2012), and SIFT (Vaser et al., 2016). A

similar performance was obtained between these four tools, with a

fair accuracy ranging from 0.73 (FATHMM) to 0.79 (SIFT), and

MCC from 0.42 (PhD-SNPg) to 0.51 (PROVEAN). Additionally,

SIFT had the most excellent sensitivity-specificity balance between

programs, similar to the performance shown previously (Vaser et al.,

2016). In another study, Montenegro et al. (Simonetti et al., 2018),

with HSD17B3, NR5A1, AR, and LHCGR genes, SIFT and

PROVEAN also had the same performance, with an accuracy of

0.74–0.75, andMCC of 0.5. In yet another study (Pshennikova et al.,

2019), SIFT and PROVEAN showed the best results among nine

programs tested forGJB2,GJB6, andGJB3 genes, with an accuracy of

FIGURE 3
Overlaps of the hit for four predictors with good-excellent performance for SNVs on CYP21A2. Total, indicates all 103 SNVs tested. (Image
generated with https://bioinformatics.psb.ugent.be/webtools/Venn/).
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0.89, while FATHMM produced a large number of erroneous

predictions with an accuracy of 0.33. FATHMM also had poor

performance in another study (Montenegro et al., 2021), with an

accuracy of 0.56 and a MCC of 0.04.

Changes in the secondary and tertiary structures by missense

mutations are likely to affect protein activity (Ashkenazy et al., 2016).

Therefore, it is no surprise that the second most evaluated feature is

structural information, being present in ConSurf (Ashkenazy et al.,

2016),MutPred2 (Pejaver et al., 2020), PolyPhen2 (Hicks et al., 2011),

and SNAP2 (Hecht et al., 2015). In addition, ConSurf includes

phylogenetics relationships, MutPred2 functional proprieties, and

SNAP2 uses a matrix of effect probabilities with a neural network

method (Hecht et al., 2015; Ashkenazy et al., 2016; Pejaver et al.,

2020). While PolyPhen2 has two trained datasets as options,

HumVar and HumDir. The first trained dataset is suggested for

diagnostics of Mendelian diseases, which requires variants with a

drastic difference effect (Adzhubei et al., 2013). Moreover,

PolyPhen2 has a low dependency on the sequence alignment

employed (Hicks et al., 2011). PolyPhen2 showed good prediction

performance (ac = 0.88, MCC = 0.64), with the same sensitivity but a

better sensitivity-specificity balance than reported in (Hicks et al.,

2011). ConSurf obtained a similar performance with the setting used

in the test (ac = 0.88,MCC= 0.58). However, we cannot compare the

ConSurf performance with other studies since there is no default

setting for the alignment sequence, database, and algorithms

available, as mentioned by ConSurf’s developers (Ashkenazy et al.,

2016). MutPred2 and SNAP2, both had sensitivity-specificity

imbalances of 1.4 and 1.5-folds, respectively, and almost the same

fair performance. However, these values were relatively better than

reported for MutPred2 by (Pejaver et al., 2020) with the ClinVar and

UniProt databases and SNAP2 by (Hecht et al., 2015) with a

databank with more than 9,500 variants from human genes.

For meta predictors, which work with many databases and

combine outputs from other predictors to generate their own, we

expected to obtain one of the best performances. However,

counterintuitively, our study showed an intermediate

performance compared with the single predictors tested, and the

number of tools combined was not related to the prediction

improvement. Meta-SNP and PredictSNP performance were

better than PredictSNP2 and S3Ds&GO. Furthermore, compared

with the developer tests, we obtained for Meta-SNP (Capriotti et al.,

2013) and PredictSNP (Bendl et al., 2014) similar accuracy, while the

performance for PredictSNP2 (Bendl et al., 2016) and S3Ds&GO

(Capriotti and Altman, 2011) was lower. Meta-SNP and PredictSNP

share three single predictors, PhD-SNP, SNAP, and SIFT.

Therefore, for the CYP21A2 variants tested, CADD presented

the best performance to categorize the pathogenicity of the missense

variants, with an overall accuracy of 0.94 (CL 0.97; NC 0.88) and

MCC of 0.75 (CL 0.9, NC 0.71). The specificity (0.85) and sensitivity

(0.9) also reached a good balance. Interestingly, the accuracy and

specificity obtained for CYP21A2were even higher than reported by

the software developers (van der Velde et al., 2017) with the ClinVar

database, which were 0.85 and 0.57, respectively. ConSurf, DANN,

and PolyPhen-2 showed similar performance, giving the second-

best results according to the accuracy (CAH group 0.86–0.89; CL

0.92–0.95; NC 0.77–0.81) and MCC (CAH group 0.56–0.58; CL

0.75–0.83; NC 0.51–0.56) values. The sensitivity and specificity for

ConSurf and PolyPhen2 were well balanced, while DANN had 1.3-

fold less specificity than sensitivity. The original article of DANN

(Quang et al., 2015) presents only the area under the curve (AUC)

ROC, which was 0.95 using the ClinVar database for the

performance test. PolyPhen2 showed a better sensitivity-

specificity balance for the CYP21A2 variants than the values

presented by (Hicks et al., 2011), testing the tool with gene-

specific mutations (BRCA1, MSH2, MLH1, and TP52). We

obtained a sensitivity similar to a previous analysis (Hicks et al.,

2011), but the specificity was lower, at 0.85 and 0.60, respectively.

Considering the individual errors of the four predictors with the

greatest performance for the CYP21A2 variants analyzed in this study,

CADD had six errors, ConSurf 12, DANN 11, and PolyPhen2 14.

However, computing their predictions together, we would have

four false results from 103 missense SNVs in the CYP21A2, one

neutral (p.L13M), and three pathogenic from the NC phenotype

group (p.P106L, p.R225W, and p.M474I). The variant p.P106L

was correctly categorized by SNAP2 and PANTHER-PSEP. In

turn, PROVEAN (Choi et al., 2012) could type the other three

variants correctly, evenwith a lower sensitivity value than the other

four tools, mainly for the pathogenic SNVs of the NC group (0.49).

Nonetheless, we obtained an intermediated performance with

PROVEAN (ac = 0.77; MCC = 0.51), which could be because it

uses the neighborhood sequences as input, which can be a trick for

enzymes since they have some residues with high conservation,

making critical connections between variable residues. In

comparison using the developer’s test (Choi et al., 2012) with

the UniProt database (se = 0.78; sp = 0.79), we had imbalanced

sensitivity-specificity performance, with similar overall sensitivity

(0.73) and higher specificity (1.0).

One of the limitations associated with this analysis is the

unbalanced number of variants in each group analyzed due to the

limited number of variants characterized. In order to diminish

this issue, only statistical approaches considering the whole data

were used for the performance comparison, as recommended in

the literature (Vihinen, 2012; Chicco et al., 2021). Another

limitation was the selection of the tools available online since

each predictor has a specific input such as chromosomal version,

the number of variants per input, and data input type. For that

reason, we established parameters to choose a limited number of

predictors based on the features and literature citations.

4 Materials and methods

4.1 SNVs selection and categorization

To select CYP21A2 missense SNVs with clinical significance, we

used the list of variants reported to affect humanhealth, as reviewed by
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Simonetti et al. (Simonetti et al., 2018) Complementarily, we searched

for SNVs reported by dbSNP, Ensembl, and GeneCards, applying the

following filters when present: “missense,” “clinical significance,”

“pathogenetic,” or “benign,” “without conflicting interpretation”,

and “human or homo sapiens”. We excluded nonsense and

frameshift mutations. In addition, we performed a cross-check of

the databases with original articles or reviews to remove variants

without enzyme activity data available.

To standardize the effect of the SNVs selected, we categorized

them into three groups according to the CYP21A2 activity observed

by Simonetti et al. (Simonetti et al., 2018) for at least one of the steroid

substrates: i) CL group has SNVs with the CYP21A2 activity

level <10% relative to WT; ii) NC group has SNVs with the

activity level between >10% and <78% relative to WT; and iii) the

neutral group has SNVwith the enzyme activity>78% relative toWT.

The CAH group is composed of all SNVs from the CL and NC. The

mean and standard deviation (SD) of enzyme activity were calculated

for each steroid and mutation group.

4.2 Selection of predictor tools

To choose predictors with different features, we reviewed

the literature for software applied to in silico analysis of SNPs

or SNVs. Predictors used in more than two studies by

different research groups or significant performance in a

large study were selected. In addition, we filtered for tools

with free access and online availability, thus not requiring

local powerful computational resources. The characteristics

of each predictor chosen are shown in Supplementary Table

S5–S6.

4.3 Data treatment

The default setting for missense mutation was used on all

predictors. However, when there was no set instruction for that

purpose highlighted for the program, we followed the developers’

recommendation from the tutorial or original paper. In addition,

three scores were extracted indirectly from meta-predictors: MAPP

(v.28.6.2005) and SIFT (v.4.0.4) scores were obtained from

PredictSNP, and DANN (v.1.2) score from PredictSNP2. For

statistical purposes, we standardized two variables for the outputs

of all the predictors: “damage” for SNVs with the potential to affect

CYP21A2 and “neutral” for SNVs with no or very low potential to

affect the enzyme. The following outputs were standardized as

“damage”: score >0.5 to Meta-SNP, SNP&GO, S3D&GO,

MutPred2, FATHMM-MKL (weighted) and PhD-SNPg;

“deleterious” message to PredictSNP, PredictSNP2, MAPP, and

SIFT; score >0.9 to DANN; score > -2.5 to PROVEN;

score >10 to CADD (GRCh38-v1.5–6); score >0.45 PolyPhen-2

(HumVar); score <0 to ConSurf; score >0 to SNAP2; and

score >450 millions of years to PANTHER. Otherwise, we

classified the outputs as “neutral".

4.4 Analytical parameters

We analyzed the performance of each predictor in two ways.

First, to assess the performance to discriminate the effects of

CYP21A2 SNVs, we compared SNVs of the CAH group with the

neutral group. Second, to get the number of hits and misses per

group, we analyzed CL and NC groups separated from the neural

group. We used Microsoft Excel for the data organization and,

together with IBM SPSS Statistics software v.2.1, we performed

the statistical analysis.

4.5 Statistical methods

We considered the TP result for correct “damage” prediction,

TN for correct “neutral” prediction, FP for incorrect “neutral”

prediction, and FN for incorrect “damage” prediction. We

calculated the PPV to access the ratio of TP results for all

positive results (Eq. 1), and the NPV to the ratio of TN for all

negative results (Eq. 2).

PPV � TP

TP + FP
(1)

NPV � TN

TN + FN
(2)

The proportion of correct SNVs identified as harmful was

assessed with the sensitivity (Se) equation (Eq. 3), while the

correct neutral identification was assessed with the specificity

(Sp) (Eq. 4). Besides that, we obtained the accuracy (Ac) by the

ratio of true results (TP and TN) (Eq. 5). The accuracy was

classified as excellent (0.9 < Ac < 1.0), good (0.8 < Ac < 0.9), fair

(0.7 < Ac < 0.8), and not good (0.6 < Ac < 0.7).

Se � TP

TP + FN
(3)

Sp � TN

TN + FP
(4)

Ac � TP + TN

TP + FP + TN + FN
(5)

Finally, we applied the MCC to measure the two-class quality

(harmful and neutral). This method is suitable for imbalanced

data and has been used to evaluate in silico prediction

approaches. MCC score ranges from 1 (perfect prediction) to

-1 (total disagreement between the results predicted and

observed), with 0 being no better than random prediction (Eq.

6) (Chicco et al., 2021).

MCC � TPX TN − FPX FN
�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (6)
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5 Conclusion

The cost-effective and easy method of SNV analysis for

CYP21A2 has important value as a screening tool, especially

with a large number of genetic variants being available in massive

genome projects. In the present study, we compared the abilities

of 17 online and free tools for predicting the pathogenicity of

SNVs on the CYP21A2 gene, a highly complex gene. Based on a

curated databank composed of SNVs on the CYP21A2 enzyme

functionally characterized, we reported the four highest-

performing predictor programs for characterizing the

pathogenicity of the CL group—CADD, ConSurf, DANN, and

PolyPhen2. One of them, CADD, also showed the best

performance for identifying mild mutations from the NC

group, followed by ConSurf and DANN. Therefore, according

to those results, CADD, ConSurf, DANN, and PolyPhen2 are high-

recommended to be run for thefirst screening of each uncharacterized

CYP21A2 SNV. Moreover, there is a great probability of a missense

variant of the CYP21A2 being “pathogenic”when at least two of those

four tools obtain that result. These results may be applicable in the

future analysis of new missense variants of CYP21A2 and emphasize

the relevance of using multiple predictors together.
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