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The Hippo signaling pathway is involved in cell growth, proliferation, and

apoptosis, and it plays a key role in regulating organ size, tissue

regeneration, and tumor development. The Hippo signaling pathway also

participates in the occurrence and development of various human diseases.

Recently, many studies have shown that the Hippo pathway is closely related to

renal diseases, including renal cancer, cystic kidney disease, diabetic

nephropathy, and renal fibrosis, and it promotes the transformation of acute

kidney disease to chronic kidney disease (CKD). The present paper summarizes

and analyzes the research status of the Hippo signaling pathway in different

kidney diseases, and it also summarizes the expression of Hippo signaling

pathway components in pathological tissues of kidney diseases. In addition,

the present paper discusses the positive therapeutic significance of traditional

Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating

kidney diseases. This article introduces new targets and ideas for drug

development, clinical diagnosis, and treatment of kidney diseases.
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Introduction

In Drosophila melanogaster, the Hippo pathway was first identified 20 years ago

during tissue growth screening (Xu and Rubin, 1993), and the pathway is conserved

between different species. It is also known as the “Hippo pathway” because it makes the

mutant fly’s head look like a hippo. The key molecules in the Hippo signaling pathway

obtained through chimeric genetic screening in Drosophila have corresponding

orthologous genes in higher animals, especially mammals. The mutation of the gene

encoding the key effector causes tissue overgrowth, which determines the tumor

inhibition effect of this pathway (Justice et al., 1995; Kango-Singh et al., 2002; Jia

et al., 2003). Early genetic studies on the Hippo pathway showed its role in organ size

control (Ma et al., 2019b). During the entire process of vertebrate evolution, replication
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events have led to evidence of various components of the Hippo

family (Cunningham and Hansen, 2022). The Hippo pathway is

a highly evolutionarily conserved pathway at the protein kinase

level. In the Hippo signaling pathway, the upstream membrane

protein receptor functions as a receptor for the extracellular

growth inhibition signal. When the extracellular growth

inhibition signal is perceived, it activates a series of kinase

cascade phosphorylation reactions, leading to phosphorylation

of the downstream effectors, yes-associated protein (YAP) and

transcriptional coactivator with PDZ-binding motif [TAZ; also

called WW domain-containing transcription regulator 1

(WWTR1)]. Several cytoskeleton proteins bind to

phosphorylated YAP and TAZ, preventing them from

entering the nucleus, which reduces their nuclear activity,

ultimately regulating organ size and volume. Recent studies

have shown that the Hippo signaling pathway is composed of

three components as follows: upstream regulatory module, core

protein module, and downstream effector module (Ma et al.,

2019b; Moya and Halder, 2019; Pan et al., 2022). The main

factors that regulate the Hippo pathway include extracellular

matrix (ECM) stiffness, G protein-coupled receptors (GPCRs),

cell polarity, and energy stress (Meng et al., 2016). The core

protein module is comprised of STE20-like serine/threonine

kinase 1/2 (MST1/2) and large tumor suppressor protein 1/

2 serine kinase (LATS1/2). The downstream transcription

module is mainly composed of YAP and TAZ (Tapon et al.,

2002; Harvey et al., 2003; Wu et al., 2003; Zhao et al., 2007; Meng

et al., 2016). TAO kinases are capable of activating the Hippo

pathway (Meng et al., 2016). Once the upstream signal molecule

is activated, MST1/2 and LATS1/2 are phosphorylated,

promoting the phosphorylation of YAP and TAZ. In the

cytoplasm, phosphorylated YAP and TAZ bind to 14-3-

3 proteins, which causes them to be degraded by ubiquitin-

dependent proteasomes (Meng et al., 2016). Once the Hippo

pathway is inhibited, YAP and TAZ phosphorylation is inhibited,

and YAP/TAZ migrates to the nucleus. Yap/TAZ then binds to

transcription factors, such as TEA domain transcription factor

(TEAD), to regulate cell proliferation (Lei et al., 2019). TEAD

family transcription factors are required to mediate the

expression of YAP-dependent genes, and TEAD is also

necessary for YAP-induced cell growth, epithelial-

mesenchymal transformation (EMT), and tumorigenic

transformation (Zhao et al., 2008). YAP and TAZ also bind to

other transcription factors, including transcription factor 7-like 2

(TCF)/lymphoid enhancer factor (LEF), Smad1, Smad2/3, and

p37. Connective tissue growth factor (CTGF) is an important

gene for cell growth and is a direct YAP target gene (Zhao et al.,

2008; Anorga et al., 2018). CTGF contributes to the regulation of

cell growth, proliferation, and apoptosis (Edgar, 2006), thus

playing a necessary role in regulating organ size, tissue

regeneration, tumorigenesis, and tumor development.

Therefore, the research on the molecular function,

regulation, and therapeutic targeting of this pathway has

become the Frontier in many fields (Dey et al., 2020). Recent

studies have shown that the Hippo pathway is intimately related

to renal diseases (Wong et al., 2016), including renal cancer,

cystic kidney disease, diabetic kidney diseases, and renal fibrosis,

and it promotes the transformation of acute kidney disease to

chronic kidney disease (CKD). This paper reviews the research

status of the Hippo pathway in kidney diseases, further clarifying

the function of the Hippo pathway in renal diseases and

providing new ideas and a theoretical basis for the treatment

of kidney diseases (Figure 1).

Crosstalk between the Hippo
signaling pathway and kidney disease

Kidney cancer

Among all cancers, 5% are kidney cancers. The highest

proportion of renal cell carcinoma (RCC) consists of clear cell

renal cell carcinoma (ccRCC), accounting for 70%–80% of

kidney cancers (Reuter, 2006). Sheets, cords, and tubes of

cancer cells are often present in RCC. Globally, RCC affects

nearly 300,000 individuals each year, and the survival rate of RCC

depends on the severity of the disease. Patients with local or

locally advanced stages of RCC have a 5-year survival rate

between 20% and 95%, while patients with metastatic disease

have a 5-year survival rate between 0% and 10% (Linehan et al.,

2019). Hence, identifying effective therapeutic methods and

understanding the mechanism of RCC occurrence and

development are urgently needed. According to several

studies, RCC is closely associated with the expression of the

Hippo pathway. The neurofibromatosis type 2 (NF2) gene, a

widely studied tumor suppressor gene, is an upstream regulatory

gene of the Hippo pathway, and mutation of NF2 leads to a

nonmalignant brain tumor syndrome called neurofibromatosis 2

(Yu et al., 2015; Dodson et al., 2019). Many studies have reported

that NF2 enhances the Hippo signaling pathway through

phosphorylation, isolation, degradation, and inhibition of

YAP/TAZ nuclear translocation, and abnormal Hippo

signaling pathway and YAP activation occurs in NF2-deficient

unclassified renal cell carcinoma (uRCC) cases (Chen et al.,

2016b). Several sporadic cancers, including kidney cancer, are

caused by Merlin/NF2, which results in NF2 syndrome, an

inherited tumor syndrome (Petrilli and Fernández-Valle,

2016). Silencing YAP/TAZ in NF2-deficient tumors promotes

tumor regression (White et al., 2019). Mechanistically, YAP/TAZ

depletion increases mitochondrial respiration and reactivity as

well as reducing glycolic-dependent growth and causing

accumulation of reactive oxygen species (ROS) under

nutritional stress, leading to oxidative stress-induced cell death

(White et al., 2019). In many types of cancer, LATS1, the core

serine/threonine kinase of the Hippo pathway, is reduced. Several

mechanisms have been suggested by recent studies to show that
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LATS1, as a tumor suppressor, negatively regulates tumors and

metastases. RCC patients with high expression of LATS1 or

LATS2 have significantly longer overall survival (OS) and

disease-free survival (DFS) than those with low expression of

LATS1/2 (Zhang et al., 2020). Furthermore, RCC tissues and cells

express significantly lower levels of LATS1, and renal cell lines

express increased levels of hypermethylated LATS1.

Pharmacological demethylation of LATS1 with 5-Aza-2′-
deoxycytidine (5-AZA) downregulates the expression of YAP,

promotes cell apoptosis, promotes cell cycle G1 arrest, and

inhibits cell proliferation (Chen et al., 2014). The Yap/TAZ

nuclear effector is a gene transcription coactivator that

regulates tissue growth and development as part of the Hippo

pathway (Rybarczyk et al., 2017). The association between the

YAP/TAZ nuclear effector and renal cancer has been

demonstrated in many studies. A significant increase in TAZ

expression has been found in patients with ccRCC, and the

prognosis for these patients is poor (Rybarczyk et al., 2017).

TAZ deletion counteracts ferroptosis, which regulates cell death

(Yang et al., 2019b). In addition, the expression of epithelial

membrane protein1 (EMP1) is regulated by TAZ, which induces

the expression of nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase 4 (NOX4), a renal-enriched reactive oxygen

species (ROS), which produces an enzyme important for

ferroptosis (Gorin et al., 2005; Sedeek et al., 2013). In

addition, EMP1-NOX4 is regulated by cell density via TAZ

regulation. Furthermore, the Hippo signaling pathway also

plays a role in some key genes related to renal cancer

pathogenesis (Yang et al., 2019a). Other research has shown

that transferrin (TF) and beta-1,4-N-acetyl-

galactosaminyltransferase 1 (B4GALNT1) are highly expressed

in patients with ccRCC, and B4GALNT1 may affect the

occurrence and progression of renal cancer through the Hippo

signaling pathway (Yang et al., 2019a). The Hippo signaling

pathway is also important in certain types of kidney cancer.

High-grade ccRCC patients still have poor clinical outcomes

(Lane et al., 2007). Studies have shown that human Salvador

homolog 1 (SAV1), as a component of the Hippo signaling

pathway, is downregulated in high-grade ccRCC, which is

known to be a tumor suppressor in Drosophila (Tapon et al.,

2002). In high-grade ccRCC, downregulation of SAV1 and

subsequent activation of YAP play a role in the pathogenesis

(Matsuura et al., 2011). Mucinous renal tubular spindle cell

carcinoma (MTSCC) is a relatively rare renal cell subtype.

Several clinical studies have suggested that the Hippo

signaling pathway plays a crucial role in the pathogenesis of

MTSCC with an enhanced expression of YAP1 being one of the

main factors. The use of YAP inhibitors, such as Verteporfin

(VP), has also been demonstrated to be effective in treating

patients with rare MTSCC with sarcomatoid differentiation or

metastatic disease (Mehra et al., 2016). Moreover, the Hippo

signaling pathway plays a key role in regulating RCC. Leukemia

FIGURE 1
The Hippo signaling pathway. The hippo pathway can be activated by TAO kinase, which phosphorylates MST1/2 in its activation ring. MST1/
2 phosphorylated LATS1/2 sequentially with the help of SAV1 andMOB1/2 and then activate YAP/TAZ. Potential treatments: Through the activation of
the hippo signaling pathway, MST1/2 and LATS1/2 phosphorylation are activated to improve the level of p-YAP or inhibit the expression of YAP, and
then regulate the downstream effector factors to achieve the therapeutic effect on kidney diseases. At the same time, in the early stage of AKI,
the expression of YAP is increased, which promotes cell proliferation and promotes the recovery of kidney injury.
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inhibitory factor receptor (LIFR) plays an important role in the

signal transduction of interleukin-6 cytokines (Kishimoto et al.,

1995), and inhibition of LIFR kinase activity may be possible

because the Hippo pathway is a potential downstream target of

LIFR (Chen et al., 2012a). In vitro studies have shown that LIFR

knockdown leads to decreased levels of LATS1 and p-YAP,

resulting in inhibition of the Hippo signaling pathway kinase

activity, thereby further increasing YAP expression (Lei et al.,

2018). By inhibiting the expression of YAP, LIFR inhibits tumor

metastasis. Taurine upregulated gene 1 (TUG1) is involved in the

regulation of RCC as TUG1 positively regulates YAP by

downregulating the expression of microRNA-9 (miR-9), thus

regulating the growth and migration of RCC (Liu et al., 2018).

Claudin-2 inhibition induces mesenchymal plasticity and

invasive mobility. In RCC-derived cancer cells, overexpression

of Claudin-2 inhibits tumorigenesis and tumor growth in

xenografts (Kumar et al., 2021). Claudin-2 binds to YAP

through its PDZ motif [a member of the mitogen-activated

protein kinase kinase (MAPKK) family] and regulates its

nuclear activation and expression. SH3 domain binding

glutamate-rich protein-like 2 (SH3BGRL2) is critical for EMT

progression and metastasis in ccRCC, and SH3BGRL2 exerts

tumor inhibition through the Hippo pathway (Yin et al., 2020).

Quaking RNA-binding protein (QKI) regulates angiogenesis,

embryogenesis, glial cell differentiation, apoptosis, and

transcription, and it also regulates tumor cell metabolism,

differentiation, proliferation, and immunity (Noveroske et al.,

2002; Wu et al., 2002; Lee and Schedl, 2004; Larocque et al.,

2005). Immunohistochemistry of clinical specimens has

demonstrated a positive correlation between QKI and p-YAP.

YAP is negatively regulated by QKI, which regulates cell contact

inhibition and inhibits proliferation and invasion of tumor cells

via Wnt and GPCR signaling pathways (Zhu et al., 2019).

Moreover, REGγ depletion activates the Hippo signaling

pathway by stabilizing casein kinase 1ε (CK1ε), suggesting

crosstalk between the REGγ/CK1ε axis and the Hippo

pathway in RCC (Chen et al., 2018b). KIBRA, a human

tumor suppressor protein expressed in the kidney and brain,

has a role in regulating cell contact inhibition, tissue

regeneration, organ size, and tumor development and

progression. KIBRA also plays a key role in tumor

progression and metastasis. In clear cell carcinomas, KIBRA is

epigenetically downregulated (Schelleckes et al., 2017). The

relationship between the Hippo signaling pathway and some

tumor-related factors confirms the close relationship between the

Hippo signaling pathway and renal cancer, providing ideas for

the treatment of renal cancer (Figure 2).

Cystic kidney disease

The two main forms of monogenic polycystic kidney disease

are autosomal dominant polycystic kidney disease (ADPKD) and

autosomal recessive polycystic kidney disease (ARPKD), which

are cilia-related diseases (Müller and Schermer, 2020). ADPKD is

the most common monogene genetic system disease in humans

(Bergmann et al., 2018), and it is caused by genetic mutations in

PKD1 [encoding polycystin-1 (PC1)] or PKD2 [encoding

polycystin-2 (PC2)] (Chapin and Caplan, 2010). ADPKD is

characterized by progressive deterioration of renal function

FIGURE 2
Crosstalk between the Hippo signaling pathway and kidney cancer. Many factors lead to a decrease in phosphorylation of MST1/2 and LATS1/2,
which leads to a decrease in phosphorylation of YAP, which leads to a decrease in p-YAP and YAP entering the nucleus. The hippo pathway can affect
cell growth, proliferation, apoptosis, and other factors that contribute to the development of kidney cancer.
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and spontaneous formation of fluid-filled renal cysts, which

cause end-stage renal disease (ESRD) (Cornec-Le Gall et al.,

2019). Compared to wild-type rats, the expression of LATS1 in

cyst-lining epithelial cells of Han:SPRD heterozygous rats

decreases, and the expression of YAP and dephosphorylation

activation levels increase. Moreover, PKD1 mutations have a

functional link with the Hippo signaling pathway (Cai et al.,

2018). Four-jointed (Fj) regulates the Hippo signaling pathway

through a complex mechanism (Willecke et al., 2008). The levels

of PKD1 and PKD2 genes are associated with normal kidney

development, and overexpression of these genes leads to renal

cystic disease phenotypes (Thivierge et al., 2006; Park et al., 2009;

Kurbegovic et al., 2010). Tubule epithelial damage, such as

induced cyst formation, occurs in Pkd1 mutant mice, and the

expression of YAP, a downstream factor of the Hippo signaling

pathway, in the cytoplasm repairs the tissue. In advanced cystic

epithelium and dilated tubule epithelium, YAP accumulates in

the nucleus, accompanied by upregulation of the YAP

transcription targets, baculoviral IAP repeat-containing 3

(BIRC-3), inhibin beta-A (INHBA), four-jointed box kinase 1

(Fjx1), and CTGF. A change in the Hippo pathway activity has

been replicated in human renal tissue from patients with ADPKD

and ARPKD with cystic renal tumors (Happé et al., 2011). The

Pkd1−/− cell transcriptome and pre-cystic kidney transcriptome

indicate the involvement of the Hippo signaling pathway in early

polycystic kidney disease. In vitro and in vivo Pkd1del models

show changes in MAPK, Wnt, Hippo, PI3K/Akt, and calcium

signaling pathways related to ADPKD (Kunnen et al., 2018). At

the same time, many pathogenic genes affecting cystic kidney

disease act through the Hippo signaling pathway. FAT1 has been

demonstrated to be an effective regulator of Hippo signals

(Willecke et al., 2006; Katoh, 2012; Ahmed et al., 2015;

Martin et al., 2018), and deletion of FAT1 leads to the

formation of zebrafish anterior kidney cysts (Skouloudaki

et al., 2009). NIMA-related kinase 8 (NEK8) acts as a

regulatory factor affecting the Hippo signaling pathway

(Habbig et al., 2012). Treatment of NEK8 knockout

morphogenetic defective zebrafish embryos or epithelial cells

with VP rescues the phenotype, indicating that YAP plays a

therapeutic role in the occurrence of cystic kidney disease

(Grampa et al., 2016). NEKs regulate cilia and cell cycle

progression, and NEK8 localizes to the centrosome and the

proximal region of cilia. The non-catalytic RCC1 motif of

NEK8 comprises the C-terminal activity and kinase structure

(Shiba et al., 2010). Sorting nexin 9 (SNX9) inhibits cell

proliferation and cyst development in ADPKD by activating

Hippo signaling (Shen et al., 2020). A member of the

MAGUK p55 family, PALS1, mediates the connection

between TGF-β and Hippo signaling pathways, and it

participates in cyst formation. PALS1 is expressed in the

human renal epithelium as a core polar protein (Weide et al.,

2017). The TAZ/Wnt-β-catenin/c-MYC axis regulates the Hippo

signaling pathway of polycystic kidney disease (Lee et al., 2020).

TAZ induces Wnt/TGF-β signal target gene overlap and c-Myc

mRNA expression (Choi et al., 2018). In Pkd1-deficient mice,

TAZ is expressed around the inner epithelial cells of renal cysts,

and TAZ deletion reduces cyst formation. In wild-type mice,

TAZ interacts with PKD1 to inactivate β-catenin. In Pkd1-

deficient cells, TAZ interacts with axin1 to increase β-catenin
activity. TAZ is one of the upstream regulators of c-Myc

expression (Harris and Torres, 2009). RhoA/YAP/c-Myc

signaling plays a crucial role in ADPKD pathogenesis caused

by Pkd1 deficiency (Ma and Guan, 2018). Several studies have

reported that the RhoA/YAP/c-Myc signal axis promotes

polycystic kidney disease development and occurrence (Cai

et al., 2018). A new strategy to treat cystic kidney disease may

be derived from the Hippo signaling pathway as it mediates the

pathogenesis of cystic kidney disease (Figure 3).

Acute kidney injury

Worldwide, AKI has a high mortality rate (over 50%) (Zhou

et al., 2020) with an approximate 15%–20% incidence of AKI in

hospitalized patients and an approximate 50%–70% incidence of

AKI in intensive care unit (ICU) patients (Makris and Spanou,

2016). The Hippo signaling pathway and AKI have been linked in

a recent study. AKI is generally regarded as an independent risk

factor for progression to CKD, and patients with AKI requiring

dialysis have a greater probability of developing CKD and ESRD

(Chawla et al., 2011). There is a close association between YAP

and AKI, and it is a downstream effector of the Hippo signaling

pathway. Xu et aldetected the expression of the Hippo signaling

pathway components in the kidney of a rat model of AKI and

renal biopsy specimens of patients with AKI; these researchers

found that YAP protein levels increase in the cytoplasm and

nucleus of renal tubular epithelial cells (TECs) during the AKI

repair stage, and they reported that the change of YAP expression

is positively correlated with the change of TEAD expression, a

YAP downstream target (Xu et al., 2016). Additionally, AKI is

positively correlated with CTGF expression, which plays a crucial

role in renal fibrosis development and occurrence. Furthermore,

apoptosis plays an important role as an early manifestation of

injured cells after ischemia-reperfusion (IR), and apoptosis is also

linked to AKI. The NF2 signaling pathway likely regulates the

apoptosis of IR tissue cells through the Hippo pathway (Grannas

et al., 2015). In addition, renal tubular epithelial EMT is closely

related to AKI. Renal tubular epithelial EMT is a process in which

renal TECs lose their epithelial phenotype of cell polarity and cell

adhesion, acquiring the migration and invasion abilities unique

to mesenchymal stem cells (Yang and Liu, 2001). EMT occurs in

tubule epithelial cells when their polarity is lost and TGF-β/Smad

signaling is activated. Cell polarity is maintained by the Crumbs

(CRB)/PALS1 complex, which regulates the Hippo signaling

pathway (Iwakura et al., 2017). The Hippo signaling pathway

may be related to AKI because cell resistance is limited to the
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complete recovery period of proximal tubule (PT) cells, such as

occurs in PT cells in experimental rats treated with uranium after

AKI recovery, producing cells resistant to subsequent UA

treatment. The presence of PT cells after AKI recovery may

be due to YAP-mediated inhibition of apoptosis, resulting in

acquired resistance in cells; however, this effect does not occur

until PT remodeling is complete, and the number of cells is

normal (Formica et al., 2019). The EGF receptor (EGFR) is

widely expressed in mammalian kidneys, particularly in renal

proximal tubule epithelial cells (RPTCs) (Breyer et al., 1990;

Chen et al., 2012b). EGFR-dependent YAP activation is key for

AKI renal recovery, and there is increasing evidence that renal

recovery is due to the differentiation and proliferation of

surviving TECs (Chen et al., 2018a). Chen et alfound that the

expression of YAP increases in RPTCs of AKI patients and mice,

inhibiting the related effects of the YAP/TEAD transcription

factor complex through VP, and they reported that deletion of

YAP from RPTCs delays the recovery of renal function and

structure from IR injury (IRI). Thus, studying the Hippo pathway

in AKI research may be a promising prospect.

Chronic kidney disease

CKD continues to remain a major public health burden

(Perico and Remuzzi, 2012). Podocytes are responsible for

setting up a hematuria filtration barrier in kidney glomeruli

(Bonse et al., 2018) and are essential for maintaining kidney

function (Hurcombe et al., 2019). The result of persistent

podocyte damage is podocyte loss, which eventually leads to

ESRD. The localization of YAP is an important regulator of

podocyte function, and apoptosis is induced by various

treatments (Bonse et al., 2018). Sequence analysis of LATS2-

overexpressing podocytes has demonstrated that apoptotic genes

are significantly induced. Downregulation of Hippo signaling

pathway components results in a feedback mechanism in

podocytes. The link among podocytes, Hippo signaling

pathway activation, and in vivo regulation of connection and

migration processes is the basic mechanism of glomerulosclerosis

and renal function loss. Rac1, a member of the Rho family of

GTPases, plays an important role in cell movement, cell bone

remodeling, and cell cycle transport (Jaffe and Hall, 2005).

Rac1 GTPases promote TGF-β signaling through the EGFR,

Hippo/YAP/TAZ, and p53 pathways to regulate fibrosis and

CKD (Patel et al., 2019). Patients with FAT1 mutations present

with ophthalmic disease with changes from normal renal

function to early-onset end-stage kidney failure (Fabretti et al.,

2021). Therefore, elucidating the precise mechanism of the

Hippo signaling pathway in CKD will enrich the pathogenesis

theory of CKD and provide a new method for clinical targeted

diagnosis, treatment, and prevention of CKD.

Diabetic kidney disease

A common microvascular complication of diabetes is

diabetic kidney disease (DKD). Approximately 30% of

patients with type 1 diabetes and 20%–50% of patients with

FIGURE 3
Crosstalk between the Hippo signaling pathway and the polycystic kidney disease. The phosphorylation of core protein MST1/2 and LATS1/
2 was inhibited, and the phosphorylation level of downstream effector factor YAP was inhibited. YAP enters the nucleus, hippo pathway affects cell
growth, proliferation, apoptosis. Thus, promoting the occurrence of polycystic kidney.
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type 2 diabetes may develop DKD (Lin et al., 2018). Thus,

studying DKD pathogenesis and controlling its progression

have become urgent tasks. For the occurrence and progression

of DKD, targeting the Hippo signaling pathway may be a

therapeutic strategy. YAP, a downstream effector of the Hippo

signaling pathway, is closely related to DKD. Diabetes-related

renal interstitial fibrosis (RIF) is promoted by YAP based on

its ability to activate epithelial interstitial transformation.

Furthermore, RPTC-specific YAP deficiency or treatment

with the YAP inhibitor, VP, significantly reduces diabetic

RIF (Chen et al., 2020). Activation of YAP promotes its

interaction with TEAD, which contains DNA, and the

YAP/TEAD complex then activates the overexpression of

these target genes, promoting cell proliferation and ECM

synthesis (Breyer et al., 1990). TEAD is a factor with a

DNA-binding domain that binds to activated YAP to

control the expression of its important target protein

factor, CTGF (Zhao et al., 2010). There is a higher

concentration of YAP, TEAD, and CTGF in the nuclei of

glomerular cells of patients with type 2 DKD. The high

expression of YAP, TEAD, and CTGF in renal tissue

suggests that YAP plays a key role in renal damage in type

2 diabetes mellitus (Ma et al., 2019b). The high expression of

YAP is associated with the increase in systolic blood pressure

(SBP), blood urea nitrogen (BUN), and creatinine (Cr) as well

as the progression of DKD staging and pathological

classification of DKD (Ma et al., 2019b). Inhibition of YAP

activity may delay the progression of DKD. MST1, as the core

protein module of the Hippo signaling pathway, is involved in

cell proliferation and differentiation, and it plays a key role in

DKD. Targeting MST1 may be a potential therapeutic target

for DKD. YAP/TEAD-mediated EMT ameliorates DKD

fibrosis by targeting MST1. MST1 activation is reduced in

type 1 and type 2 DKD. In HK-2 cells, MST1 is downregulated

in a glucose- and time-dependent manner (Yang et al., 2020).

Mst1 downregulation promotes renal dysfunction and fibrosis

in db/m mice in vivo. Moreover, MST1 inhibits the activation

of YAP by binding to TEAD to form a YAP/TEAD

heterodimer, which directly regulates TEAD activation,

thereby stimulating EMT. The Hippo signaling pathway is

also closely related to other related factors, thus affecting

DKD. EGFR regulation of the Hippo signaling pathway is

an important mechanism for the occurrence and development

of DKD (Reddy and Irvine, 2013). Many experiments have

found that EGFR and its different ligands are upregulated and

that EGFR activation occurs in renal cells cultured in a high

glucose environment and in experimental diabetic models

(kidney injury) (Miyazawa et al., 2013). According to

previous studies, erlotinib, an EGFR kinase inhibitor, and

EGFRptko mice inhibit the expression and phosphorylation of

YAP protein. In addition, activation of the EGFR/PI3k/Akt/

CREB signaling pathway mediates YAP gene expression, YAP

nuclear expression, and interaction with TEAD transcription

factor complexes, resulting in the upregulation of one of two

TEAD-dependent genes, namely, CTGF and two-way

regulatory genes. Pharmacological or genetic inhibition of

YAP by EGFR, Akt, or CREB improves DKD in proximal

renal tubular cell lines (Chen and Harris, 2016). The

proliferation of mesangial cells (MCs) is regulated by YAP-

mediated PI3K/Akt and Hippo signaling pathways. Protein

kinase B (PKB, also known as Akt), which controls protein

synthesis, cell development, and proliferation, is

phosphorylated by phosphoinositol 3-kinase (PI3K) (García

et al., 2006; Kim et al., 2012). High glucose-treated mice and

MCs show decreased phosphorylation levels of MST1 and

LATS1 but increased PI3K/Akt activation and proliferation

(Qian et al., 2021). YAP activates the PI3K/Akt pathway by

inhibiting PTEN, a repressor of PI3K. When the Hippo

signaling pathway is inhibited and PI3K/Akt signaling is

activated, YAP accumulates in the nucleus and promotes

MC proliferation and DKD formation. At the same time,

activation of the PI3K signaling pathway inhibits the

phosphorylation of MST1 and LATS1 as well as

accelerating YAP activation and transport to the nucleus,

thereby promoting the transcriptional role of YAP (Collak

et al., 2012; Fan et al., 2013). In addition, the activation of YAP

inhibits PTEN and further activates the PI3K/Akt pathway,

forming a positive feedback loop of YAP→PTEN→PI3K/

Akt→MST1→LATS1→YAP (Qian et al., 2021). The

existence of this positive feedback mechanism confirms that

inhibiting the activity of the Hippo signaling pathway

promotes the increase of MCs and accelerates the

occurrence and development of DKD. It has been

demonstrated that the Hippo signaling pathway contributes

to the regulation of renal pathophysiology at the multicellular

level in DKD pathogenesis, thereby affecting renal function

(Lei et al., 2019) (Figure 4).

Crosstalk between renal fibrosis and
the Hippo signaling pathway

Renal fibrosis is the common pathway from secondary

progressive CKD to ESRD, and renal fibrosis is a major

determinant of renal insufficiency (Liu, 2011). In DKD, EMT

plays an important role in the apoptosis pathogenesis of RIF

(Inoue et al., 2015; Lovisa et al., 2016; Zhao et al., 2017). A process

in which endothelial cells lose adhesion, lose polarity, and

become spindle mesenchymal cells, which are highly invasive

and metastatic, occurs due to this activity. When biomechanical

properties of tissues change, the YAP/TAZ sensor is activated,

which causes pro-inflammatory and pro-fibrogenic signals to be

released (Landolt et al., 2022). After ischemic AKI, YAP is a key

influencing factor of regeneration and fibrosis (Xu et al., 2016).

Fibrosis of the kidney has been linked to aberrant YAP activation

in an increasing number of studies (Szeto et al., 2016; McNeill
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and Reginensi, 2017; Kim et al., 2019). Because continuous

elevation and activation of YAP are associated with interstitial

fibrosis and abnormal renal tubule differentiation, appropriate

regulation of YAP protein is an effective therapeutic target during

AKI-CKD transformation after IRI. Wnt5a promotes renal

fibrosis by stimulating the M2 polarization of macrophages

mediated by YAP/TAZ (Park et al., 2015). Many studies have

reported the interaction between the Hippo signaling pathway

and the TGF-β signaling pathway. For example, TGF-β increases
the response to the TGF-signaling pathway by stimulating TAZ

to bind to the active Smad complex in the nucleus (Varelas et al.,

2008; Wrighton et al., 2008). Feng found that the Wnt5a

signaling protein enhances the M2 polarization of

macrophages induced by transforming growth factor β1
(TGF-β1) and the expression of YAP/TAZ. VP blockade of

YAP/TAZ inhibits the M2 polarization of macrophages

induced by the Wnt5a and TGF-β1 pathways (Feng et al.,

2018). Src, a proto-oncogene tyrosine-protein kinase, is a non-

receptor tyrosine kinase, and the Src-mediated association

between FXR and YAP protects against renal fibrosis. The

Farnesoid X-activated receptor [FXR, which is also known as

nuclear receptor subfamily 1 group member 4 (NR1H4)] is a

multifunctional transcription factor that plays a key role in the

prevention of fibrosis (Fiorucci et al., 2004; Wang et al., 2008;

Modica et al., 2010; Calkin and Tontonoz, 2012; Kim et al., 2015).

The phosphorylation and nuclear localization of YAP is regulated

by GW4064-mediated FXR activation and inhibition of Src

activation in renal fibrosis. GW4064 and the Hippo signaling

pathway core kinases (MST1 and LATS1) induce

phosphorylation of YAP, causing cytoplasmic accumulation of

YAP. Inhibition of Src with PP2 (Src kinase inhibitor) prevents

renal fibrosis, increases p-YAP phosphorylation, and increases

YAP cytoplasmic accumulation. The use of GW4064 or WAY-

362450 (turofexorate isopropyl) also prevents unilateral ureteral

obstruction-induced renal fibrosis (Kim et al., 2019). Renal

fibrosis is affected by the Hippo signaling pathway in

conjunction with other related pathways.

The Hippo-Salvador signaling pathway regulates renal tubule

interstitial fibrosis. In Salvador mice with specific loss of TECs after

unilateral ureteral obstruction (UUO), the Hippo-Salvador signaling

pathway increases renal tubule interstitial fibrosis (Seo et al., 2016).

In addition, the EMT phenotype changes are enhanced, and

apoptosis and proliferation are observed. TECs increase the

expression of TGF-β and activate the expression of β-catenin
after depletion of UUO by Sav1. In addition, TAZ is significantly

activated in SAV1 knockout mice, and TAZ directly regulates TGF-

β and TGF-β receptor II expression. Hepatocyte growth factor

(HGF) induces EMT by regulating the MST2 and

ISG15 signaling pathways. An enrichment analysis has suggested

that ubiquitination-related proteins and apoptosis-related proteins

are induced, whereas proteins regulating apoptosis are inhibited.

ITCH, an E3 ubiquitin ligase, ubiquitinates the LATS1 tumor

suppressor, leading to degradation (Ho et al., 2011; Salah et al.,

2011), and the ITCH ubiquitin ligase regulates mammalian

FIGURE 4
Crosstalk between the Hippo signaling pathway and diabetic kidney disease. The downstream effector factor YAP enters the nucleus, binds with
TEAD, and then affects the downstream target gene CTGF to promote the occurrence and development of DKD.
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MST2 and ISG15 pathways at the protein level. Inhibition of the

Hippo signaling pathway may accelerate HGF-induced EMT by

overexpression of ITCH or A-Raf (Farrell et al., 2014). The Hippo

pathway-related factors affect renal fibrosis by regulating the Hippo

signaling pathway. Krüppel-like factor4 (KLF4) is a bifunctional

transcription factor that activates or inhibits the transcription of

genes that regulate cell proliferation and differentiation (Brauer et al.,

2018; Cheng et al., 2018; Choi and Roh, 2018; Tang et al., 2018; Qi

et al., 2019). As a result of IR renal injury, YAP is continuously

activated by KLF4 and promotes renal fibrosis in mice. Previous

studies have demonstrated that YAP downregulation significantly

reduces IR-induced renal dysfunction as well as reducing the

expression of the TGF-β and CTGF renal fibrosis factors.

Moreover, the expression of KLF4, a transcription factor

upstream of YAP, is also continuously increased, and inhibition

of KLF4 reduces YAP elevation, nuclear translocation, renal

deterioration, and interstitial fibrosis in IR mice (Xu et al., 2021).

The Hippo signaling pathway also affects renal fibrosis through

drugs. VP is a photosensitizer used to treat age-related macular

degeneration (Chen et al., 2015). VP inhibitsmembers of the TEAD-

YAP interaction in the absence of light stimulation in cancer cells

(Liu-Chittenden et al., 2012), and inhibition of YAP proteins by VP

improves renal tubule interstitial inflammation and fibrosis caused

by UUO. In mice, Jin et alfound that VP reduces UUO-induced

renal tubule injury and inflammation as well as increasing ECM

deposition (Jin et al., 2020). Therefore, it would be advantageous to

explore the Hippo signaling pathway as a new target for treating

renal fibrosis (Figure 5).

Expression of Hippo signaling
pathway components in renal
pathological tissues

The Hippo signaling pathway regulates cell growth,

proliferation, and apoptosis as well as organ, tissue, and

tumor development (Edgar, 2006). Analysis of many renal

pathological tissues has demonstrated that the Hippo

pathway also plays a significant role in the progress of

kidney diseases. Kidney cancer, cystic kidney disease, and

DKD are all related to the Hippo signaling pathway (Chen

et al., 2014; Grampa et al., 2016; Mehra et al., 2016; Xu et al.,

2016; Rybarczyk et al., 2017; Chen et al., 2018a; Lei et al.,

2018; Ma et al., 2019a). Figure 6 summarizes the expression of

Hippo signaling pathway components in renal pathological

tissues.

Traditional Chinese medicine
regulates kidney diseases by affecting
the Hippo signaling pathway

Triptolide

Triptolide (TP) is a diterpenoid trioxide compound that has

anti-inflammatory and immunomodulatory properties (Ma et al.,

2019a). TP is clinically used for treating glomerulonephritis, IgA

nephropathy, andmembranous nephropathy, and its mechanism

FIGURE 5
Crosstalk between renal fibrosis and the Hippo signaling pathway. Downstream effector YAP enters the nucleus and binds to TEAD, Smad1/
Smad4 to promote epithelial-mesenchymal transition. At the same time, the hippo signaling pathway, TGF, Wnt, and other signaling pathways
interact together to participate in cell apoptosis, regeneration, and EMT, thus leading to renal fibrosis.
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may be immunosuppressive and anti-inflammatory.

Experimental results have shown that TP regulates cell

polarity, cell adhesion, and EMT through its effects on TGF-

β1 and Hippo signaling pathways (Chen et al., 2010). At the same

time, TP inhibits the EMT of renal TECs (Niedermayer et al.,

2015), and studies have demonstrated that inhibiting renal

tubular EMT effectively inhibits renal fibrosis (Zang, 2019).

Treatment of renal TECs with TP results in TAZ levels close

to normal levels in cells undergoing EMT. Thus, TP inhibits the

EMT of renal tubular epithelium by modulating the Hippo

signaling pathway, which reduces renal tubular epithelial

fibrosis (Niedermayer et al., 2015).

Quercetin

Quercetin is a type of biological flavonoid compound, and

it has a variety of pharmacological effects, including reduction

of the risk of kidney and cardiovascular diseases as well as

antitumor, antioxidant, antiviral, and anti-inflammatory

effects (Hazzan et al., 2011; Bournival et al., 2012; Lu et al.,

2015; Chen et al., 2016a; Vaidya et al., 2016; Sánchez-González

et al., 2017; Patel et al., 2018). In recent years, many studies

have shown that quercetin inhibits tumors (Vaidya et al.,

2016) and promotes cell apoptosis and cell cycle arrest

(Chen et al., 2012c). Studies have demonstrated that

quercetin also significantly reduces the expression of

glycosylation end products, including laminin, type IV

collagen, and connective tissue growth factor, which

inhibits the proliferation of MCs, and quercetin has also

been shown to reduce the thickness of the glomerular

basement membrane (Vaidya et al., 2016; Sánchez-González

et al., 2017). DKD is characterized by the proliferation of

(MCs), a pathological change that occurs at an early stage of

the disease. Previous research has found that the

phosphorylation levels of MST1 and LATS1 are markedly

reduced in high glucose-induced MCs and db/db mice

compared to controls, and quercetin reverses these changes

in a dose-dependent manner. Quercetin treatment reverses

the increase in YAP expression in the high glucose

group. According to experimental results, culture of MCs

in high glucose inhibits Hippo signaling, whereas quercetin

reactivates Hippo signaling to inhibit the proliferation of MCs

(Lei et al., 2019).

Although TP and quercetin have contradictory functions in

many biological processes, they both regulate kidney disease by

modulating the Hippo signaling pathway. Through its ability to

regulate the Hippo signaling pathway, TP reduces renal tubular

epithelial fibrosis (Niedermayer et al., 2015). The Hippo signaling

pathway is regulated by quercetin, which inhibits MC

proliferation and improves early DKD symptoms (Ma et al.,

2019b). In addition to its role in the apoptosis mechanism of

DKD RIF, EMT also plays an important role in tissue fibrosis

(Inoue et al., 2015; Lovisa et al., 2016; Zhao et al., 2017). Both

EMT and DKD are closely related to renal fibrosis. Thus, both TP

and quercetin may slow the progression of kidney disease

through the regulation of the Hippo signaling pathway and

contribute to renal fibrosis prevention. There is still a lack of

clinical evidence to support the application of traditional Chinese

medicine in kidney diseases involving Hippo signaling pathway.

FIGURE 6
Expression of the Hippo signaling pathway in renal pathological tissues.
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Therefore, clinical trials are further carried out to promote the

clinical application of traditional Chinese medicine (TCM) in

regulating hippo signaling pathway. The use of TCM to interfere

with the targets of the Hippo pathway may provide ideas for the

intervention and treatment of kidney diseases, which is expected

to delay the progression of kidney diseases and improve the

prognosis.

Limitations and prospects

Nephropathy research has shown that some nephropathy

is closely associated with the Hippo signaling pathway;

however, there are still many limitations. At present, it is

not completely understood how to modulate the Hippo

signaling pathway interaction with metabolism at the

cellular level to control systemic metabolism under

physiological and pathological conditions, indicating the

need for additional studies. It has been reported that renal

fibrosis is the result of multiple signaling pathways, such as the

Wnt, Notch, and Hippo signaling pathways, and

corresponding cytokines, such as TGF-β. Fibrosis of the

kidney is a relatively complex process, including signaling

pathways interacting with one another. Targeting one

signaling pathway or cytokine may not allow the full

understanding of the occurrence, development, and

prevention of renal fibrosis (Casella et al., 2014). The

specific molecular mechanism of the Hippo signaling

pathway in AKI-induced renal tubular epithelial cell

apoptosis, regeneration, EMT, and interstitial fibrosis as

well as its interaction with the Wnt/β-catenin and TGF-β/
Smad signaling pathways need further elucidation (Shan,

2021). Therefore, future studies should explore multiple

signaling pathways and their cross-correlation to

comprehensively understand the process of renal fibrosis

and to identify the key intersection between signaling

pathways. Additionally, the targeted regulation between the

Hippo pathway and cytokines needs to be further investigated

(Zheng et al., 2017). Future studies need to explore strategies

(such as modulation of YAP, LATS1/2, and MST1/

2 expression) that will help make clinical diagnosis more

accurate, more sensitive, and faster to allow assessment of

the progress and improve the treatment and prognosis of

kidney diseases. However, there is no consensus on the best

clinical indication, and high-quality clinical trials are still

needed to promote its clinical application. Additionally,

TCM currently lacks sufficient knowledge of how the

Hippo signaling pathway regulates kidney disease. In the

future, in-depth research on the regulation of the Hippo

signaling pathway by TCM will provide new ideas and

targets for the treatment of kidney diseases.

Conclusion

Recent studies have shown that the Hippo signaling

pathway regulates cell proliferation and apoptosis and that

it is closely associated with organ structure and function. In

addition, the Hippo signaling pathway is involved in the

occurrence and development of nephropathy. Recent in-

depth studies of signaling pathways have revealed their

specificity and diversity in different tissues, cells, and

organs. The signaling pathways and molecular mechanisms

involved in diseases are complex with various effects resulting

from the same molecule occurring in different cells. Thus, the

signaling pathways involved in kidney disease need further

study to achieve advancements in drug development, clinical

diagnosis, and treatment, thereby providing hope for

improved treatment of kidney diseases.
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