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Colorectal cancer (CRC) is one of the most lethal cancers of the digestive

system. The tumor microenvironment (TME) plays a central role in the initiation

and development of CRC. However, little is known about the modulation

mechanism of the TME in CRC. In our study, we attempted to identify a

biomarker related to the TME modulation that could serve as a potential

prognostic biomarker for CRC. We identified differentially expressed genes

between the ImmuneScore high/low and StromalScore high/low groups. Using

univariate COX regression analysis and hub gene analysis (cytoHubba),

SLC11A1 was identified as the only candidate gene for subsequent analysis.

CIBERSORT, EPIC, MCPcounter, and immunogenic cell death were performed

to evaluate the effect of SLC11A1 on the TME. We also collected samples and

performed Real-time quantitative PCR to verify the expression levels of

SLC11A1 in CRC and adjacent normal tissues. The IMvigor210 cohort, TIDE

score, and immunophenoscore (IPS) were used to analyze the association

between SLC11A1 and immunotherapy efficacy. SLC11A1 was highly

expressed in CRC tissues compared with its expression in normal colorectal

tissues and was associated with poor prognosis and advanced

clinicopathological stages. Gene set enrichment analysis showed that TGF-β
pathways, JAK-STAT pathways, and angiogenesis were significantly enriched in

the high-SLC11A1 group. Single-cell analysis validated the correlation between

SLC11A1 and the TME. UsingCIBERSORT, EPIC, andMCPcounter algorithms, we

found that there was more macrophage and fibroblast infiltration in the

SLC11A1 high-expression group. Meanwhile, high-SLC11A1 patients had

lower IPS scores, higher TIDE scores, and fewer immunotherapy benefits

than those of low-SLC11A1 patients. In conclusion, SLC11A1 plays a crucial

role in the TME and could serve as a potential biomarker for poor prognosis and

immunotherapy efficacy in CRC.
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Introduction

Colorectal cancer (CRC) is one of the most common

gastrointestinal cancers worldwide, with high mortality rates

(Siegel et al., 2018; Solano-Iturri et al., 2020; Sung et al.,

2021). Currently, the incidence of CRC is increasing, and it is

predicted that more than two million new cases will occur by the

year 2030 (Arnold et al., 2017). Several factors related to

carcinogenesis have been identified, including smoking,

obesity, alcohol intake, and physical activity (Jayasekara et al.,

2018). However, the precise molecular mechanisms underlying

CRC development remain unclear. Colorectal adenocarcinoma is

the most common type of CRC (Luo et al., 2019). CRC formation

takes place through a multi-stage process, from normal mucosa

to adenoma, and finally to cancer tissue (Strum, 2016; Hauptman

et al., 2018). Due to the lack of early indications and specific

biomarkers, most CRC patients are diagnosed at advanced stages,

which leads to poor prognosis. Although treatment methods for

CRC have recently improved, the mortality rate remains high.

Immune checkpoint inhibitors (ICIs) are novel antitumor drugs

that have shown promising therapeutic efficacy in some types of

cancers, such as melanoma, non-small-cell lung cancer, and

urinary system cancers (Hamid et al., 2013; Sharma and

Allison, 2015). However, the clinical benefits of

immunotherapy vary widely among patients and conventional

ICIs do not offer optimal clinical efficacy for most patients with

advanced CRC (Morse et al., 2020). Potential indicators for

predicting immunotherapy response, such as expression levels

of immune checkpoints, tumor mutation burden (TMB), and

neoantigens, are limited by tumor heterogeneity (Liu et al., 2022).

Therefore, it is essential to develop a novel biomarker to predict

the prognosis and immunotherapy benefits for patients

with CRC.

The tumor microenvironment (TME), which is composed of

tumor cells, immune cells, blood vessels, extracellular matrix, and

fibroblasts, is considered to play a central role in tumorigenesis

and tumor progression (Zhang et al., 2018; Schürch et al., 2020).

TME may promote cancer progression by affecting immune

surveillance and diminish the ability of chemotherapy to

target tumor cells (Laplane et al., 2019). Recent research has

shown that the initiation of CRC depends on the interaction

between tumor cells and the TME (Ziegler et al., 2018). However,

the interaction between CRC and the TME remains unknown.

Therefore, it would be in the best interest of the medical field to

further investigate the TME of CRC and identify factors related

to TME modulation.

SLC11A1, also known as natural resistance-associated

macrophage protein-1, is a member of the solute-carrier

family. SLC11A1 was initially reported to fight several types of

pathogens, and some studies have shown that SLC11A1 plays a

role in innate immunity, autoimmune diseases, and infection

(Stewart et al., 2010; Li et al., 2011; Neves et al., 2011; Cunrath

and Bumann, 2019). In tuberculosis patients, the low expression

and variation of SLC11A1 may impair immunologic response to

tuberculosis (Shahzad et al., 2022). However, the roles of

SLC11A1 in CRC have not been reported.

In the present study, we applied the ESTIMATE (Estimation

of STromal and Immune cells in MAlignant Tumor tissues using

Expression data) algorithm, hub gene analysis, and univariate

COX regression and identified a TME-related factor in CRC,

solute carrier family 11 member 1 (SLC11A1). The prognostic

value of SLC11A1 has been evaluated in CRC and other digestive

tract cancers. CIBERSORT, EPIC, MCPcounter, gene set

enrichment analysis (GSEA), and single-cell analysis were

used to further assess the potential effects of SLC11A1 in the

TME and immunotherapy. Our findings provide a potential

prognostic biomarker and may help in the individual selection

of immunotherapy for patients with CRC.

Materials and methods

Raw data collection

The transcriptome profiles and corresponding clinical data

on primary colon adenocarcinoma (COAD) and rectal

adenocarcinoma (READ) were collected from TCGA database

using TCGAbiolinks (Colaprico et al., 2016) (Supplementary

Table S1). This study enrolled 612 patients with complete

prognostic information. We also collected TCGA pan-cancer

RNA-seq data in the TPM format processed by Toil from UCSC

Xena (Vivian et al., 2017) (https://xenabrowser.net/datapages).

Microarray data from GSE17536, including 177 patients, were

downloaded from the GEO database (Smith et al., 2010).

Moreover, we also downloaded data from the

immunotherapy-related dataset (IMvigor210) using

IMvigor210CoreBiologies (Mariathasan et al., 2018). In the

IMvigor210 cohort, 298 advanced urothelial cancer patients

with complete clinical data were included in our study.

Identification of differentially expressed
genes related with tumor
microenvironment

A previous study has shown the application of ESTIMATE

algorithm tomicroarray and RNA-sequencing data might help to

clarify the role of the TME and provide novel insights into

genomic alterations (Yoshihara et al., 2013). ESTIMATE

algorithm is an efficacy method to screen TME-related genes

(Cheng et al., 2021; Guo et al., 2021; Wu et al., 2021). In our

study, ImmuneScore, StromalScore, and ESTIMATEScore were

calculated using the ESTIMATE R package, based on the

transcriptome data of TCGA-CRC patients. These scores were

assessed in patients at different pathological stages: T stage, N

stage, and M stage.
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We used the DEseq2 R package to analyze differentially

expressed genes (DEGs) between patients with high and low

ImmuneScores to identify genes associated with immune cells

(Love et al., 2014). Moreover, we used the DEseq2 R package to

analyze DEGs between patients with high and low StromalScores

to identify genes associated with stromal cells. The DEGs were

defined as genes with |Log2FC| > 1.5 and adjusted p < 0.01. The

overlapping DEGs in the StromalScore and ImmuneScore groups

were considered TME-related genes. Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene Ontology (GO)

enrichment analyses were performed using the DEGs

associated with TME using the R package clusterProfiler (Yu

et al., 2012). The enrichment terms were considered significant

with a p-value < 0.05.

CytoHubba and univariate COX regression
analyses

We used the STRING database to construct a

protein–protein interaction (PPI) network (confidence score >
0.9) based on the common DEGs in both the StromalScore and

ImmuneScore groups (Szklarczyk et al., 2019). To identify hub

genes, we used the cytoHubba plugin and acquired the top 30 hub

genes using the multi-network clustering (MNC) algorithm

(Chin et al., 2014). Univariate COX regression analysis was

performed to screen for DEGs associated with overall survival

(OS) time. Genes with p < 0.05 were shown in the plot.

Gene set enrichment analysis

The expression differences between low-SLC11A1 and high-

SLC11A1 groups were identified using DESeq2. To identify key

pathways and biological processes associated with SLC11A1,

GSEA was performed using KEGG and Hallmark gene sets as

target sets.

Tumor microenvironment-related
analyses of SLC11A1

The Immuno-Oncology-Biological-Research (IOBR) R

package integrates common algorithms for estimating the

TME cells (Zeng et al., 2021). The TME of CRC samples was

estimated using three different algorithms, including the

CIBERSORT, EPIC, and MCPcounter algorithms, using the

IOBR R package. We extracted immunogenic cell death

(ICD)-related genes from a previous study and found

differences in the expression of ICD-related genes between

low-SLC11A1 and high-SLC11A1 groups (Garg et al., 2016).

To further investigate SLC11A1 expression in the TME of CRC,

we used the Tumor Immune Single Cell Hub database, which

contains single-cell transcriptome profiles of 27 types of cancer

(Sun et al., 2021). The cell location of SLC11A1 was determined

using single-cell data in GSE146771.

Evaluation of SLC11A1 expression and
immunotherapy response

A previous study on LUAD has shown that TIDE and IPS

scores are valid scoring schemes to predict immunotherapy

response. TIDE is one of the most effective methods for

assessing the immune escape of tumors by analyzing their

expression profiles (Jiang et al., 2018). Higher TIDE scores

indicate that tumor cells are more likely to escape from

immune surveillance, which means lower immunotherapy

efficacy. Therefore, we calculated the TIDE scores based on

RNA-seq of TCGA-CRC to analyze the relationship between

SLC11A1 expression and immunotherapy response. The

immunophenoscore (IPS) is also defined as a crucial factor in

predicting the efficacy of ICIs (Charoentong et al., 2017). Patients

with a higher IPS indicated a higher efficacy of ICIs. The IPS data

of TCGA-CRC patients were downloaded from the TCIA

database (https://tcia.at/home) to identify the relationship

between IPS and SLC11A1 expression.

Real-time quantitative PCR

We collected 15 paired CRC tissues and adjacent normal

colorectal tissues from the Liaoning Cancer Hospital. Total RNA

was extracted from the tissue specimens using TRIzol reagent.

Total RNA was treated with kits from Takara (Shiga, Japan) to

remove genomic DNA and to conduct reverse transcription.

Real-time quantitative PCR (RT-qPCR) was performed using TB

GREEN Premix Ex Taq (Takara). The primer sequences were:

GAPDH-F, 5′ GGAAGCTTGTCATCAATGGAAATC 3′;
GAPDH-R 5′ TGATGACCCTTTTGGCTCCC 3′; SLC11A1-F
5′ GTCCGTCTCCTTTATCATCAACCT 3′; SLC11A1-R 5′
GAAGCCCTCCATCACGAACTG 3′.

Statistical analyses

All statistical analyses were conducted using R software

(version 4.1.0). Kaplan–Meier (KM) curves were constructed

to evaluate the relationship between OS rates and

SLC11A1 expression. The survminer R package was used to

identify the optimum cutoff point of SLC11A1 expression to

classify CRC patients into low-SLC11A1 and high-SLC11A1

groups. The Wilcoxon test was used to compare differences

between the two groups. The Kruskal–Wallis test was used to

compare the differences between multiple groups. Univariate

COX regression was performed to screen the prognostic factors
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of CRC using the survival R package. Statistical significance was

set to p-value < 0.05.

Results

Relationship of ImmuneScore,
StromalScore, and ESTIMATEScore with
clinicopathological features

First, we analyzed the ImmuneScore, StromalScore, and

ESTIMATEScore of TCGA-CRC patients with different

clinicopathological characteristics (Figure 1). The

ImmuneScore was significantly associated with pathological

stage (p = 0.008), N stage (p = 0.017), and M stage (p =

0.002) (Figures 1A,C,D). Additionally, the StromalScore

increased significantly in patients with advanced T stage (p =

0.032) and N stage (p = 0.046) (Figures 1F,G). However,

ESTIMATEScore was not significantly associated with

pathological stage, T stage, N stage, or M stage (Figures 1I–L).

These results indicate that the immune and stromal components

of CRC tissues may affect tumor proliferation and metastasis.

Identification of genes related with tumor
microenvironment

A comparison between the high/low ImmuneScore and

StromalScore groups was performed to identify genes related

to the TME. In total, there were 586 DEGs between the high/low-

ImmuneScore groups and 676 DEGs between the high- and low-

StromalScore groups (Figures 2A,B). In total, there were

241 DEGs in both the ImmuneScore and StromalScore groups

(Figure 2C), and 241 DEGs were considered TME-related genes.

In addition, we analyzed the related functions and pathways of

the genes using GO and KEGG enrichment analyses. The genes

were mainly enriched in immune-related GO terms, such as

chemokine activity, complement C3b binding, immunoglobulin

FIGURE 1
Relations of ImmuneScore, StromalScore, and ESTIMATEScore with clinicopathological stages. (A–D) Relations of ImmuneScore with
pathological stage (p = 0.008), T stage (p = 0.999), N stage (p = 0.017) and M stage (p = 0.002). (E–H) Relations of StromalScore with pathological
stage (p = 0.3), T stage (p = 0.032), N stage (p = 0.046) and M stage (p = 0.969). (I–L) Relations of ESTIMATEScore with pathological stage (p = 0.341),
T stage (p = 0.414), N stage (p = 0.204) and M stage (p = 0.11). Statistical difference of four groups was compared by the Kruskal–Wallis test.
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binding, immune receptor activity, regulation of T cell adhesion,

and leukocyte cell-cell adhesion (Supplementary Figure 1A).

KEGG enrichment analysis indicated that the enriched genes

were related to immune pathways, such as neutrophil

extracellular trap formation, cytokine-cytokine receptor

interaction, chemokines, IL-17, and antigen processing and

presentation pathways Supplementary Figure 1B). The results

of the enrichment analysis illustrated that these genes seemed to

be associated with immune-related functions and might play

predominant roles in the TME (Supplementary Tables S2, S3).

We conducted a univariate COX regression analysis to

identify the prognostic factors of CRC among the 241 TME-

related genes. Then, 35 significant genes were acquired and are

shown in the forest plot (p < 0.05) (Figure 2D). We identified the

top 30 hub genes amongst these using the MNC algorithm and

identified the hub genes ranked by theMNC score (Figures 2E,F).

We performed an intersection analysis between the top 30 hub

genes in the PPI network and 35 significant genes associated with

prognosis using univariate COX regression. SLC11A1 was the

only gene that overlapped between the two groups (Figure 2G).

FIGURE 2
SLC11A1 was identified as the hub gene for TME. (A,B) Volcano plots for DEGs identified by comparison of high-ImmuneScore vs. low-
ImmuneScore groups and high-StromalScore vs. low-StromalScore groups. (C) Venn plot showed 241 common factors with the DEGs from
ImmuneScore and StromalScore analyses. (D) Thirty-five factors with p-value < 0.05 by univariate Cox analysis. (E) Thirty genes with the screened
with MNC algorithm. (F) The bar chart showed MNC scores of the 30 genes. (G) SLC11A1 was identified in the intersection of the two modules.
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Survival and clinical features analyses of
SLC11A1

SLC11A1 expression was higher in CRC tissues than that in

normal tissues (Figures 3A,B). Similarly, the RT-qPCR results

also validated that SLC11A1 expression was upregulated in

tumor tissues (Figure 3C). According to the KM plots from

TCGA and GSE17536, the high-SLC11A1 group had a worse

prognosis than the low-SLC11A1 group (p = 0.0036 and p =

0.0078, respectively) (Figures 3D,E). We also evaluated the

relationship between SLC11A1 mRNA levels and

clinicopathological stages. Higher SLC11A1 expression was

observed in the progression of pathological stage, T stage, and

N stage (Figures 3F–H). There was no significant difference

between SLC11A1 expression and the M stage (Figure 3I).

These results suggest that CRC with high SLC11A1 mRNA

expression is closely related to advanced clinicopathological

cancer stages and poor prognosis.

We also investigated the prognostic value of SLC11A1 using

pan-cancer data from TCGA. In other digestive tract cancers,

FIGURE 3
High expression of SLC11A1 indicated poor prognosis of CRC patients. (A) Expression differences of SLC11A1 betweenCRC and adjacent normal
samples. (B) Expression differences of SLC11A1 between paired CRC and adjacent normal samples. (C) RTq-PCR demonstrated that the high
expression of SLC11A1 in CRC. (D,E) KM curves showed different outcomes of overall survival between high- and low-SLC11A1 groups by using
TCGA-CRC and GSE17536. (F–I) The associations between SLC11A1 and clinicopathological stages (Stage, T stage, N stage andM stage). ns, p ≥
0.05; *, p < 0.05; **p < 0.01; ***p < 0.001. Statistical difference of two groups was compared by the Wilcoxon test and statistical difference of four
groups was compared by the Kruskal–Wallis test.
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such as STAD, PAAD, and LIHC, high expression of

SLC11A1 was also associated with poor prognosis

(Supplementary Figures S2A–C). Similar results were found in

KIRC, BLCA, LAML, HNSC, UCEC, and LGG/GBM patients

(Supplementary Figures S2D–J).

Mutation landscapes between high-
SLC11A1 and low-SLC11A1 groups

To explore the potential mechanism between low-SLC11A1 and

high-SLC11A1 groups, we analyzed the mutation profiles of the two

groups. Fifteen genes with the highest mutational frequencies were

observed in waterfall plots (Figures 4A,B). Among the mutated

genes, TP53 and KRAS were mostly observed to have missense

mutations. We then identified the differentially mutated genes using

Fisher’s exact test (p < 0.01). APC showed a higher mutational

frequency in the low-SLC11A1 group, and NER, PCI, DNAH11,

RYR3, RYR2, SYME1, USH2A, RYR1, OBSCN, DNAH5, MUC16,

ZFHX4, and CSM3 showed a higher mutational frequency in the

high-SLC11A1 group (Figure 4C). Mutational correlations were also

analyzed with the differentially mutated genes, which revealed that

all genes except APC showed mutational co-occurrence with each

other (Figure 4D).

Correlation between SLC11A1 expression
and immune cell infiltration

To identify key pathways and biological functions associated

with SLC11A1, GSEA was performed in the high/low

SLC11A1 groups. Angiogenesis, epithelial-mesenchymal

transition, and JAK-STAT were enriched in the high-

SLC11A1 group in the Hallmark collection (Figure 4E).

KEGG pathways such as the B cell receptor, JAK-STAT, and

T cell receptor pathways were enriched in the high-SLC11A1

group (Figure 4F). GSEA results indicated that SLC11A1 might

play a crucial role in the TME of CRC.

Immune and stromal cells of CRC samples were estimated

using CIBERSORT, EPIC, and MCPcounter (Figure 5A). Our

results indicated that fibroblasts, cancer-associated fibroblasts

(CAFs), and macrophages (M0, M1, and M2) infiltrated more in

the high-SLC11A1 group (Figures 5B,D). However, the

proportion of activated dendritic cells was higher in the low-

SLC11A1 group (Figure 5C). We also analyzed ICD-related gene

expression in the two groups and found that 26 genes showed

significant differences (Figure 5E). IL-10, IL-6

(immunosuppressive cytokines), and FOXP3 (a significant

marker of Treg cells) were expressed at higher levels in the

high-SLC11A1 group. Using single-cell transcriptomic analysis,

FIGURE 4
SLC11A1 expression was related with CRC mutation status. (A,B) Top 15 genes with the highest mutation frequency in the low- and high-
SLC11A1 groups. (C) The forest plot illustrated the differently mutational genes between the two groups (p < 0.01) (D) Mutation correlations of
differently mutational genes. (E,F) GSEA of SLC11A1.
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we investigated the localization of SLC11A1 in CRC cells. The

expression of cell markers in the TME is shown in the bubble

chart (Figure 6A). The distribution and proportion of the

12 types of TME-related cells in samples from GSE146771 are

shown in Figures 6B,C. In this dataset, SLC11A1 expression was

mainly distributed in monocytes and macrophages (Figures

6D,E). These results demonstrated that SLC11A1, mainly

expressed in macrophages and monocytes, might have an

immunosuppressive effect in the CRC TME.

Immunotherapy-related analyses

We examined the relationship between SLC11A1 expression

and immunotherapy response. In the immunotherapeutic

IMvigor210 cohort, patients with higher SLC11A1 expression

had longer OS (p = 0.0028) (Figure 7A). Similarly, the high-

SLC11A1 group yielded a lower response rate than the low-

SLC11A1 group (Figure 7B). Patients with high

SLC11A1 expression had lower TMB than that of patients

with low SLC11A1 expression (Figure 7C). We evaluated the

TIDE scores of TCGA-CRC samples to predict the

immunotherapy response of the patients. The high-SLC11A1

group had higher TIDE scores, which indicated that high-

SLC11A1 patients with enhanced immune evasion might have

had a poor response to immunotherapy (Figure 7D). Moreover,

we evaluated the association between SLC11A1 and the IPS

(Figures 7E–H). IPS, IPS-PD1/PD-L1/PD-L2, and IPS-CTLA4

levels were significantly increased in the SLC11A1-low

group. These findings demonstrate that SLC11A1 might

mediate cancer immune escape and inhibit the sensitivity to

immunotherapy.

Discussion

In this study, we screened TME-related prognostic

biomarkers for CRC patients. Through multiple

bioinformatics analysis methods, we demonstrated that

SLC11A1 could serve as a significant indicator in the TME

for predicting prognosis and immunotherapy resistance in

CRC. First, we calculated the ImmuneScore and StromalScore

FIGURE 5
TME landscape in the low/high-SLC11A1 groups. (A) The heatmap showed the infiltration of immune and stromal cells. (B–D) Difference
analyses of infiltration levels of CAFs, fibroblasts, dendritic cells andmacrophages between the low/high-SLC11A1 groups. (E) Expression differences
of ICD-related genes between the low/high-SLC11A1 groups. Statistical difference was compared by the Wilcoxon test.
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of TCGA-CRC patients using the ESTIMATE algorithm and

found that the ImmuneScore and StromalScore were closely

related to clinicopathological stages. To identify genes

associated with TME, DEGs were identified between the

ImmuneScore high/low groups and the StromalScore high/

low groups. In total, 241 DEGs associated with TME were

identified, and SLC11A1 was identified as a hub

prognostic gene.

We demonstrated that SLC11A1 was highly expressed in

CRC tissues compared to that in normal tissues, and high-

SLC11A1 patients had poor prognosis in CRC as well as other

digestive cancers. Meanwhile, higher expression of

SLC11A1 was associated with more fibroblast, CAF, and

macrophage infiltration and less activated dendritic cell

infiltration. Finally, our findings also revealed that

increased SLC11A1 levels were correlated with decreased

immunotherapy efficacy and poor prognosis in patients

treated with immunotherapy. SLC11A1 was identified as a

metabolism-related gene involved in predicting the prognosis

of hepatocellular cancer (Zhu et al., 2021). Mutations in

SLC11A1 could help estimate PD-L1 expression and predict

responses to anti-PD-1 therapy in patients with gastric cancer

FIGURE 6
Single-cell analysis to explore the cell location of SLC11A1. (A) The bubble chart showed the expressionmarkers of cells in TMEwith GSE146771.
(B,C) Proportion of 12 types of TME-related cells. (D,E) SLC11A1 expression was mainly distributed in monocytes and macrophages.
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(Menyhárt et al., 2018). At present, little is known about the

function of SLC11A1 in CRC. In our study, we found that

SLC11A1 was highly expressed in CRC tissues compared to

that in normal colorectal tissues in TCGA, and similar results

were demonstrated by RT-qPCR. Upregulated

SLC11A1 expression in CRC is associated with poor

prognosis and advanced clinicopathological stages

(pathological, T, and N stages), which indicates that

SLC11A1 tends to be an unfavorable factor in CRC

patients. We also demonstrated that SLC11A1 is associated

with poor prognosis in other common cancers of the digestive

system, such as STAD, PAAD, and LIHC. The potential

implications of SLC11A1 in the prognosis of patients with

digestive tract cancers warrant further investigation.

In the TME, immune cell, blood vessel, and stromal

components play crucial roles in the carcinogenesis and

progression of cancer (Yao et al., 2020). Angiogenesis plays

a key role in the proliferation and metastasis of primary CRC,

and increased angiogenesis is associated with poor prognosis

and recurrence (Liu et al., 2013; Kantola et al., 2014). Changes

in immune function are among the most significant causes of

CRC initiation. The tumor immune microenvironment is

defined as the density, type, and location of tumor-

infiltrating immune cells, which have a great influence on

the development of CRC (Amicarella et al., 2017). An

increasing number of studies have recognized the specific

functions of macrophages and CAFs in CRC development

(Peng et al., 2022; Yi et al., 2022). Activated fibroblast-derived

CAFs are the most abundant cell type in the TME. CAFs, a

popular topic of oncological research, have been reported to

be involved in tumor progression. Increasing evidence has

indicated that CAFs are related to resistance to chemotherapy,

targeted treatment, and immunotherapy, and specific

treatment for CAFs is expected to be an important adjunct

of immunotherapy (Marusyk et al., 2016). In our study, we

identified SLC11A1 as the key TME-related biomarker using

the ESTIMATE algorithm, and the GSEA results further

illustrated that SLC11A1 was correlated with angiogenesis

and the JAK-STAT and TGF-β pathways. Higher

SLC11A1 expression was associated with increased

infiltration of CAFs and fibroblasts and less infiltration of

activated dendritic cells. TGF-β has been proposed to induce

activation of CAFs, which promotes the proliferation and

metastasis of tumors (Chandra Jena et al., 2021). Therefore,

we inferred that SLC11A1 could activate the TGF-β pathway

to enhance the infiltration of CAFs in CRC. Myeloid dendritic

cells are innate immune cells derived from bone marrow with

the function of linking and activating adaptive immunity

(Collin and Bigley, 2018). Both CD4 T and dendritic cells

play significant roles in anti-tumor immunity.

In a data analysis of thyroid cancer, SLC11A1 is

associated with macrophages and participates in the

FIGURE 7
High SLC11A1 expression was related with immunotherapy resistance. (A) KM plot for the low- and high-SLC11A1 groups in IMvigor210 cohort.
(B) Bar plot showed immunotherapy efficacy of the two groups. (C) Box plot showed the TMB difference of the two groups by the Wilcoxon test. (D)
TIDE scores of TCGA-CRC patients with higher SLC11A1 and lower SLC11A1 expression by the Wilcoxon test. (E–H) Evaluation of IPS differences
between the low- and high-SLC11A1 groups with TCIA database by the Wilcoxon test.

Frontiers in Pharmacology frontiersin.org10

Ma et al. 10.3389/fphar.2022.984555

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.984555


construction of a risk model for evaluating the prognosis of

thyroid cancer patients (Zhuang et al., 2020).

SLC11A1 modulates iron metabolism in macrophages and

plays a crucial role in the activation of early-stage

macrophages (Wyllie et al., 2002). A previous study also

showed that SLC11A1 is expressed in macrophages in mice

(Xu et al., 2005). In our study, SLC11A1 expression was

related to high infiltration of macrophages (M0, M1, and

M2) in the CRC TME. Furthermore, we also elucidated

SLC11A1 expression in the TME by single-cell

transcriptomic analysis. SLC11A1 is primarily expressed in

monocytes and macrophages in the CRC TME. These results

are consistent with those form previous studies. Macrophages

play an important role in tumorigenesis and progression. In

CRC, TME-related stimulation that induces the polarization

of macrophages can modulate the growth and metastasis of

tumor cells (Zhang et al., 2020). M1 macrophages

overexpressing CD80 and CD86 are considered

antineoplastic macrophages with immune promotion

functions in the TME (Yunna et al., 2020).

M2 macrophages, exhibiting an anti-inflammatory

phenotype, play immunosuppressive roles and promote

tumor progression (Murray et al., 2014). M1 and

M2 macrophages show distinct phenotypes for tumor

immunity and the polarization of macrophages from

M2 to M1 phenotype could improve the immunotherapy

effect (Xia et al., 2020). Therefore, based on all the results

of the TME, we preliminarily considered that

SLC11A1 regulates the TME in many ways, resulting in

immunosuppression and the progression of CRC. Further

experimental studies are warranted to demonstrate the

relationship between SLC11A1 and macrophage in CRC

and investigate how SLC11A1 impacts the efficacy of

immunotherapy.

In various cancer types, immunosuppressive TME can

inhibit the activity and anti-tumor ability of immunocytes

(Mahata et al., 2020). Immune checkpoints expressed in

tumor cells are associated with immune evasion and

inhibition of anti-tumor immunity (Liu et al., 2020). In the

CRC microenvironment, the expression levels of immune

checkpoints in tumor cells can suppress the anti-tumor

immunity of T cells (Masugi et al., 2017; Zhou et al., 2018).

Nowadays ICD, as a novel type of regulated cell death, has been

reported as an adjuvant strategy for ICIs (Rizvi and Gores, 2017;

Irvine and Dane, 2020). Among ICD-related genes, IL-6, IL-10,

and FOXP3 are significant markers associated with the

suppression of the immune response (Harshyne et al., 2016;

Layman et al., 2017; Smith et al., 2020). Our findings also showed

that SLC11A1 was related to 26 ICD-related genes, and high-

SLC11A1 patients had higher expression of IL-6, IL-10, and

FOXP3 than that in low-SLC11A1 patients. Moreover, through

three different methods, including the TIDE, IPS, and

IMvigor210 datasets, we obtained consistent results. We found

that high SLC11A1 expression was associated with

immunotherapy resistance. Thus, these consistent results

further demonstrate that SLC11A1 plays a crucial role in the

suppression of anti-tumor immunity and is a potential

therapeutic target for CRC.

Here, we propose SLC11A1 as a potential biomarker for

prognosis and immunotherapy efficacy in patients with CRC.

However, this study had some limitations. Independent CRC

patients treated with immunotherapy are required, to evaluate

the accuracy of SLC11A1 in predicting immunotherapy

response. Although RT-qPCR was performed to examine

the higher expression of SLC11A1 in CRC, other

experimental methods are required to explore the specific

functions of SLC11A1 in vitro or in vitro. Our research

group is currently collecting more clinical samples from

CRC patients. In future study, immunohistochemistry

would be performed to further evaluate the expression

levels and clinical values of SLC11A1 in CRC. We would

use immunostaining to validate the relationship between

SLC11A1 and immune cells, such as fibroblasts, cancer-

associated fibroblasts (CAFs) and macrophages (M1 and

M2). Further experimental studies are planned to explore

roles of SLC11A1 in modulating CRC TME.

In conclusion, we revealed that SLC11A1 was associated

with poor prognosis and immunotherapy resistance in CRC for

the first time. SLC11A1 may be a potential biomarker for

predicting prognosis and immunotherapy efficacy in CRC.
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