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Kidney disease is a complex disease with several different etiologies and underlying

associated pathophysiology. This is reflected by the lack of effective treatment

therapies in chronic kidney disease (CKD) that stop disease progression. However,

novel strategies, recent scientific breakthroughs, and technological advances have

revealed new possibilities for finding novel disease drivers in CKD. This review

describes some of the latest advances in the field and brings them together in a

more holistic framework as applied to identification and validation of disease drivers

in CKD. It uses high-resolution ‘patient-centric’ omics data sets, advanced in silico

tools (systems biology, connectivity mapping, and machine learning) and ‘state-of-

the-art‘ experimental systems (complex 3D systems in vitro, CRISPR gene editing,

and various model biological systems in vivo). Application of such a framework is

expected to increase the likelihood of successful identification of novel drug

candidates based on strong human target validation and a better scientific

understanding of underlying mechanisms.
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1 Introduction

Chronic kidney disease (CKD) is an umbrella term for a variety of renal diseases with

different etiologies, usually diagnosed on the basis of clinical and/or histopathological

features, but commonly associated with longstanding diabetes and hypertension (Kidney

Disease: Improving Global Outcomes, 2013). CKD is divided into five stages, 1–5,

according to the estimated glomerular filtration rate (eGFR), as a measure of overall
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renal function, and degree of any associated albuminuria, which

both correlate with increasing mortality risk (Webster et al.,

2017). However, the current clinical and histological features of

the different renal diseases that make up CKD do not relate to a

particular pathway or factor that can define the underlying

disease mechanism(s), and thereby determine a specific

therapeutic intervention. This gap between the clinical and

histolological classification of renal injury and the underlying

drivers of disease makes use of the current CKD classification

alone problematic for drug discovery (Hall and Himmelfarb,

2017). Furthermore, the structural and functional complexity of

the kidney, which comprises a variety of cell types - glomerular,

tubular, interstitial, and vascular—highlights the need for a

deeper understanding of the underlying biology and

physiology, and requirement for a broad array of tools for

target validation.

Drug discovery in CKD has proved challenging. The global

burden of CKD is increasing worldwide with a country-by-

country prevalence ranging from 5% to 14%; CKD is ranked

the fourth in a list of growing mortalities in 2020 (The Lancet

Kidney Campaign, 2020). Moreover, 7.6% of all deaths from

cardiovascular disease (CVD) can be attributed to CKD (G. B. D.

Chronic Kidney Disease Collaboration, 2020). Despite recent

progress in the treatment of CKD, such as the approval of

sodium-glucose cotransporter-2 (SGLT2) inhibitors (Bakris

et al., 2020; Heerspink et al., 2020), major therapeutic

advances are still required to halt and reverse CKD.

The molecular drivers of renal disease are diverse and may

involve over 100 biological pathways (Martini et al., 2014) and

this complexity makes it difficult to recapitulate disease pathways

experimentally. Two-dimensional culture of particular renal cell

types has advanced our understanding of renal biology, but many

components are lacking, such as cell-to-cell contact, cell-matrix

interactions, and the effects of flow or pressure. Moreover, with at

least 25 different cell types (Park et al., 2019), a faithful

simulation of the kidney ex vivo is unfeasible at present.

Therefore, efforts so far have focused on building particular

capabilities that allow us to model different aspects of renal

pathophysiology and anatomy in disease (Balzer et al., 2022),

including omics-defined translatable primary human renal cells

in vitro and better genomic characterization of animal models

in vivo.

The imprecision of the current CKD classification, the

complexity of the underlying renal pathophysiology, and lack

of adequate translatability from preclinical findings to clinical

readouts are the major challenges when identifying relevant

disease drivers. Recent technological innovations and the

application of multiple target identification approaches are

opening up new avenues for researchers in the quest to

identify and validate the right targets for CKD. Expanding

collections of omics data, together with human efficacy trials

are invaluable resources for ‘back-translation’ in early target

identification (King et al., 2019). Advances in artificial

intelligence (AI) and systems biology provide the opportunity

to develop machine-learning algorithms to combine diverse

sources of patient data for a more patient-centric and holistic

analysis that can be applied to target identification. In addition,

many studies have shown that when a target can be linked to

genetic evidence in disease, or a firm understanding of the role of

a target in the etiology of a disease, these are less likely to fail due

to insufficient efficacy (Kamb et al., 2013; Plenge et al., 2013;

Cook et al., 2014; Hurle et al., 2016; King et al., 2019). In parallel

with ‘big data’ discovery, efficient mechanistic target validation

requires information from a broad range of sources, including in

silico, in vitro, and in vivo research. Bioinformatic analysis

applied to available human CKD data and combined with

readouts from complex 3D models in vitro capturing cellular

cross-talk and placed in a framework based on transcriptomic

readouts from the why rat animal model in vivo are now

becoming essential for renal drug discovery.

The challenging nature to identify disease drivers in CKD

demands a contemporary holistic approach (Figure 1). This

framework is based on human target validation, starting with

the generation of a list of potential targets that is derived from

patient-relevant data for hypothesis testing, followed by

validation using various experimental platforms. Positive

validation readouts from multiple testing can facilitate data-

driven selection of candidate CKD targets. In this article, we

describe how combining existing knowledge of renal diseases

with recent technological and scientific advances can help to

address the challenges we face in identifying the optimal drug

targets for treating CKD.

2 Identifying new disease drivers
through patient-derived big data

The highly heterogeneous and progressive nature of CKD

makes it amenable to using big data from large human

populations to transform the way we identify potential disease

drivers, better understand disease progression, and ultimately

increase the success rate in drug development for this growing

unmet medical need. Retrospective analyses based on data from

human genetic studies, such as familial studies and genome-wide

association studies (GWAS), have shown that drugs with targets

supported by human genetics have an above-average chance of

clinical success (Kamb et al., 2013). In CKD, the identification of

rare variants, using collapsing analyses of exome sequences, can

validate known disease-causing genes and identify candidate

genes and modifiers (Cameron-Christie et al., 2019).

Therefore, human genetics can play a key role in: i)

identifying drug targets with strong human target validation

for therapeutic intervention and impact, ii) validating the

mechanisms of action of existing drug candidates to reduce

their risk of failing, iii) implementing precision medicine

strategies to identify patients with molecular diagnoses that
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are more likely to benefit from targeted therapies, and iv)

detecting potential prohibitive drug interactions and adverse

effects.

Beyond the foundation of genomics, other patient-derived

large data sets that include transcriptomics, proteomics, and

metabolomics, and which contain more temporal and tissue-

spatial information, are critical to deciphering the downstream

complexity of disease defined by the interplay between genetics

and the environment. Various molecular data sets can be

generated from clinical trial participants to build an

understanding from gene to protein, and the metabolomic

signature in patients with CKD (Eddy et al., 2020).

One of the greatest enablers for big data and multi-omic

collections is increased collaboration. One example is the UK

Biobank in which many pharmaceutical companies have joined a

pre-competitive consortium to generate exome and genome

sequence data in approximately 500,000 participants, an

unparalleled clinical and genomic resource (Bycroft et al.,

2018). CKD-specific collaborations have also been founded,

including the Renal Pre-competitive Consortium (RPC2), in

which data, resources, and expertise in molecular target

identification are shared across academia and the

pharmaceutical industry with the aim of accelerating novel

drug development for CKD through a systems biology

approach (Tomilo et al., 2018). This consortium-generated

pre-competitive material (data sets and unbiased analyses) is

shared equally among all partners and then with the wider

scientific community, while the industry partners can conduct

internal competitive research for the development of targets at

their own discretion and that is fully amenable to intellectual

property protection. This model has been followed by the

establishment in recent years of several well-curated national

CKD cohort studies for long-term patient follow-up and the

collection of longitudinal clinical data and biosamples of blood

and urine, and in some cases also renal tissue samples (Tomilo

et al., 2018).

3 Bioinformatics-based prioritization
of disease drivers

Bioinformatic approaches are used extensively to gather

CKD supporting evidence for targets, including their

importance as drivers of CKD. Bioinformatics continues to

play a key role in the success of omics and has integrated

itself seamlessly into the fabric of contemporary data-driven

biology. The ability to generate multidimensional omic data

sets from genomic, blood, urine, and kidney tissue sample

analyses of patients with CKD has opened up new possibilities

for data-driven hypothesis generation (Saez-Rodriguez et al.,

2019). Various systematic knowledge-mining approaches and

comprehensive functional analysis of patient-derived omic and

clinical data sets can now be employed to facilitate CKD target

identification, validation, and prioritization (Figure 2).

Analysis of omic data is a multifaceted endeavor that

integrates many aspects of bioinformatics, statistics, and

FIGURE 1
Framework for target identification and validation in CKD. Potential CKD targets identified from human data via in silico and SME approaches are
prioritized using thorough validation in vitro and in vivo systems, facilitating target selection. Target identification starts with the collection of
biopsies, urine, and blood from patients with CKD and controls from clinical trials and collaborations. Omics data (genetic, transcriptomic,
proteomic, andmetabolomic) are then generated from these samples and processed with integrative omics analyses followed by bioinformatic
and statistical analyses and machine learning. This data processing results in a list of CKD targets that is assessed in silico to build further evidence of
human target–disease associations. The shortlisted targets are then prioritized by applying biologically relevant in vitro validation in cultured cells and
advanced in vitromodels. The targets with the strongest supportive data are then validated further in vivo to build proof-of-mechanism and proof-
of-principle in CKD before being presented for target selection and investment decision to enter the portfolio. CKD, chronic kidney disease; SME,
subject-matter expert.
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machine learning (Hastie et al., 2009). Algorithms and workflows

are employed to conduct specific aspects of data analysis,

including data normalization (Kohl et al., 2014; Abbas-

Aghababazadeh et al., 2018), exploratory multivariable data

analysis (Gehlenborg et al., 2010), and systems-level omics

integration (Mitra et al., 2013; Karczewski and Snyder, 2018).

Platform-dependent omics readouts (transcriptomics,

proteomics, and metabolomics) necessitate specialized data

normalization to avoid technical biases obscuring biological

patterns (Tyanova et al., 2016; Yamada et al., 2020), and eventually

produce a data matrix that typically represents the abundance values

for molecular entities (genes, proteins, and metabolites) across

biological samples. Once normalized, unbiased, hypothesis-free

data exploration usually begins by using various unsupervised

dimensionality reduction methods (Bartenhagen et al., 2010) that

permit visualization of large multidimensional data sets by

summarizing thousands of variables in a few principal components

that can be plotted in 2D space. Even at this initial stage, underlying

patterns can be identified within the data structure by revealing the

grouping of samples or their molecular features, and sometimes aided

by use of hierarchical clustering.

Case-control design remains a mainstay of observational

cohort studies in which omics data are generated from

patients with CKD (broad or specific disease characteristics)

and controls (healthy individuals or patients with non-renal

disease) with the aim of making comparisons. In such a

setting, differential abundance/expression analyses are used to

uncover molecular features that are modulated in CKD versus

control samples. Directionality of differences and changes—up-

or down-regulation—sheds light on the activity state of biological

processes, as well as guiding the subsequent therapeutic

approach, namely development of an antagonist or agonist

compound, respectively, and choosing the most appropriate

modality.

Hypothesis-free data analysis methods typically yield long

lists of disease-associated molecular features (such as genes),

which can be ranked by, for example, statistical significance or

magnitude of effect, but cannot easily be tested experimentally or

have unknown biological meaning. Therefore, a substantial part

of data analytics is devoted to the prioritization of candidate

features to shortlist the most promising potential drug targets for

subsequent validation in vitro and in vivo (Moreau and

FIGURE 2
Human target validation and prioritization. After generation of CKD target lists, additional disease-relevant evidence is added to generate
testable hypotheses and to prioritize the candidates. Tissue-specific expression enrichment and expression modulation in disease versus healthy
states help to ascertain the role of targets in CKD. Correlation of targets with renal functional biomarkers and parameters is ascertained and target
expression across CKD stages or etiologies is explored to add confidence around disease relevance. Prediction of target kidney cell type is
useful for guiding downstream in vitro validation and assay selection. Pathway and network analyses can provide additional biological context for
dysregulated cellular mechanisms and help infer potential mechanisms of action. The accumulated evidence supporting human target validation and
mechanism of action results in a set of prioritized candidates for further experimental validation. CKD, chronic kidney disease; DN, diabetic
nephropathy; eGFR, estimated glomerular filtration rate; eQTL, expression quantitative trait loci; FSGS, focal segmental glomerulosclerosis; HT,
hypertensive nephropathy; IgA, immunoglobulin A nephropathy; MCD, minimal change disease; MGN, membranous glomerulonephritis; RPGN,
rapid progressive glomerulonephritis; SLE, systemic lupus erythematosus.
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Tranchevent, 2012; Vitsios and Petrovski, 2020). The

prioritization is based on annotation of those candidates with

sufficient disease-related evidence to support generation of a

testable hypothesis. Patient clinical characteristics are key to the

interpretation of omics patterns because hypothesis-based

analyses depend on a biological understanding of the disease

and include testing of candidate targets for their correlations with

renal function (serum creatinine, cystatin C, glomerular filtration

rate [GFR], albuminuria, or proteinuria), disease progression

rate, CKD stage, and histopathological diagnosis. When follow-

up clinical data are available, longitudinal analyses for association

with changes in renal function over time (GFR slope) and

prediction of later outcomes (worsening proteinuria,

cardiovascular morbidity, onset of renal failure, and mortality)

are valuable in understanding the relative importance of a chosen

target.

For selected candidate targets, pathway analyses and network

biology approaches are used to provide additional biological context

for dysregulated cellular mechanisms and to infer potential

mechanisms of action (Gehlenborg et al., 2010; Choobdar et al.,

2019; Reimand et al., 2019). Further hypothesis-driven analyses can

inform subsequent steps for preclinical target validation. For

example, prediction of the target cell type is useful in guiding the

choice of cellular model in vitro, kidney enrichment of intra-renal

targets can inform pharmacokinetic aspects and safety issues, and the

presence of orthologous genes, pathway conservation, and consistent

directionality modulation in disease models can support human-to-

animal translatability and selection of animal models in vivo.

Prioritized candidate targets can then enter the pipeline of

preclinical testing for further target validation.

4 In vitro target validation

The appropriate use of translatable models in vitro and tools

for preclinical target validation can build confidence in novel

CKD targets. Preclinical target validation can include building an

understanding of the mechanism of action of a particular target

and an understanding of its molecular network. Confidence in a

candidate target identified in silico can be gained by

demonstrating pathway activity in human cell-based renal

disease models in vitro.

As mentioned earlier, the complexity of kidney disease,

which may involve the dysfunction of several different cell

types in the glomerular, tubulo-interstitial, and vascular

compartments, makes it challenging to identify translatable

models in which to define the mechanism of action of

potential targets in CKD. To facilitate selection of the best

validation system, human omic data sources may be analyzed

in combination with transcriptomic, proteomic, and

metabolomic data in vitro, both in cell culture systems and in

more advanced cellular models. In this way, we can identify the

appropriate cell type, model system, and the right renal stressor

for the target pathway, in the same way as big data and

bioinformatic analyses can identify these elements in patients

with CKD. CRISPR screening in renal cells can help to handle the

increasing number of targets arising from big data, making it

easier to triage multiple targets and select the most promising

candidate for further validation.

A renal toolbox must try to mirror the renal multiplicity of

cell types, the complexity of their interactions, cross-talk with

other organ systems, including effects on metabolism, the

microbiome, and immune system. Recently, significant

progress has been made to improve the translatability of

in vitro renal systems, such as the generation of podocytes

derived from human induced pluripotent stem cells (iPSCs)

that have gene expression signatures resembling adult human

podocytes more closely than available podocyte cell lines

(Yoshimura et al., 2019). In addition, primary and

immortalized cell lines (Wieser et al., 2008) of several

different glomerular, tubular, vasculature, and immune cell

types may be used in validation assays. Co-culture systems are

also advancing for studying the interplay among renal cell types

and with other cells such as immune cells.

A stepwise approach may be implemented to guide the

experimental design for validation of renal targets in vitro

(Box 1). This process facilitates selection of the most

appropriate cell models, renal stressors, and CKD readouts to

define mechanism(s) of action, as well as the affected renal

compartment to optimize translatability (Figure 3). By using

an advanced and translatable in vitro toolbox, clear assay design,

and appropriate readouts, renal validation in vitro can narrow

down a list of targets and help select number of promising

candidates for further validation in advanced in vitro, ex vivo,

BOX 1 | Experimental design process for in vitro renal target validation

1. Confirm that the target is the most effective and accessible target in the disease pathway
2. Select a cell culture model in which the target is present
3. Confirm a renal stressor that regulates the target in the same way as observed in patients with CKD more generally or a specific renal disease
4. Confirmwhether geneticmodification (CRISPR knockout/overexpression) of the regulated target in the defined renal cell type results in a CKD-
like phenotype
5. Confirm that tool compounds or genetic modification can produce a treatment effect in a relevant translatable cell model
6. Confirm whether genetic modification or tool compounds that agonize/antagonize a target in advanced models have an effect on clinical
measures of renal function
7. Continue target validation in advanced in vitro/ex vivo systems and establish a mode of action in translatable models in vivo
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FIGURE 3
In vitro target validation process. In vitro target validation in cultured cells is used as a first approach to validate and screen several targets, aiming
to triage targets with strong support for further target validation in advanced in vitro systems. Data from all systems feed into each other to select the
most translatable model and define the correct stressor that regulates target and pathway. An in vitro target validation toolboxmay comprise various
assays, stressors, and readouts, which are chosen based on the disease biology of the target. ADMA, asymmetric dimethylarginine (arginine
metabolite); CKD, chronic kidney disease; ECAR, extracellular acidification rate; HGEC, human glomerular endothelial cell; HMOX, hem oxygenase;
IHC, immunohistochemistry; iPSC, induced pluripotent stem cell; MMPs, matrix metalloproteinases; MSC, mesenchymal stem cell; OCR, oxygen
consumption rate; PAN, pyromycin aminonucleoside; PTEC, proximal tubular epithelial cell; RPTEC, renal proximal tubular epithelial cell; SNP, single
nucleotide polymorphism; TGF, transforming growth factor; TLR, toll-like receptor; ROS, reactive oxygen species. 1. Faivre A et al. Front Med
(Lausanne) 2021; 8:742072; 2. Imasawa T et al. The International Journal of Biochemistry and Cell Biology 2013; 45:2109–2118.3. Oates JC et al.
American Journal of Physiology-Renal Physiology 2022; 322:F309-F321.4. Tang SCW et al. Nature Reviews Nephrology 2020; 16:206–222.5. Lee
HW et al. Journal of the American Society of Nephrology 2015; 26:2741–2752.6. Perico L et al. Nature Reviews Nephrology 2016; 12:692–710.7.
Prozialeck WC et al. Pharmacology and Therapeutics 2007; 114:74–93.8. Slyne J et al. Nephrology Dialysis Transplantation 2015; 30:iv60-iv67.9.
Wieser M et al. American Journal of Physiology-Renal Physiology 2008; 295:F1365-F1375.10. Jourde-Chiche N et al. Nature Reviews Nephrology
2019; 15:87–108.11. Sol M et al. Front Pharmacol 2020; 11:573557.12. Liu Y. Kidney International 2006; 69:213–217.13. Yun CW et al. International
Journal of Molecular Sciences 2019; 20:1619.
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and in vivo systems.

All model systems have their limitations and for the different cell

culture models you need to be aware that targets, pathways, and

functions can be changed or even lost when cells are removed

from their natural environment. The interactions with

neighboring cells, changed physiological conditions, and loss

of 3D structure can affect the readouts from a simplified 2D

culture system and have, for example, been shown to impact gene

regulation in proximal tubular cells. The 2D models in vitro

should therefore not stand alone in a target validation package

but be combined with other models described below. 2D models

are useful systems before setting up more complex, low

throughput, 3D systems in vitro system, and models in vivo.

Each system can play a role in adding to knowledge of

mechanisms and the pros and cons are all summarized in

Figure 4 and how and when they are used are based on the

biology question being asked.

4.1 Functional genomics

The discovery of CRISPR technology and its applications to

large-scale genetic loss-of-function screens, also known as

functional genomics, holds great promise for the identification

of novel validated drug targets, including in CKD. Functional

genomics screens allow the systematic perturbation of large

numbers of genes or proteins, revealing cellular phenotypes

that allow for an inference of gene function. The success of

functional genomic platforms in driving the identification of the

most relevant targets in renal disease will be determined by

advances based on three strategic pillars that are the foundation

of functional genomics: (i) development of more advanced

in vitro systems, (ii) creation of validated screening libraries

and technologies to alter gene and protein function, and (iii)

establishment of ‘end-to-end’ computational pipelines that can

facilitate the quantitative analysis of cellular phenotypes resulting

from genetic or other perturbations.

According to these three strategic pillars the choice and

development of the appropriate in vitro system will be critical

for the identification of translatable targets in CKD. The value

generated by functional genomic efforts will be directly

proportional to the translatability of the cellular models

employed in screening campaigns in which the targets were

originally discovered. Consequently, there is a strong drive

among researchers in the field to use cellular systems in vitro

that can closely recapitulate disease-relevant phenotypes, rather

than use easier to screen 2D cell lines with limited their

physiological relevance. A successful example is the use of

CRISPR methodology with iPSC-derived podocytes and

primary renal cells, such as implementation of the ObLiGaRe

doxycycline inducible (ODIn) Cas9 system in iPSCs (Lundin

et al., 2020).

FIGURE 4
Summary of in vitro validationmodels. Listed in vitromodels arranged from the assay containing themost tissue complexity down to single cells,
listing the pros and cons for the different models. The physiological complexity of the different models impacts both the screening capacity of the
assay and what biology that translates. MPS, micro-physiological systems. aconsiderations are listed in a step-wise manner and main considerations
only are stated.
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5 Advanced in vitro systems

Advanced in vitro systems aim to bridge the gap between

in vitro and in vivo by facilitating the exploration of mechanisms

that rely on factors such as cross-talk between cells, cell-matrix

interactions or changes in pressure or flow that are not present in

2D cultures. The improved maturity of cells in these advanced

systems means that basal expression levels of many genes are

reduced, providing a cleaner background on which to detect

pathophysiological changes in gene expression. In vivo, the

presence of multiple cell types can either protect the target

cell from injury or cascade damage throughout its structure.

These nuances in advanced models allow us to answer some

intricate questions without the use of in vivo models, thereby

achieving a reduction in the use of experimental animals. In

addition, the same cellular manipulations applied to 2D systems

can still be used.

The toolbox available for renal drug discovery is growing

with the advent of microphysiological systems that include both

glomerular and tubular structures, as well as 3D bio-printed

tubules, and more complex renal organoids. From these systems

investigation of the target choice can progress to ex vivo models,

including isolated glomeruli, blood vessels, and tubules, through

to kidney slices. Each model has its own advantages and increases

our understanding of a target’s impact on disease

biology—knowledge that would not be gained from simpler

systems.

5.1 Glomerular and tubular surrogates

Several different approaches have been taken to tackle the

problem of mimicking glomerular structure and function,

including co-culture membrane-based chips (Zhou et al.,

2016; Musah et al., 2017), in-gel self-aggregation methods

(Waters et al., 2017), and isolated glomeruli on chips (Wang

et al., 2017). The addition of flow and a more physiological

matrix has given rise to structures that show a greater

resemblance to their intact homolog (Musah et al., 2017).

The replacement of thick artificial membranes with

structures having a more natural morphology has also

improved functionality (Slater et al., 2011). The main

readouts from such systems are imaging, transcriptomics,

and permeability. A further step forward has been allowing

the cells to generate their own structures (Waters et al., 2017),

which can give rise to tubular structures surrounded by a

supporting matrix of cells and interstitium; however, the

ability to perfuse these structures is so far limited. Disease

phenotypes have been modeled in many of these systems,

including diabetic (Wang et al., 2017), hypertensive (Zhou

et al., 2016) and fibrotic kidney disease (Waters et al., 2017).

However, while these are of interest for drug development,

they frequently lack complexity or appropriate controls, such

as adjusting for the osmotic stress of high glucose. Despite

these limitations, interesting findings can be made from co-

culture systems, such as the ability of podocytes to reduce

endothelial inflammation (Kuravi et al., 2014).

The renal tubule may seem to be a less difficult structure to

replicate than the glomerulus. However, it too comprises several

different cell types with segment-specific properties, mainly to do

with fluid, electrolyte and solute transport, and is surrounded by

the ‘black box’ of the interstitium, which is ill-defined and even

harder to reproduce. Therefore, a reductionist approach has been

taken and the majority of systems have chosen to model the

proximal tubule. These range frommonocultures on membranes

under flow (Jang et al., 2013) to more complex 3D bio-printed

tubules with associated vascular structures (Homan et al., 2016).

Characterization has highlighted the difficulties of fully

replicating the in vivo characteristics of tubular cells and with

no system to date expressing the full gamut of receptors/

transporters or with their correct localization. Introducing

flow has certainly improved this, as has the addition of

matrix, as well as endothelial cells, which all improve the

phenotype of tubular epithelial cells (Aydin et al., 2008; Miya

et al., 2011). However, the majority of these model tubular

systems have been used to screen for drug nephrotoxicity and

changes in drug metabolism and secretion (DesRochers et al.,

2013; Soo et al., 2018). Disease model development has not been

pursued so far; however, the system can replicate

epithelial–mesenchymal transition (Zhou et al., 2014).

5.2 Organoids

Pluripotent stem cells can be differentiated to form 3D

kidney organoids representative of a first trimester developing

fetal kidney. These complex self-aggregating structures usually

contain at least 11 different cell types (Harder et al., 2019),

representing the major nephron segments, including cells of the

glomerulus (podocytes), tubule (proximal, distal, and connecting

segments), vasculature (although often scant), and interstitial

stroma. 3D bioprinting technology offers the opportunity to

improve morphology and throughput (Higgins et al., 2018).

The addition of flow has been shown to improve

vascularization (Homan et al., 2019).

Kidney organoids are a robust model in which to study

human kidney development (Little et al., 2016), a potential

source of human kidney cells for bioengineering and

regeneration (personalized medicine), a system for

toxicological assessment of pharmaceuticals (Czerniecki et al.,

2018), and a tool for drug development. Numerous readouts can

be used in these systems. CRISPR-Cas9 gene editing in iPSCs has

produced several fluorescence reporter cell lines that allow easy

visualization and lineage tracking of individual cell populations

(Borestrom et al., 2018), as well as the inducible ODIn

Cas9 system (Lundin et al., 2020) for speedy target validation
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in iPSC-derived organoids. Furthermore, high-throughput

screening platforms and automated multidimensional

phenotyping analysis permit measurement of multiple

parameters with multiple stimuli (Ramm et al., 2016).

Organoids can also be used to model human renal diseases,

either by genetic manipulation of the progenitor cells or by

isolating cells from patients (Freedman et al., 2015; Hale et al.,

2018; Shamshirgaran et al., 2021). This opens the possibility of

testing the reversal of genetic conditions using CRISPR-Cas9

technology (Forbes et al., 2018). Alternatively, the use of patient-

derived organoids facilitates a true personalized medicine

approach, including patient-specific drug validation (Low

et al., 2019; van den Berg et al., 2019). Finally, external agents

can be used to injure organoids, either to assess potential

nephrotoxicity or to induce a renal disease phenotype.

Employing omics techniques then allows investigation of new

pathophysiological pathways for the identification of human

translatable biomarkers (Harder et al., 2019). Some caveats do

exist concerning the use of kidney organoids, such as their

immaturity (although advances are being made (Garreta et al.,

2019)), the presence of ‘non-renal’ cells (although strategies are

evolving to circumvent this (Wu et al., 2018)), the lack of all cell

types (due to their differentiation via a single pathway

(Nishinakamura, 2019)), and the level of reproducibility

among different iPSCs (Subramanian et al., 2019).

Advanced cell culture systems offer an opportunity to

investigate disease mechanisms in a simpler manner than in

vivo, yet provide some of the complexity of the kidney.

Challenges remain in reconstituting the full gamut of renal

physiology in vitro (Ashammakhi et al., 2018). Although

throughput is necessarily much lower than 2D culture

systems, capacities are ramping up with improved

technologies such as the Draper system (Vedula et al., 2017;

Fu et al., 2019). Differences seen in the responses to various

stressors and drugs in these systems highlight the importance of

adding layers of complexity to our toolbox. Further advances will

come with the integration of multi-organ mimics to generate the

so-called ‘human on a chip’ (Vernetti et al., 2017; Ramme et al.,

2019). Adoption of such systems has been slow because of

practical considerations (Ewart and Roth, 2020), but their

potential for transforming translation from ‘bench to bedside’

cannot be over-emphasized. Furthermore, for ethical reasons the

ability to forgo animal research would be priceless.

6 Ex vivo systems

Ex vivo approaches allow screening of compound efficacy and

the assessment of target engagement and proof of mechanism, which

inform the design of experiments in vivo. This is a crucial

intermediate step between in vitro and in vivo work.

Isolated vascular and tubular structures can be used to

understand underlying renal physiology and pathophysiology.

The use of micro-dissected nephron segments (Helbert et al.,

1997) and vascular segments has progressed from reverse

transcription-polymerase chain reaction-based analyses

determining changes in a few individual genes (Jensen et al.,

2001), to large omics and functional studies using isolated

perfused kidney tissue segments to gain a more refined

physiological understanding (Giesecke et al., 2019). Expression

data at the transcriptomic level (Lee et al., 2015) and more

recently at the protein level (Limbutara et al., 2020) are a

valuable resource that can facilitate investigations of segment-

specific gene and protein expression patterns for novel targets.

Isolated tubules and glomeruli have been used for mechanistic

and functional studies, and experiments using perfused afferent

and efferent arterioles have increased our understanding of the

mechanisms regulating renal blood flow and GFR (Poulsen et al.,

2011; Hansen, 2013; de Bruijn et al., 2015). The method is

excellent for providing an in-depth understanding, although

more difficult to use for high-throughput studies. Isolated

renal vascular and microvascular segments ex vivo also afford

investigation of renal endothelial and vascular smooth muscle

cell function (Stulak et al., 2001) In addition, isolated rodent or

human kidneys can be used to bridge from in vitro to in vivo, as

well as confirming the translatability of a certain target (Taft,

2004; Weissenbacher et al., 2019).

6.1 Isolated glomeruli

Glomerular isolation ex vivo is driven by the need to study the

glomerular compartment without tubular interference and the

need to understand cell-cell and cell-matrix interactions. The

advantage of this technique is the ability to isolate a complete

glomerulus with all its original 3D structure, extracellular matrix,

and complex renal cell composition. The drawback is that it is

hard to recapitulate some important physiological features such

as flow and pressure, thus limiting its relevance when studying

glomerular endothelial function. However, there is additional

benefit from isolating these structures directly from tissue

compared with reconstituting them using cells and artificial

devices, and include retaining the complex matrix structures

that are important in the physiology of the overall structure.

Isolated glomeruli are viable for up to 7–10 days for molecular

analysis, pathway profiling, and omics characterization, and can

be obtained from several sources: rodents, pigs, non-human

primates, human biopsies, or human kidneys unsuitable for

transplantation (Desideri et al., 2018; Rush et al., 2018; Wang

et al., 2019). It is possible to apply both well-established

molecular biology techniques and new approaches, such as

high-content imaging and machine learning, to isolated

glomeruli. Structures can be subjected to common stress

factors such as cytotoxic chemical and various biological

stressors, including cytokines, hypoxia, and ischemia-

reperfusion, as well as mechanical/physical stressors (for
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example, flow and stretching), immune complexes, and immune

cell co-culture methods. Isolated glomeruli can also be used for

target identification, target validation, compound selection,

phenotypic screening, proof-of-mechanism studies, molecular

pathway characterization, and investigation of glomerular

disease mechanisms.

6.2 Precision-cut kidney slices

Further to studying isolated glomeruli and tubules,

precision-cut kidney slices (PCKS) allow the study of renal

tissue in all its complexity while still in a defined culture

environment, establishing a bridge between in vitro and in

vivo studies (Stribos et al., 2016). Historically, PCKS have been

used to study renal fibrosis, a very complex process that

cannot be elucidated using in vitro systems. Two strategies

can be used: slices can be taken from injured kidneys, for

example, after unilateral ureteral obstruction (Genovese et al.,

2016) or slices can be taken from healthy kidneys and treated

with pro-fibrotic stimuli such as TGF-β (Stribos et al., 2017).

An advantage of PCKS is that they can be cultured for

5–7 days, making them suitable for longitudinal studies and

amenable to the types of analyses that are performed on

kidneys isolated from mice. Histology and

immunochemistry can be performed, and the kidney slices

can be used for transcriptomic analyses (Bigaeva et al., 2019).

It is worth noting that preparation of the kidneys for slicing

induces stress, transiently increasing the expression of kidney

injury markers, although these return to baseline after

approximately 24 h. In addition to the well-established pro-

fibrotic model, PCKS may be used to study the effect of

inflammatory and hypoxic stimuli on kidney structure and

injury.

Kidney slices can also be used as a predictive tool to test the

efficacy of candidate drug compounds (Bigaeva et al., 2020) as

part of initial screens before performing experiments in vivo. This

can eliminate compounds are expected to show some efficacy in

this model, but do not, and to determine an effect size of a

compound and calculate group sizes for the experiments in vivo.

The use of PCKS as a screening tool can reduce the number of

animals needed to validate a test compound. As with brain slices,

PCKS are also suitable for some imaging studies and can be

superfused, for example, to examine tubule segment-specific

changes in mitochondrial function (Stulak et al., 2001; Hall

et al., 2009). PCKS represent a versatile tool to study aspects

of kidney function and injury in an intact environment.

6.3 Zebrafish screen

Zebrafish are an efficient and high-throughput target

validation system because they are genetically tractable and

have a basic renal anatomy, with glomerular and tubular

filtration processing (Wingert and Davidson, 2008). The

pronephros in the zebrafish larvae consists of a single

glomerulus connected to two tubular structures. The tubules

express several of the important proximal and distal transporters,

but lack the loop of Henle, because, as freshwater fish, they do not

need to concentrate their urine. CRISPR-Cas9 is used to create

insertions and deletions in the zebrafish genome to create loss-of-

function models of targeted genes. Approximately 70% of human

genes have at least one zebrafish ortholog, allowing validation of

the majority of potential targets (Howe et al., 2017). The role of

candidate genes in renal function is assessed by the proportion of

larvae displaying edema and/or renal cysts, followed by detailed

analysis of filtration and morphology (using electron microscopy

and immunohistochemistry) (Hanke et al., 2015). This model

will also capture the effects of altered gene expression in other

organs, as well as any impact on embryogenesis, development,

and survival (Gehrig et al., 2018). Zebrafish larvae may be used as

an intermediate screening tool to triage the gene hit list, between

cell culture/ex vivo systems and in vivo models in higher species,

permitting quicker selection of potential targets. In addition, the

adult zebrafish can be used as an efficacy model for studying both

acute kidney injury and regeneration (McKee andWingert, 2015)

by using either nephrotoxic substances, laser ablation or genome

editing to drive the injury (Morales and Wingert, 2017).

Zebrafish are also commonly used as a safety model when

screening for drug-induced kidney injury (Kato et al., 2020).

However, cautious interpretation is warranted, as zebrafish

physiology is far remote from human physiology.

7 Validating mechanism of action in
vivo

In parallel with data generation from in vitro and ex vivo

models, the target validation process to define the most

translatable in vivo model to provide proof of mechanism and

proof of principle in CKD takes place. Similar to the workflows

for in vitro and ex vivo models, several disease models with

different mechanistic drivers may be used to capture the

complexity of CKD (Figure 5). To facilitate selection of the

most relevant preclinical model in vivo for a certain target,

RNA sequencing can be performed on renal tissue from a

panel of disease models to track the regulation of specific

genes and signaling pathways. This information is also critical

for an understanding the human translatability of the models in

the context of disease and treatment mechanisms. The preclinical

model is also selected based on the target biology, available

biomarkers, and knowledge of the pathology of the disease

models.

When designing a preclinical study, the aim is to use a

mechanistic model in which target engagement can be easily

captured, followed by a relevant proof-of-mechanism disease
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FIGURE 5
Workflow for in vivo target validation and compound testing. Ex vivomodels are chosen to validate genes of interest and assess the efficacy of
compounds targeting these gene products, based on their cellular expression and target engagement, respectively. Data from the ex vivo
experiments guide the design ofmechanistic and PKPD in vivo studies that generate data regarding target engagement and proof ofmechanism, and
on exposure and proof of principle, respectively. Various mechanistic models are used to validate targets and measure efficacy of test

(Continued )
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model in which an efficacy readout can be captured. The

experiment in the mechanistic model is usually short and

confirms that test molecule engages its target by measuring

biomarkers directly linked to the target’s biology (activation of

specific signaling pathways, altered gene or protein expression)

in the plasma, urine, or in the kidney itself. During these

studies, identification of additional markers of target

engagement could influence the design of future clinical

trials. For example, a viable target engagement model

measuring the impact of a mineralocorticoid antagonist

would measure plasma aldosterone and/or urinary

electrolytes (Bamberg et al., 2018). This model is also used

as a screening tool in the compound development process to

ensure sufficient exposure in a subsequent

FIGURE 5 (Continued)
compounds. Selection of the most relevant in vivo PKPDmodel for a specific target or signaling pathway is based on ex vivo experimental data,
human omics data, and RNA sequencing data from our ‘rodent portal’, generated from a panel of rodent renal disease models. The bottom panel
illustrates differential upregulation of a target gene in different disease models, which in turn allows selection of the most appropriate model for the
tested protocol. ALAT, alanine aminotransferase; ANTN, accelerated/non-accelerated nephrotoxic nephritis; BTBR, black and tan brachyuric;
eNOS, endothelial nitric oxide synthase; IRI, ischemic reperfusion injury; KIM1, kidney injurymolecule one; LPS, lipopolysaccharide; NGAL, neutrophil
gelatinase; PAN, pyromycin aminonucleoside; PKPD, pharmacokinetic–pharmacodynamic; POM, proof of mechanism; TE, target engagement;
UUO, unilateral ureter obstruction.

FIGURE 6
Identification of the right CKD target. The target identification and validation framework relies on multiple data sources and validation models,
integrating many disease-relevant data sets, to create a holistic scientific understanding of the mechanisms that link the target to disease biology.
The in-depth scientific understanding of pathophysiology and target link to disease is, in our view, essential for delivering successful medicines to
patients with CKD in the future. AI, artificial intelligence; CKD, chronic kidney disease; PD, pharmacodynamics; SME, subject-matter expert.
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pharmacokinetic–pharmacodynamic (PKPD) model. Once a

compound (either an experimental molecule or a tool) has

been shown to modify the disease pathway of interest at a

relevant level of plasma or tissue exposure, a proof-of-

mechanism study is designed. The model in this study

should be relevant to the intended patient population and

allow measurement of the physiological outcomes that will

also be assessed in a clinical trial, such as urinary albumin

excretion or a change in GFR, as potential human efficacy

endpoint (Greene et al., 2019). Results from the proof-of-

mechanism/PKPD model will affect the future design of

clinical trials by guiding the modelling of the compound’s

pharmacokinetics and calculation of receptor occupancy.

Translatability of models in vivo to human disease is a key

aspect of target validation in vivo (Silver and Gerarduzzi, 2019).

However, in most cases more than one disease model is needed to

address mechanistic actions and functional readouts. A growing

number of renal models in vivo have been developed (Betz and

Conway, 2016; Mullins et al., 2016), representing damage to the

different renal cell types that reflect key pathological changes

seen in human disease. A good understanding of injury

mechanisms in each model allows for the selection of a

specific model to study a given target, based on its renal

localization and mechanism of action. Therefore, selection of

the most relevant disease model is crucial. For some candidate

drugs the same model can address both the mechanism of action

and functional efficacy; however, multiple models are usually

necessary to build confidence. It is also important to recognize

that any model of human kidney disease will capture only a

‘snapshot’ of the disease process (functional and/or structural),

since human kidney disease occurs over decades.

Another approach to evaluating the relevance of a target is to

use genetically modified animals for target validation and as

safety tools to understand a super-physiological antagonization

or agonization of gene function, as well as in vivo tool for ‘on/off’

target effects of candidate drugs. However, for several rodent

preclinical models, inter-strain variability needs to be taken into

account when selecting the disease model. For example, C57/

Bl6 mice, one of the most commonly used background strains for

generating knockout mice, are known to be less susceptible to

renal injury than many other mouse strains (Breyer et al., 2005).

In addition, issues like absence of human-like comorbidities or

oftentimes impractical treatment regimen (e.g., preceding injury)

may erode the predictive validity of a research model.

In vivo target validation together with the in silico and in vitro

methodologies discussed earlier, is crucial to build a sound

scientific understanding of the disease mechanisms in play.

8 Conclusion

CKD has steadily climbed the ranking of leading causes of

death in recent years as a result of an aging population and

increasing prevalence of risk factors such as diabetes and

hypertension (Couser et al., 2011). Until now, research into

finding therapies that be used to treat all forms CKD has

focused on improving cardiovascular outcomes and in

slowing disease progression, mainly with angiotensin-

converting enzyme inhibitors and angiotensin receptor

blockers, which also help to lower blood pressure, a driver of

CKD progression, and more recent use of SGLT2 inhibitors.

However, little progress has been made in halting or reversing

disease progression.

A new patient-centric approach is key for future target

identification and validation. Starting the target discovery

based on patient data and a patient-centric approach using

translatable models is essential to the identification and

validation of targets that can result in successful CKD drug

discovery programs and increase our understanding of

mechanistic disease drivers. Scientific expertise in multiple

areas of renal biology, pathophysiology and clinical aspects of

renal disease is crucial, together with computational biology,

systems-wide integration of omics with clinical data sets, and

functional validation. Selection of the most appropriate

in vitro, ex vivo, and in vivo systems for target validation

and aiming to maximize translatability to patient disease

can be guided by cutting-edge in silico and omics-based

analyses.

The technological revolution continues to deliver patient

omics data sets and AI systems for analysis of big data which

allow researchers to use the patient as the starting point.

Increased access to big data makes it impossible for one

researcher to oversee all data. Therefore, the development of

tools like knowledge graphs transform the way researchers

work with big data. In recent years, much progress has also

been made generating omics data from advanced in vitro

models such as micro-physiological systems which facilitate

studies of genes and pathways not possible in simple 2D cell

culture systems. These advanced systems enable understanding

of the complexity of the kidney by capturing the effect of 3D

structure and cell-cell interactions. Despite the progress that

has been made with advanced systems, there is still a need to

capture adult renal cell biology, rather than the fetal signature

that organoids present with today. In addition, more advanced

models including multi-organ systems are needed to capture

the full gamut of systemic responses and improve the validation

tools for the future.

In parallel, the renal in vivo research community continue

to build on the understanding of disease mechanisms and

translatability by using metabolomics, proteomics, bulk and

single cell NGS data in animal models. The omics data sets are

key for understanding the translatability of animal models to

patients. Owing to the complexity of chronic kidney disease

with cellular crosstalk and multiorgan involvement, we still

need to secure reliable in vivo models to support

pharmacology read-out.
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The increasing number of clinical trials for renal disease

during the last decade have resulted in a better understanding

of relevant endpoints, biomarkers and disease drivers.

Clinical backtranslation beyond patient omics data will be

a key factor and continue to improve therapeutic target

identification and validation.

The toolbox of state-of-the-art models now available to us

to simulate the complexity of CKD can facilitate obtaining

readouts that are translatable from preclinical to clinical

studies, which until now has been a major challenge for

drug discovery in renal medicine. This toolbox needs to be

continuously enriched by infusion of novel raw data

acquired by researchers across the disciplines, as well as by

development of powerful tools to mine and interpret those

data. The recent years technological success will continue to

deliver improved tools in the future. Despite the increased use

of complex micro-physiological systems, there is still a need

for testing in vivo for systemic pharmacological responses.

We foresee that with the current progress in humanized

in vitro models with increased complicity, the need for

animal testing will decrease in the future. Using micro-

physiological systems is expected to increase translatability

to patients and reduce the number of animals used in

pharmacological testing, a key ethical parameter in

therapeutic target validation.

In conclusion, the novel patient-centric approach building on

the combination of in silico analysis of human data, together with

extensive in vitro complex humanized models and in vivo

validation in CKD research improves the probability to

identify disease drivers that could be successful as potential

drug targets (Figure 6).
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