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Autophagy is a highly conserved cellular progress for the degradation of

cytoplasmic contents including micromolecules, misfolded proteins, and

damaged organelles that has recently captured attention in kidney diseases.

Basal autophagy plays a pivotal role in maintaining cell survival and kidney

homeostasis. Accordingly, dysregulation of autophagy has implicated in the

pathologies of kidney diseases. In this review, we summarize the multifaceted

role of autophagy in kidney aging, maladaptive repair, tubulointerstitial fibrosis

and discuss autophagy-related drugs in kidney diseases. However, uncertainty

still remains as to the precise mechanisms of autophagy in kidney diseases.

Further research is needed to clarify the accurate molecular mechanism of

autophagy in kidney diseases, which will facilitate the discovery of a promising

strategy for the prevention and treatment of kidney diseases.
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1 Introduction

Autophagy, a term derived from Greek meaning “self-eating,” was first proposed by

Christian de Duve in 1963, soon after discovered “dense bodies” in rat liver (Novikoff

et al., 1956; Glick et al., 2010; Ueno and Komatsu, 2017). However, surprisingly little

attention has been devoted to “autophagy” for nearly 30 years (Cao et al., 2021). In the

early 1990s, comprehensive research on the autophagy spread after discovering the

autophagic degradation of cytosolic components during the nutrient-deficient
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conditions in yeast (Takeshige et al., 1992). Next, genetic

analysis in the field of autophagy bloomed, providing

insights into the function and mechanism of autophagy (Lin

et al., 2019). In 2016, the Nobel Prize in Physiology or Medicine

was awarded to Yoshinori Ohsumi for his work in elucidating

the basic mechanism and physiological relevance of autophagy

in human diseases (Levine and Klionsky, 2017). Since then, an

ever-expending list of studies have yield many important

advances in the understanding the role of autophagy

(Kaushal et al., 2020).

Although the classical model of autophagy generally

occurs in a wide variety of cell stresses, such as starvation,

inflammation, and other pathologic conditions, a basal level of

autophagy has also emerged in physiological conditions to

maintain homeostasis for intracellular recycling and

metabolic regulation (Ravanan et al., 2017). With the

development of research, autophagy is now widely

implicated in numerous diseases progressions including

renal injury, indicating that further investigation of their

therapeutic potentials are warranted (Kaushal et al., 2020;

Peters et al., 2020).

2 Overview of autophagy

2.1 Classification of autophagy

Autophagy is an essential cellular degradation process that

delivers cytoplasmic components to lysosomes. Based on the

type of cargo delivery to lysosomes, three forms of autophagy

can be identified: macroautophagy, microautophagy, and

chaperone-mediated autophagy. Macroautophagy (hereafter

called autophagy) refers to the sequestration of cargo within

an autophagosome, a double-membrane vesicular structure,

which is formed after a phagophore (Feng et al., 2014; Li et al.,

2020b). The autophagosome entraps target substrate to the

lysosome and delivers its contents into lumen for degradation

(Ravanan et al., 2017). Microautophagy involves the direct

uptake of cytoplasmic contents by the invagination of

lysosomes or endosomes, and lysosomal protrusion without

the formation of autophagosome (Oku and Sakai, 2018). The

third form of autophagy is chaperone-mediated autophagy

(CMA), a set of process by which the proteins of KEFRQ-like

motif are recognized by the cytosolic heat shock cognate

FIGURE 1
The types of autophagy and autophagic pathways. Three forms of autophagy can be identified: macroautophagy, microautophagy, and
chaperone-mediated autophagy.
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71 kDA protein and then translocated to lysosomes through

interacting with lysosome-associated membrane glycoprotein

2A (LAMP2). Worthy of note, the progress is only for the

proteins (Figure 1) (Kaushik and Cuervo, 2018; Al-Bari and

Xu, 2020).

Additionally, autophagy is generally divided into two

categories according to the different cargo selectivity:

selective autophagy and nonselective autophagy (Nie et al.,

2021). Selective autophagy refers to the degradation of a

specific substrate with lysosome or vacuoles, depending on

autophagy receptors, including mitophagy, lipophagy,

pexophagy, etc. (Anding and Baehrecke, 2017; Li et al.,

2021a; Nie et al., 2021). For mitophagy, the removal of

organelles are accompanied by specific damaged

mitochondria degradation. Similarly, for lipophagy and

pexophagy, cytoplasmic lipid droplets and unwanted

peroxisomes are removed from the cytoplasm by the

autophagy pathway (Nie et al., 2021).Nonselective

autophagy refers to the bulk transport of unspecific

mixture of proteins and organelles (Knuppertz and

Osiewacz, 2016).

2.2 Structures and functions of main
molecules in autophagy

Autophagy is associated with a series of Autophagy-

related genes (ATGs). The autophagic process can be

divided into four steps. 1) In the initiation of autophagy:

the multiprotein complex contains the serine/threonine

protein kinase ULK1, FIP200, ATG13, and ATG101

(Galluzzi et al., 2017). 2) The formation of phagophore and

autophagosome: the Class III phosphatidylinositol 3-kinase

(PI3K) complex, including VPS15, VPS34, Beclin 1, and

ATG14L; then the ATG2-WIPI complex and multiple ATG

proteins are gathered to form isolation membrane. Two

ubiquitin (Ub)-like conjugation systems ATG12-ATG5-

ATG16L system and the microtubule-associated protein

1 light chain 3 (LC3) mediate the completion of the

autophagosome (Li et al., 2020a; Tang et al., 2020). 3)

Autophagosome-lysosome fusion: the movement of

autophagosome to the lysosome is the successful

prerequisite for fusions, including SNAREs, cytoskeleton

components, and motor proteins (Lorincz and Juhasz,

2020). 4) Degradation and reformation of autolysosome:

autolysosome is not permanent and disintegrates once

autophagy is terminated, which is called autophagic

lysosome reformation (ALR). During this process,

lysosomal membrane proteins are recycled, and lysosomes

regenerate through the reformation tubules and vesicles

(Figure 1) (Yu et al., 2018).

3 Current perspectives of autophagy
in kidney diseases

3.1 Mechanisms of autophagy regulation
involved in kidney diseases

1) PI3K/AKT/mTOR; 2) AMPK/ULK1; 3) Sirt1/LC3; 4)

PKCs; 5) ERK; 6) STING1.

3.1.1 PI3K/AKT/mTOR
Phosphatidylinositol 3-kinases (PI3Ks) are a family of

plasma membrane-associated lipid kinases. Based on their

structural characteristics and specific substrates are normally

divided into three classes: class I PI3Ks, class II PI3Ks, and

class III PI3K (Yang et al., 2019; Xu et al., 2020b; Miricescu

et al., 2021). Class II PI3Ks consist of a single catalytic

Vps34 subunit. Early studies have shown that

Vps34 induced autophagy via the mTOR pathway during

nutrient deprivation (Backer, 2008). Moreover, mTOR is a

negative modulator of autophagy. It is also known as the gated

molecule of autophagy, which binds to the serine 757 of

ULK1 and inhibits the AMPK-ULK1 interaction, leading to

the inactivation of ULK1 and inhibiting autophagy (Miricescu

et al., 2021).

PI3K is activated by a variety of extracellular stimuli, such as

growth factors, hormones, and cytokines, which is a primary

effector downstream of RTKs or GPCRs (Miricescu et al., 2021).

Subsequently, these stimuli transduce into intracellular messages

by phosphorylation of PtdIns (4,5) P2 (PIP2) to form PtdIns

(3,4,5) P3 (PIP3) and recruit signaling proteins such as the

serine/threonine kinase AKT. AKT is activated via two

phosphorylation processes, phosphorylation of

phosphoinositide-dependent-protein kinases 1 (PDK1) and

phosphorylation of mTOR2 complex 2 (Miricescu et al.,

2021). Collectively, the PI3K/AKT/mTOR pathway is engaged

in cell survival and growth under a range of physiologic

conditions.

Emerging data have reported that the PI3K/AKT/mTOR

pathway is closely related to kidney diseases via regulating

autophagy. Recently, Du et al. have revealed that the

overexpression of protease activated receptors 2 (PAR2) in

HK2 cells retards autophagy and leads to inflammation

through activating PI3K/AKT/mTOR pathway. In mouse

kidney, Nickle induced autophagy through activating AMPK

and PI3K/AKT/mTOR pathways, which upregulated

expression levels of p-AMPK, p-AKT and p-PI3K, to lead

renal function injury (Yin et al., 2021). In summary, it is

noteworthy that the PI3K/AKT/mTOR pathway has attracted

much attention in regulating autophagy, suppressing the PI3K/

AKT/mTOR signal pathway can enhance autophagy (Xu et al.,

2020b).
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3.1.2 AMPK/ULK1
As a key energy sensor, AMP-activated protein kinase

(AMPK) has an essential role in regulating cellular

metabolism to maintain energy homeostasis (Hardie, 2007).

ULK1 complex, a homologue of yeast ATG1, is pivotal for

initiating autophagy. In particular, current researches declared

that the regulation ATG1/ULK1 by mTOR and AMPK pathway

were associated with kidney disease pathogenesis in diverse

conditions, such as acute kidney disease (AKI) and diabetes

mellitus. Under the nutrient-rich condition, activated mTOR

phosphorylates ULK1 Serine 757 and inhibits the interaction

between ULK1 and AMPK. Conversely, nutrient insufficiency,

such as glucose deprivation, induces AMPK activation and

directly activates ULK1 by phosphorylation of Ser 317 and Ser

777, promoting autophagy (Kim et al., 2011).

Currently, recent studies have yielded many important

advances in the understanding of the connection between

AMPK/ULK1 signaling pathway and kidney diseases. Shingo

et al. confirmed that inhibition of autophagic activation in

proximal tubules by impaired AMPK/ULK1 signaling and

activated mTORC1 aggravated type 2 diabetes mellitus

(T2DM)-induced renal injury (Muratsubaki et al., 2017).

Upregulation of UCP1 could relieve lipid accumulation during

cisplatin induced AKI mouse model and suppresses the disease

progression by promoting the AMPK/ULK1/autophagy pathway

(Xiong et al., 2021). Additionally, Liu et al. (2018) have estimated

that inhibition of AMPK-ULK1-mediated autophagy mitigates

renal aging by D-galactose. Similarly, Theodomir et al. used

diabetic nephropathy (DN) mouse to identify that activated

ULK1-mediated autophagy ameliorated fibrosis, inflammation,

and oxidation, providing a potential therapy for DN

(Dusabimana et al., 2021).

3.1.3 SIRT1
Sirtuins comprise a conserved family of nicotinamide

adenine dinucleotide (NAD+)-dependent histone deacetylases.

SIRTI is the most extensively studied, which functions through

deacetylating histones and non-histone proteins such as forkhead

FIGURE 2
The key targets and signal pathways involved in autophagy. Class I PI3K (PI3K) is activated by growth factor, which as a primary effector
downstream of RTKs or GPCRs. Subsequently, these stimuli transduce into intracellularmessages by phosphorylation of PtdIns (4,5) P2 (PIP2) to form
PtdIns (3,4,5) P3 (PIP3). In turn, the serine/threonine kinase AKT and other downstream are activated. Mammalian target of rapamycin (mTOR) can be
activated by RACα serine/threonine protein kinase (AKT) and is a negative modulator of autophagy. AMP-activated protein kinase (AMPK)
activated by several upstream kinases and inhibited mTORC1 to induce autophagy. Protein kinase C (PKC), as an autophagic regulator, modulating
other proteins through phosphorylating serine and threonine amino acid residues. Ras/RAF/MER/ERK signaling functions downstream of PKC. Once
MEK is activated, it phosphorylates ERK, and promotes autophagy. STING1 locates to the endoplasmic reticulum (ER)membrane in immune and non-
immune cells, which activated by bacteria CDNS or CGAS-produced cGAMP. cGAMP binds to STING1, contributing to it translocated from ER to
ERGLC, leading the formation of autophagosome.

Frontiers in Pharmacology frontiersin.org04

Yang et al. 10.3389/fphar.2022.974829

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.974829


transcription factors (FOXOs) and p53 (Sosnowska et al., 2017).

In addition, Lee et al. (2008) have demonstrated that SIRT1 is an

essential regulator of autophagy, interacting with autophagy-

related genes such as Atg5, Atg7, and Atg8. In addition, Huang

et al. (2015) revealed that an SIRT1-mediated deacetylation of

LC3, which interacted with other autophagy factors, playing a

central role in autophagy. Similarly, Lee et al. (2008)

demonstrated that SIRT1−/− mice led to the accumulation of

damaged organelles and disorder of energy metabolism, which

were similar to Atg5 −/− mice. These studies indicated that the

main function of SIRT1-mediated deacetylation could affect

autophagic degradation.

Growing body of evidence indicates that SIRT1 links to

kidney pathology. SIRT1 is highly expressed in medullary

tubular cells and podocytes in the kidney (Morigi et al., 2018).

In diabetic kidney disease, metformin relieved oxidative stress

and enhanced autophagy via the AMPK/SIRT1 Foxo1 pathway

(Ren et al., 2020). Also, Sun et al. (2021) showed that

SIRT1 upregulation could ameliorate sepsis-induced acute

kidney injury (SAKI) via deacetylating p53 to promote

autophagy.

3.1.4 PKCs
Protein kinase C modulates other proteins through

phosphorylating serine and threonine amino acid residues

(Wang et al., 2018), which contributes to maintaining cellular

homeostasis through autophagy. However, uncertainty remains

as to the association of PKC and autophagy (Wang et al., 2018).

For example, Zhang et al. (2009) demonstrated that suppression

of PKC significantly reduced oridonin-induced autophagy,

concomitant with increased apoptosis, but these results were

ameliorated by the PKC activator. Conversely, Jiang et al. (2010)

showed that activation of PKC suppressed the autophagy

progression of LC3I to LC3II during starvation or presence of

rapamycin.

Concerning kidney diseases, a recent study has unveiled that

PKC δ is a negative regulator of autophagy both in vivo and vitro

cisplatin models, and PKC δ inhibitors protect kidneys during

cisplatin treatment at least in part by facilitating autophagy

(Zhang et al., 2017). Similarly, Xue et al. (2018) have

confirmed that PKCα, as one of the significant sub pathways

of mTORC2, mediates TGFβ1-inducing fibroblast activation and

contributes to kidney fibrosis by upregulating autophagy flux.

3.1.5 ERK
ERK, an extracellular signal-regulated protein kinase, is

involved in many cell functions such as apoptosis,

autophagy, and senescence (Cagnol and Chambard, 2010;

Deng et al., 2021). However, the role of ERK pathway in

kidney injury is still controversial (Cagnol and Chambard,

2010). On the one hand, Wu et al. (2017) reported that

renalase could retard kidney fibrosis by inhibition of the

ERK pathway. Similarly, Weng et al. (2020) demonstrated

that interleukin (IL) -17A increased fibronectin production

in human renal proximal tubular cells or renal fibroblasts

and activated (ERK) 1/2 signaling pathway, whereas were

ameliorated by ERK inhibitor U0126. On the other hand,

recent work verified that geniposide (GEN) mitigated

lipopolysaccharide (LPS)-induced apoptosis of podocytes by

upregulating Ras/Raf/MEK/ERK-mediated autophagy (Li et al.,

2019b).

3.1.6 STING1
STING1, an evolutionarily conserved transmembrane

protein, is located to the endoplasmic reticulum (ER)

membrane in immune and non-immune cells. As an

adapter protein, STING1 can produce type I interferons

(IFNs) and proinflammatory cytokines in response to

immune response and inflammation (Zhang et al., 2021).

The mechanism of STING1-mediated autophagy is a

noncanonical process that requires specific signals and

regulators. STING1 can be directly activated by cGMAP,

and leaves from ER to ERGIC, which acts as the source of

membrane for autophagosome biogenesis. In addition, ATG5,

ATG7, and WIPI2 are required for STING1-mediated

autophagosome formation. RAB7 contributes to the

transport of STING1 to lysosome from autophagosome and

endosome. Under the condition of infection, STING1 not only

as a regulator of autophagy, but also an autophagy substrate

(Zhang et al., 2021).

Recent work confirmed that genetic deletion or

pharmacological inhibitors of STING1 attenuated TFAM loss-

mediated and FA-induced kidney fibrosis (Chung et al., 2019). In

addition, Calio et al. (2021) demonstrated that STING1 is

expressed in almost all renal perivascular epithelioid (PEC)

lesions of kidney, providing the possible role of autophagy in

PEC lesions of kidney (Figure 2).

3.2 The role of autophagy in kidney
diseases

The kidneys are vital for blood filtration and osmotic balance.

Dysregulation or failure of kidneys result in various renal

pathologies, including AKI, chronic kidney disease (CKD),

and renal fibrosis. Substantial evidence supports the vital role

of autophagy in normal kidney functions (Hartleben et al., 2010).

A thorough understanding of the regulatory mechanisms of

autophagy in kidney diseases, may provide strategies and

targets for therapeutic approaches.

3.2.1 Autophagy in AKI
AKI is characterized by a rapid decline of kidney functions,

coexisting with injury and death of the tubular epithelial cells,

which may be contributed to CKD (Choi, 2020). Emerging

evidence implicated that autophagy was upregulated in the
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kidney in the AKI induced by various insults such as renal

ischemia-reperfusion (IR), sepsis, or nephrotoxis, playing a

renoprotective role in kidney injury (Choi, 2020; Kaushal

et al., 2020). Many studies revealed the role of autophagy

during IR-induced AKI by utilizing conditional autophagy-

deficient mice. Kimura et al. (2011) used a conditional

Atg5 gene deletion model to verify the role of autophagy in

AKI, and they confirmed that apoptosis of proximal tubular cells

in autophagy-deficient mice were increased during I/R injury,

concomitant with accumulation of p62 and ubiquitin-positive

inclusions, compared with wild mice. These results suggested

that autophagy maintained proximal tubular cell homeostasis

and protected against IR. In addition, a study confirmed that

autophagy was activated in the cisplatin-induced AKI model,

whereas pharmacological inhibition of autophagy by 3-MA or

shRNA knockdown contributed to tubular cell apoptosis

(Periyasamy-Thandavan et al., 2008). Similarly, recent studies

illustrated the role of autophagy in sepsis and AKI. Howell et al.

(2013), utilizing lipopolysaccharide (LPS) - induced AKI,

suggested that loss of autophagy in the kidney plagued

recovery from septic AKI in aged mice; conversely, it can be

rescued by restoring autophagic activity (Table 1).

3.2.2 Autophagy in CKD
3.2.2.1 Autophagy in kidney aging

Renal aging is associated with characteristic structural and

functional changes, including the susceptibility to acute kidney

injury, the progression of CKD, and interstitial fibrosis

(O’Sullivan et al., 2017). Glomerular podocytes and renal

tubular cells are frequently implicated in renal senescence. On

the one hand, podocytes are the structural constituent of the

glomerular filtration barrier, playing a critical role in aged-related

glomerular changes (Floege et al., 1997; Fang et al., 2020). In

glomeruli, in the view that podocytes are terminally differentiated

postmitotic cells, their capacities for regeneration are limited.

Consequently, they require considerably efficient cellular

mechanisms to maintain homeostasis. Recent theoretical

development has revealed that autophagy was pivotal for

podocytes, especially in maintaining homeostasis during

kidney aging (Lenoir et al., 2016). Under basal conditions,

podocytes have a high level of autophagy (Hartleben et al.,

2010). In 20-to 24-month-old mice, the podocyte-specific

ATG5 knockout mice displayed typical characteristics of aging

cells, including mitochondrial damage, the accumulation of

lipofuscin, and oxidized proteins (Hartleben et al., 2010).

Concomitant with such results, podocyte-specific conditional

knockout of Vps34 leads to early proteinuria and glomerular

scarring, though defective autophagy was not primarily

responsible for the severe phenotype caused by Vps34-

deficient podocytes (Bechtel et al., 2013).

On the other hand, one study reported that renal tubulars

cover over 90% of renal mass, interplaying between renal aging

and fibrosis (Jin et al., 2019; Fang et al., 2020). The role of renal

tubular is to reabsorb filtered solutes; the cells are inclined to

consume more energy and accumulate oxidative damage during

aging. In physiological conditions, the renal tubules show a low

baseline turnover. However, a proliferative burst can be induced

after damage (Schmitt and Melk, 2017). Earlier studies reported

that p16INK4a was found in almost cell types in kidney, but

remarkably in tubular cells (Melk et al., 2004). Yamamoto

et al. (2016) have uncovered what really matters in

counteracting kidney aging is age-dependent high basal

autophagy via mitochondrial quality control, as well as the

relevance of a reduced level of upregulation of autophagic flux

in response to metabolic stress in age-related kidney diseases.

Also, one study has manifested that Brahma-related gene 1

(BRG1) potentiates tubular senescence and fibrotic responses

via inhibition of autophagy through the Wnt/β-catenin pathway

(Gong et al., 2021).

3.2.2.2 Autophagy in kidney fibrosis

Kidney fibrosis, characterized by the accumulation of fibrous

tissue, is a histological hallmark of CKD. Myofibroblasts are

terminally differentiated cells, found in various pathologies that

are considered to be the dominant collagen-producing cells at

sites of fibrosis (Meran and Steadman, 2011). The origin of

myofibroblasts in kidney fibrosis is heterogeneous, including

endothelial cells, tubular epithelial cells, macrophages,

pericytes, and BM-derived fibrocytes (Liu, 2011; El Agha

et al., 2017). More recently, the potential role of tubular

TABLE 1 Effects of autophagy on AKI.

Animal model Autophagy activity Effect on AKI References

Proximal tubules ablation of Atg5flox/flox ↓Autophagy ↑In AKI Kimura et al. (2011)

Cisplatin-induced AKI ↑Autophagy ↓In AKI Periyasamy-Thandavan et al. (2008)

LPS-induced AKI ↑Autophagy ↓In AKI Howell et al. (2013)

Proximal tubules ablation of ATG7 flox/flox ↓Autophagy ↑In AKI Mei et al. (2016a)

Proximal tubules ablation of Atg5flox/flox ↓Autophagy ↑In AKI Liu et al. (2012)

S3 segment of proximal tubules ablation of Atg5flox/flox ↓Autophagy ↓Tubular atrophy less interstitial fibrosis Baisantry et al. (2016)

↓inflammation at day 30 after I/R

Frontiers in Pharmacology frontiersin.org06

Yang et al. 10.3389/fphar.2022.974829

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.974829


epithelial-mesenchymal transition (EMT) has been widely

recognized in the development of fibrosis in chronic renal

failure (Kriz et al., 2011). Generally speaking, the pathological

processes of EMT in the renal tubulars have been described as the

dedifferentiation of renal tubulars with loss of epithelial

phenotype and acquisition of mesenchymal characteristics

(Burns et al., 2007). During EMT in the renal tubulars, several

steps appear necessary to complete this transformation including

loss of cell contact and apical-basal polarity, disruption of the

basement membrane, and the formation of enlarged spindle-

shaped myofibroblast (Bedi et al., 2008; Burns and Thomas,

2010). So far, it remains controversial on the role of autophagy in

kidney fibrosis was performed in models of fibrosis such as

unilateral ureteric obstruction (UUO) or treatment with

transforming growth factor (β1) TGF-β1 (Zhao et al., 2019).

3.2.2.3 Pro-fibrosis effects of autophagy in the kidney

In mice subjected to UUO, Livingston et al. (2016) first

reported that persistent autophagy in kidney proximal tubules.

Of note, pharmacological inhibitors of autophagy or selective

deletion of ATG7 in proximal tubules, reduced UUO-associated

fibrosis, along with the attenuation of tubular atrophy, apoptosis,

nephron loss, and interstitial macrophage infiltration (Livingston

et al., 2016). The overexpression of WISP-1 increased the

expression of LC3-II and Beclin-1 and exacerbated renal

fibrosis in UUO models and TGF-β-treated tubular epithelial

cells, which was abolished by anti-WISP-1 antibody and small

interfering RNA (Yang et al., 2020). Furthermore, a recent study

has demonstrated that C/BEP homologous protein (CHOP)

plays a significant role in the progression of renal fibrosis,

likely through autophagy and apoptosis, as evidenced by

UUO-induced kidney fibrosis alleviated in the Chop−/− than

Chop+/+ mice (Noh et al., 2018). Similarly, Protein kinase Cα
(PKCα), one of the major sub-pathways of mTORC2, plays a

critical role in the relation between fibroblast activation and

autophagy. A recent study further identified that enhancement of

PKCα signaling promoted TGF-β1-stimulated fibroblast

activation, which was reversed by PKCα inhibitor Go6979 and

PKCα siRNA (Xue et al., 2018).

Notably, researchers suggested a connection between

sustained activation of autophagy and lipid accumulation in

tubular epithelial cells in the progression of kidney fibrosis.

UUO-induced lipid accumulation in tubular cells was

markedly reduced by pharmacological inhibition of

autophagy 3-MA or CQ both in vivo and in vitro (Yan

et al., 2018). In addition, under stress conditions, such as

ischemia/reperfusion injury, autophagy is also implicated in

kidney fibrosis. Compared with wild-type mice, conditional

deletion of Atg5 in proximal tubular S3 segments presented

with less tubular senescence, and interstitial fibrosis

(Baisantry et al., 2016; Li et al., 2020b).

3.2.2.4 Anti-fibrosis effects of autophagy in the kidney

Contrary to the above description, several studies have also

demonstrated that autophagy has an antifibrotic role in kidney

fibrosis. In a rat model of UUO, autophagy was induced in the

obstructed kidney early after UUO, but inhibition of autophagy

by 3-MA enhanced tubular cell apoptosis and tubulointerstitial

fibrosis, indicating that autophagy might provide a protective

role by suppressing tubular apoptosis (Kim et al., 2012).

Similarly, Ding et al. (2014) constructed deletion of LC3B

(LC3−/−) mice and Beclin 1 heterozygous (Beclin+/−) mice

resulted in collagen deposition in the UUO model via further

increased TGF-β expression. Additionally, one study further

illuminated that autophagy in distal tubular epithelial cells

played an antifibrotic role in renal tubulointerstitial by

suppressing TGF-β and IL-1β pathways in UUO model (Nam

et al., 2019). Furthermore, one study identified a relationship

among autophagy, the cell cycle, and kidney fibrosis. In the

UUO-induced kidney, genetic ablation of autophagy by proximal

tubular epithelial cell-specific deletion of Atg5 observed severe

interstitial fibrosis accompanied by markedly cell cycle arrest at

the G2/M phase and robust COLI deposition. These results

suggest that the regulation of cell cycle G2/M arrest by

autophagy might be pivotal for the fibrogenic response (Li

et al., 2016). Of note, another study showed that microtubule-

associated protein 1S (MAP1S), as an autophagy activator,

interacted with LC3 and involved in renal fibrosis. MAP1S

deficiency in mice contributed to the accumulation of

fibronectin and further aggravated the progression of renal

fibrosis in aged mice. In vitro, MAP1S depletion in renal cells

impaired the autophagy clearance of fibronectin and activated

pyroptosis (Xu et al., 2016).

3.2.2.5 Autophagy in kidney inflammation

Inflammation is the fundamental basis of most kidney

disorders, including AKI, CKD, and aging (Kimura et al.,

2017). A growing number of studies demonstrated the

relevance of autophagy and kidney inflammation. Autophagy

suppresses inflammation response via plaguing inflammasome

production and interferon responses, accompanied by a

reduction in damaged mitochondria, lysosomes, and damaged

associated molecular patterns (DAMPs), which protects the

kidney from injury (Kimura et al., 2017). Chronic

inflammation may elicit renal aging, characterized by the

accumulation of macrophages and lymphocytes in the kidney.

It is noteworthy that chronic inflammation and kidney aging lead

to a vicious cycle; on the one hand, chronic inflammation

promotes renal aging by releasing pro-inflammatory factors,

such as IL-1, IL-6, and TGF-β. On the other hand, these

senescence cell results in secreting more inflammatory factors,

which further aggravates fibrosis and CKD (Figure 3) (Bolignano

et al., 2014).
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3.2.3 Autophagy for transition from acute kidney
disease to chronic kidney disease

AKI is one of the global public health concerns associated

with high morbidity, mortality, and medical costs both in the

short- and long-term (Zuk and Bonventre, 2016; Cui et al.,

2020). AKI may heighten the incidence of CKD and end-

stage renal disease (ESRD). Notably, Tubular epithelial cell

plays a central role both in AKI and CKD post-AKI (Basile

et al., 2012; Humphreys, 2018; Li et al., 2019a).

Nephrotoxicity, ischemia, sepsis, and hypoxia are the

leading cause of AKI. Among these, ischemia injury and

nephrotoxins are the two major causes of tubular damage

(Basile et al., 2012). After damaged the kidney, tubular

epithelial involves repair and regeneration. The process of

repair may consist of complete repair and maladaptive

repair. The repair can lead to complete renal recovery if

the damage is mild. While severe injuries can result in

fibrosis, facilitating progression to CKD. Therefore,

maladaptive repair may link between AKI and CKD.

Recent theoretical developments have revealed tubular

epithelial senescence and G2/M cell arrest are critical

contributors to fibrosis progression (Ferenbach and

Bonventre, 2015; Jiang et al., 2020). Senescence cells resist to

apoptosis and secrete cytokines and chemokines, promoting the

maintenance of a persistent inflammatory state.

In addition, senescence cells connect with increased

expression of p16INK4a and p21WAF1, facilitating growth arrest

(Kuilman et al., 2010; Yang and Fogo, 2010). One study showed

that G2/M-arrested proximal tubular cells triggered c-jun NH2-

terminal kinase signaling (JNK), which contributed to

upregulating profibrotic cytokine production (Yang et al.,

2010).

Previously, researchers have identified the dynamic

regulation of autophagy in postischemic kidneys and

subsequent recovery. They utilized a new strain of autophagy

reporter mice that expressed the differential pH sensitivities of

red fluorescent protein (RFP) and enhanced green fluorescent

protein (EGFP), contributing to advancing our understanding

FIGURE 3
The role of autophagy in CKD. (A) The dual role of autophagy in renal fibrosis. (B) Glomerular podocytes and renal tubular cells are frequently
implicated in renal senescence. Podocyte-specific ATG5 knockout mice or Vps34 knockout mice may lead to kidney aging. Renal tubulars-specific
ATG5 knockout mice led to kidney aging. (C) Autophagy suppresses excessive inflammation through the clearance of damaged-mitochondrion,
damaged-lysosome, and damaged-associated-molecular patterns to protect kidney.
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of autophagy. In vivo study confirmed that ischemia-

reperfusion injury (IRI) induced autophagy in the proximal

tubules at day 1 and autophagosome clearance at day 3 during

renal recovery. Interestingly, inhibition of mTOR complex 1 led

to autophagy persistent and decreased tubular proliferation,

suggesting the role of mTOR in autophagy resolution during

the renal repair (Li et al., 2014).

Moreover, as a cytoprotection protein, αKlotho is vital in

tissue protection and regeneration (Hu et al., 2013; Shi et al.,

2016). Researchers used two models: bilateral ischemia-

reperfusion injury and unilateral nephrectomy plus

contralateral ischemia-reperfusion injury and they found

that αKlotho promoted kidney recovery, and ameliorated

renal fibrosis by upregulating autophagy, but inhibition of

αKlotho further potentiated collagen accumulation (Shi

et al., 2016). Similarly, recent studies have elucidated that

epithelial cell arrested at the G2/M phase was associated with

synthesis and secretion of profibrotic cytokines by forming

target of rapamycin-autophagy spatial coupling

compartments (TASCCs). To investigate TASCC

formation during the progression of CKD after AKI, they

observed that TASCC was mainly expressed in PTCs and

increased markedly from day 7 to day 21 after injury and

maintained a high level on day 42 in fibrosis models,

concomitant with up to 80% G2/M arrested cells. In

addition, cyclin G1 played a key role during G2/M arrest

and upregulated TASCC formation. Of interest, inhibition of

TASCC formation mitigated fibrosis progression. Therefore,

these results confirmed that G2/M-arrested proximal tubular

cells might participate in forming TASCC via autophagy,

promoting fibrosis during the maladaptive repair (Canaud

et al., 2019; Tang et al., 2020).

4 Therapeutic application of
autophagy enhancer in kidney
diseases

Much of the research has examined that autophagy

implicated in kidney diseases progressions and aging, as

illustrated by AKI, CKD, etc. While autophagy is regulated by

the mTOR-dependent and mTOR-independent pathways

(Sarkar, 2013). Recent studies verified that autophagy

activators mTOR inhibitors like sirolimus (rapamycin), and

everolimus were used in clinical settings (Rini, 2008; Kajiwara

and Masuda, 2016; Waldner et al., 2016). Additionally, luteolin,

triptolide, dapagliflozin, cyclocarya paliurus triterpenic acids,

rhein were demonstrated in experimental kidney diseases

models (Li et al., 2017; Tu et al., 2017; Zhang et al., 2019;

Jaikumkao et al., 2021; Xu et al., 2021). Moreover, mTOR-

independent autophagy-inducing pharmaceutical agents such

as trehalose, geniposide, sarsasapogenin, sulforaphane,

TABLE 2 Autophagy enhancer in kidney disease.

Agent Targets Kidney disease References

Rapamycin mTOR-
dependent

Cisplatin - induced AKI Wang et al. (2020)

Luteolin Inorganic mercury-induced kidney injury Xu et al. (2021)

Triptolide Diabetic Renal Fibrosis Li et al. (2017)

Dapagliflozin High-fat-diet fed rats accompanied by decreased kidney autophagy Jaikumkao et al. (2021)

Everolimus Renal transplantation Pascual et al. (2018)

Cyclocarya paliurus
triterpenic acids

Kidney injury in diabetic rats Zhang et al. (2019)

Rhein adenine (Ade)-induced renal tubular injury Tu et al. (2017)

Trehalose Nrf2 Cadmium-induced kidney injury (Yaribeygi et al. (2019), Atwood et al. (2020),
Fan et al. (2020)

Atg12-5
complexes

polycystic kidney Atwood et al. (2020)

Rab9a

TFEB Cisplatin-induced acute kidney injury Zhu et al. (2020)

Geniposide Ras/Raf/
MEK/ERK

Lipopolysaccharide (LPS)-caused murine kidney podocyte
MPC5 apoptosis and autophagy

Li et al. (2019b)

Sarsasapogenin GSK3β Diabetic nephropathy Li et al. (2021b)

Sulforaphane Nrf2 Obesity-related glomerulopathy Lu et al. (2020)

Salvianolic acid B Sirt1 renal fibrosis rats He et al. (2020)

Hyperoside AMPK-ULK1 D-galactose induced renal aging Liu et al. (2018)

Metformin Sirt1/FoxO1 Diabetic nephropathy Xu et al. (2020a)
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salvianolic acid B, hyperoside, metformin, which were also

verified in some kidney diseases models (Liu et al., 2018; Li

et al., 2019b; Xu et al., 2020a; Fan et al., 2020; He et al., 2020; Lu

et al., 2020; Zhu et al., 2020; Li et al., 2021b).

In an attempt to the analysis of autophagy in vivo, most

studies used two types of mouse models, including “autophagy-

deficient mice” and “autophagy-monitoring mice” (Kuma et al.,

2017). Deletion of ATGs, such as ATG5, ATG7, and Beclin1,

which facilitate to understanding of the physiological role of

autophagy in vivo (Kuma et al., 2017). Similarly, autophagy-

monitoring mice were used to monitor autophagic progress. Of

note, transgenic mice systemically expressing EGFP-LC3 (GFP-

LC3) have been widely used (Mizushima et al., 2004). However,

clinal translation of autophagy regents remain arduous. On the

one hand, ATGs-related genes mice by genetic techniques show

various phenotypes, which are challenging to investigate the

underlying mechanisms. On the other hand, the clinal regrets

of autophagy might regulate autophagy progress and involve in

other physiological progress. In the meantime, some drugs

coexist with perilous side effects. Therefore, we indeed

combine more precise mechanisms of autophagy with clinal

trials to investigate autophagy drugs (Table 2).

5 Conclusion and perspectives

Currently, the research of autophagy in kidney is at early

stage. Worthy of note, a multitude of studies have yielded many

significant advances both in autophagy and kidney diseases

during various pathological states. Despite these encouraging

findings, the functions of autophagy are abstruse and many

unanswered questions remain. It is indisputable that

autophagy is increasingly considered to be a therapeutic target

in kidney diseases such as AKI, CKD, aging, and renal fibrosis.

Mount of signal pathways participate in autophagy; conversely,

dysregulated autophagy gives rise to the pathogenesis of kidney

diseases. Thus, investing and clarifying the precise mechanisms

of autophagy in different kidney diseases is not only a potential

therapeutic target but also is scientifically intriguing and

clinically relevant.
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