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Environmental insults including respiratory infections, in combination with

genetic predisposition, may lead to lung diseases such as chronic

obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory

distress syndrome. Common characteristics of these diseases are infiltration

and activation of inflammatory cells and abnormal extracellular matrix (ECM)

turnover, leading to tissue damage and impairments in lung function. The ECM

provides three-dimensional (3D) architectural support to the lung and crucial

biochemical and biophysical cues to the cells, directing cellular processes. As

immune cells travel to reach any site of injury, they encounter the composition

and various mechanical features of the ECM. Emerging evidence demonstrates

the crucial role played by the local environment in recruiting immune cells and

their function in lung diseases. Moreover, recent developments in the field have

elucidated considerable differences in responses of immune cells in two-

dimensional versus 3D modeling systems. Examining the effect of individual

parameters of the ECM to study their effect independently and collectively in a

3Dmicroenvironment will help in better understanding disease pathobiology. In

this article, we discuss the importance of investigating cellular migration and

recent advances in this field. Moreover, we summarize changes in the ECM in

lung diseases and the potential impacts on infiltrating immune cell migration in

these diseases. There has been compelling progress in this field that encourages

further developments, such as advanced in vitro 3D modeling using native

ECM-based models, patient-derived materials, and bioprinting. We conclude

with an overview of these state-of-the-art methodologies, followed by a
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discussion on developing novel and innovative models and the practical

challenges envisaged in implementing and utilizing these systems.

KEYWORDS

extracellularmatrix, migration, infiltrating immune cells, in vitromodels, lung diseases,
three-dimensional

1. Introduction

1.1 ECM as the highway for infiltrating
immune cells

Cellular migration has a fundamental role in directing

development, tissue homeostasis, and disease progression

(Morales et al., 2021; Yamada et al., 2022). Cells have different

modes of migration–singular, amoeboid or mesenchymal, or

collective fashion depending on the local tissue

microenvironment and activated signaling pathways (van

Helvert et al., 2018; Yamada and Sixt, 2019). The extracellular

matrix (ECM) of the lung is a dynamic structural network which

consists of proteins, glycosaminoglycans, and glycoproteins

(Burgstaller et al., 2017). It provides structural support during

important mechanical events of breathing. It is also an important

bioactive component of the cellular microenvironment as it

provides cues that regulate cellular processes (Theocharis et al.,

2016; Yamada and Sixt, 2019). Local molecular composition

(including growth factors and cytokines) and biomechanical

properties (elasticity, stiffness, and compression forces) of the

ECM can govern migration of (infiltrating) immune cells (van

Helvert et al., 2018; Yamada and Sixt, 2019; Morales et al., 2021).

Other factors that influence cellular migration include

confinement of cells, ECM crosslinking and remodeling, and

ECM geometry such as topology, fiber alignment, and porosity

(van Helvert et al., 2018; Yamada and Sixt, 2019; Morales et al.,

2021; Burgess and Harmsen, 2022). Further, ECM fragments

resultant from remodeling can promote or inhibit cellular

migration (Gu et al., 2018; Nissen et al., 2018; Sharma et al.,

2018; de Castro Bras and Frangogiannis, 2020).

The lung is a unique organ exposed to exogenous environmental

insults and infectious agents and consequently has highly regulated

immune and damage repair responses. Severe or repetitive insults

can cause micro-injuries leading to acute and chronic lung diseases

(Labaki and Han, 2020). Chronic lung diseases are in general

incurable and often have high hospitalization rates. Additionally,

some patients are at risk of disease exacerbations that accelerate

disease progression. Moreover, insight into the pathobiology of each

of the lung diseases is still limited (Labaki andHan, 2020). Therefore,

understanding the immunopathology of each of these diseases is

essential for developing effective clinical management and new

treatment approaches. Chronic obstructive pulmonary disease

(COPD), lung fibrosis, asthma, and acute respiratory distress

syndrome (ARDS) are all characterized by abnormal ECM

turnover and chronic inflammatory responses in varying degrees,

which lead to tissue damage (Ito et al., 2019; Burgess and Harmsen,

2022).

Investigating cell-ECM interactions as a contributing factor

to the disease progression has been emerging in the last decade

(McMahon et al., 2021; Burgess and Harmsen, 2022). Upon

injury, the process of tissue repair is initiated, during which

recruited immune cells migrate through ECM to reach the target

location. Inflammation and resolution of wound healing

processes are regulated by contribution of (infiltrating)

immune cells (Volk et al., 2013; Manon-Jensen et al., 2016;

Wang et al., 2022). It is likely that their migration, in these

lung diseases, through aberrant ECM will affect the function of

the infiltrating immune cells.

Conventional immune cell migration studies using standard

two-dimensional (2D) cell assessment systems have provided

conceptual advances (Puttur et al., 2019). Such studies have

revealed a specialized mode of migration (repetitive protrusion,

adhesion and contraction) that cells adopt in 2D

microenvironments (Hallmann et al., 2015; Yamada and Sixt,

2019). However, it is now clear that cells implement several

different modes of migration in three-dimensional (3D)

environments (Hallmann et al., 2015; Yamada and Sixt, 2019). In

both 2D and 3D in vitro migration assays the role of ECM in

regulating these processes has been explored. Several different

materials have been used as ECM-mimicking substrates. These

include synthetic polymers such as poly (ethylene glycol)

(Widener et al., 2021) and natural polymers such as collagen (Li

et al., 2018; Surendran et al., 2021). Methodologies including

precision cut lung slices (PCLS), organoids, lung-on-chip, whole

decellularized lung tissues, and hydrogels have been developed over

the past decades to mimic physiological environments in vitro, each

with their own advantages and challenges (Gkatzis et al., 2018; Liu

et al., 2019; Nizamoglu et al., 2022). However, there has been limited

implementation of such models for studying immune cell

infiltration, thereby providing future opportunities for exploring

the dynamics between ECM and infiltrating immune cell migration

in the context of lung diseases.

1.2 Flyovers: New discoveries in cellular
migration and implications of the ECM
highway

As the field moves ahead with innovative models, it is

simultaneously important to consider new discoveries in

cellular migration and how the inclusion of ECM could add
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to this knowledge. Cells produce and leave behind retraction

fibers during migration that support the formation of vesicle-like

structures called migrasomes (Tavano and Heisenberg, 2019; Fan

et al., 2022). Cancer cells more frequently migrated along residual

retraction fibers in microfluidic channels compared to channels

without these fibers (Lee et al., 2021). Neutrophils have been

shown to leave cytoplasmic trails containing chemokines for

T cells upon viral infection, which may very well consist of

migrasomes (Lim et al., 2015). The involvement of the ECM was

highlighted through the discovery that the generation of these

extracellular vesicles was being triggered by the interaction of

cells with fibronectin fibers (Wu et al., 2017; Lee et al., 2021). In

concert, migratory trajectories of chemotaxing neutrophils have

previously been shown dependent on collagen concentration

TABLE 1 Changes in the components of extracellular matrix in lung diseases compared to non-diseased controls (unless otherwise specified). *

ECM proteins Lung fibrosis COPD Asthma ARDS

Collagen Type I a) Higher in airways
Liu et al. (2021a);
b) Higher in
fibroblastic foci
Herrera et al. (2019)

Lower in inner layer of large and small
airways and outer layer of small
airways Hogg et al. (2009); Annoni
et al. (2012)

a) Higher in small airways
Dolhnikoff et al. (2009);
b) Higher deposits in reticular
basement membrane Hough et al.
(2020)

Higher in early and late phase
Santos et al. (2006)

Collagen Type III a) Higher in airways
Liu et al. (2021a);
b) Higher in
fibroblastic foci
Herrera et al. (2019)

Relatively higher compared to
collagen type I Hogg et al. (2009)

a) Lower in small airways of fatal
asthma Dolhnikoff et al. (2009);
b) Higher in the airway mucosa
Araujo et al. (2008)

Higher in the early phase Santos
et al. (2006)

Collagen Type IV Higher in fibroblastic
foci Herrera et al.
(2018)

Higher in large airways with epithelial
damage Dekkers et al. (2021)

Collagen type IV, alpha 3 deposition
is lower in the asthmatic airways
Burgess et al. (2010)

Unknown

Collagen Type VI Higher in fibroblastic
foci Herrera et al.
(2019)

Higher in airways Abdillahi et al.
(2015)

Higher in the alveolar parenchyma of
uncontrolled asthmatics Andersson
et al. (2018)

Unknown

Other collagens Collagen type V: higher
in fibroblastic foci
Herrera et al. (2019)

a) Overall deposition higher in
collagen in alveolar walls and small
airways walls Eurlings et al. (2014);
b) Lower total collagen Hogg et al.
(2009)

Collagen type V: higher in airways
Liu et al. (2021b)

Unknown

Elastin Higher in fibrotic areas
Burgess et al. (2016)

Lower in alveolar and small airways
walls Eurlings et al. (2014)

a) Lower in subepithelium Reddel
et al. (2012);
b) Higher in submucosa Reddel et al.
(2012)

a) Degraded in the early phase
Santos et al. (2006);
b) Deposited in the late phase
Santos et al. (2006)

Fibronectin Higher in fibroblastic
foci Herrera et al.
(2019)

Higher in inner and outer layer of
small airways, no difference in
parenchyma Annoni et al. (2012)

Higher in the outer area of the small
airways Dolhnikoff et al. (2009)

Higher in both early and late
phase of ARDS Morales et al.
(2011); Ito et al. (2019)

Laminin Unknown β2: higher in large airways with
epithelial damage Dekkers et al.
(2021)

ɑ2,3,5 chains: higher epithelial
basement membrane expression;
ɑ4,5 chains: lower in ASM BM
expression Dekkers et al. (2021)

Unknown

Glycosaminoglycans,
glycoproteins and
proteoglycans

Hyaluronic acid: higher
expression in IPF lungs
Herrera et al. (2019);
Versican: higher
expression in
fibroblastic foci
Herrera et al. (2019);
Tenascin-C: higher
expression in
fibroblastic foci Burgess
et al. (2016)

Hyaluronic acid: higher in alveolar
and small airway walls Eurlings et al.
(2014);
Versican: lower in distal parenchyma
Annoni et al. (2012);
Decorin, biglycan, and lumican: No
differences Annoni et al. (2012), lower
in peribronchiolar area in severe
emphysema van Straaten et al. (1999);
Tenascin-C: higher in subepithelial
area of large airways and inner layer of
small airways Annoni et al. (2012)

Hyaluronic acid: higher in peri-
bronchioles and perivascular regions
in the lung Lauer et al. (2015);
Decorin, lumican, and versican:
higher in the subepithelial layer of
the airway wall in atopic asthmatics
Hough et al. (2020);
Biglycan, versican and decorin:
higher percentage areas in both
central airways and alveolar
parenchyma of non-controlled
asthma Weitoft et al. (2014)

Versican: higher in small airway
walls of patients with fatal ARDS
Morales et al. (2011), higher in
thickened alveolar walls
Bensadoun et al. (1996)

*only the most frequently investigated ECM components are included. Soluble ECM fragments reported in fluids including bronchoalveolar lavage and sputum are beyond the scope of this

table.
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(Francois et al., 2021). Thus, migrasomes in combination with

trails, could increase efficiency of directional migration. The

effect of healthy and diseased ECM on the cellular source of

migrasomes and trails could begin to explain the continual

recruitment of immune cells. Whether a diseased ECM

highway provides additional road bumps in the formation of

migrasomes and migratory trails remains unexplored.

Altogether, these studies highlight the role of the ECM in not

just the regulation of the migratory behavior of first responders,

but also the recruitment of subsequent immune cells or

secondary responses such as adaptive immunity. A study

using Drosophila embryos demonstrated weakened cell-ECM

connections during cellular division that facilitated

macrophage infiltration (Akhmanova et al., 2022). Although it

may sound counter intuitive, the (increased rate of) division of

cells might act as an “exit” from the ECM highway. A similar

phenomenon occurring in diseases associated with

hyperproliferation of stromal cells such as asthma and fibrotic

lung diseases may be possible but it is unexplored to date. These

new insights mentioned above on how infiltrating immune cells

interact with ECM and the (resident or recruited) cells can also be

further expanded in the context of the influence of ECM using

in vitro models.

In this review, we highlight the importance of interactions

between the “highway” ECM and infiltrating cells in the

pathogenesis of various lung diseases. We review emerging

technologies for in vitro modeling that better represent

physiological characteristics. Some challenges that exist for

implementing these models to study ECM-immune cell

interactions during their migration into lung tissue will also

be discussed.

2. A hazardous highway: Altered ECM
in lung diseases and effects on
infiltrating immune cells

Knowledge of how ECM relates to cellular migration has

been the focus of recent studies illustrating that the ECM acts as a

highway for the migrating/infiltrating immune cells. Biochemical

and biomechanical properties of ECM influence the migratory

behavior of cells, including immune cells. The importance of

available adhesion ligands was established when fibroblasts were

able to migrate along stiffness gradients (durotaxis) on

fibronectin-coated substrates, whereas this ability was lost on

substrates coated with laminin (Hartman et al., 2017). Increased

fiber alignment promoted cell migration and directionality of

migration (Wang et al., 2018). The inability of aged fibroblasts to

produce a hyaluronan and proteoglycan cross-linking

proteinresulted in the formation of a more aligned matrix that

promoted metastasis while inhibiting T cell migration (Kaur

et al., 2019). Accelerated ageing is a distinctive feature of some

chronic lung diseases such as COPD (Brandsma et al., 2017) and

idiopathic pulmonary fibrosis (IPF) (Chilosi et al., 2013; Selman

and Pardo, 2021), making the above observation relevant to the

field of lung research. In addition to being a reservoir for growth

factors and cytokines, other factors of the ECM discussed here

collectively influence the migratory behavior of infiltrating

immune cells. As the composition of the ECM has been the

main focus of many studies so far, most knowledge is on the

influence of different ECM components on cell migration. A

summary of the changes in composition of lung ECM during

lung diseases can be found in Table 1. It is evident from this table

that different studies have different conclusions. The diversity in

these observations could be attributed to disease heterogeneity,

variation in study population, and disease phenotypes.

Nevertheless, the table can serve as a guide while developing

in vitromodels within the realms of current knowledge. A simple

assumption would be that altered composition of ECM triggers

changes in the mesenchymal mode of migration due to the

alterations in the number of binding domains available for

integrins (Yamada and Sixt, 2019). The following subsections

will discuss how infiltrating immune cells participate in lung

diseases and what is the role of ECM in influencing these

migration patterns in the context of lung fibrosis, COPD,

asthma, and ARDS.

2.1 Lung fibrosis

ECM in lung parenchyma during lung fibrosis is substantially

altered from healthy lungs. This has been illustrated both in

terms of amounts and/or ratios of ECM components and with

respect to the 3D organization of the ECM network (Burgess

et al., 2016; Burgstaller et al., 2017; Burgess and Harmsen, 2022;

Nizamoglu and Burgess, 2022). Along with altered biochemical

composition (Table 1), altered mechanical environment with

increased stiffness, decreased viscoelastic relaxation, as well as

disorganized fibers and abnormal topography are well-

documented changes in ECM in lung fibrosis (Booth et al.,

2012; Tjin et al., 2017; de Hilster et al., 2020).

The involvement of circulating immune cells in lung fibrosis

is well recognized: among these cells are monocytes and

neutrophils (Ishikawa et al., 2021). While the details of

recruitment and involvement of these cells are outside scope

of this review, these processes can take place through both soluble

mediators (Huang et al., 2020; van Geffen et al., 2021) and

mechanical factors (Du et al., 2022). Higher counts of

monocytes in blood were associated with faster disease

progression in interstitial lung diseases (Kim et al., 2022). In

mice, monocytes arriving in fibrotic lung tissue transform to

macrophages to repopulate lung tissue and remain in the tissue

with higher profibrotic activity compared to tissue-resident

macrophages (Misharin et al., 2017). Monocytes and

neutrophils were found in higher numbers in bronchoalveolar

lavage (BAL) fluid of IPF patients (Kinder et al., 2008).
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Neutrophils were also increased during acute exacerbations of

lung fibrosis (Lee et al., 2012). Due to their dynamic nature, both

monocytes/macrophages and neutrophils are readily instructed

by their microenvironment (Nissen et al., 2018; Vasse et al., 2018;

Vasse et al., 2021).

The altered (fibrotic) microenvironment influences

infiltrating immune cells in several different ways. In a study,

fibroblasts cultured for different durations resulted in varying

degrees of fiber organization in collagen matrices (Pakshir et al.,

2019). These alterations in fiber organization, however, were

unable to influence macrophage migration speed in 3D (Pakshir

et al., 2019). On the other hand, neutrophil migration speed but

not the directionality, was lower in denser 3D collagen networks

(Francois et al., 2021). When fiber crosslinking was applied,

increased crosslinking of 2D fibrin surfaces promoted

macrophage migration. However, the fiber crosslinking also

changed other mechanical parameters, such as stiffness. This

unintended change might have also influenced the migrational

behavior of the infiltrating immune cells (Hsieh et al., 2019). The

influence of ECM crosslinking on migration of neutrophils has

yet to be described. Similarly, the influence of altered stress

relaxation, another important property of altered

microenvironment in fibrotic lung ECM, on infiltrating

immune cells has not been examined. New insights for lung

fibrosis research can be drawn from a recent study illustrating

minimal migration of cancer cells on 2D surfaces which lack

stress relaxation, but robust migration of the same cells on the

surfaces with high stress relaxation capacity (Adebowale et al.,

2021). In addition to the changes in the ECM organization,

released ECM fragments can also alter the migratory behavior of

the lung resident cells (Nizamoglu and Burgess, 2022). Although

there are recent studies focusing on these fragments (Burgess and

Harmsen, 2022), their potential influence on migratory behavior

and function of infiltrating immune cells remains unknown.

2.2 Chronic obstructive pulmonary
disease

COPD is characterized by excessive ECM remodeling and

ECM deposition around the small airways, while the alveolar

region is characterized by ECM disruption and tissue destruction

(Burgess et al., 2016; Brandsma et al., 2020). Inflammatory

responses are central to COPD and understanding the

immunopathology is particularly important as current

treatments are ineffective in mitigating disease progression

and lung tissue damage. In the context of migration in

COPD, neutrophils, monocytes, and T cells to an extent, and

have received most attention. These cells, and associated secreted

factors, have been reported elevated in patients’ sputum, blood,

and BAL, and often correlate with the progression of COPD

(Hogg et al., 2004; Vargas-Rojas et al., 2011). In addition,

neutrophils and macrophages from patients with COPD

display impaired effector functions such as efferocytosis and

phagocytosis (Taylor et al., 2010; Tan et al., 2017; Dicker

et al., 2018; Belchamber et al., 2019), likely extending to a

variation in normal migratory behavior of infiltrating immune

cells. This has been previously demonstrated with respect to

chemotactic cytokines (Sapey et al., 2011; Costa et al., 2016).

While studies exploring the influence of the ECM and ECM

fragments on immune cell migration in COPD are limited,

sputum has often been investigated as a chemotactic agent.

CD14+ monocytes from healthy individuals not only migrated

more than CD14+ monocytes from patients with COPD, but also

more towards COPD sputum compared to normal sputum (Ravi

et al., 2017). Similarly, neutrophils from patients with COPD

migrated more towards COPD sputum compared to normal

sputum, although T cells from these patients did not show the

same trend (Wu et al., 2015). These studies did not identify

specific sputum factors responsible for the induction of immune

migratory responses. Thus, there can be multiple constituents of

the sputum that can have chemotactic effects on cells including

ECM fragments (Nissen et al., 2018). Indeed, alterations in

sputum composition between health and disease have been

demonstrated (Titz et al., 2015; Moon et al., 2018), also with

respect to differential levels of ECM fragments that can alter

cellular migration in patients with COPD. For example,

fragments of production or degradation of collagen

(Schumann et al., 2018), elastin (Ronnow et al., 2019), and

fibrinogen (Manon-Jensen et al., 2019) have also been

detected in sputum and serum/plasma in patients with COPD

and are proposed as biomarkers of disease progression. Proline-

glycine-proline (PGP), a matrikine derived from collagen, is

elevated in sputum of patients with COPD and is a potent

chemoattractant for neutrophils (Gaggar et al., 2008; O’Reilly

et al., 2013; Patel et al., 2018). However, the role of abnormal

ECM in recruitment and regulation of migratory behavior of

immune cells remains unexplored.

Secreted pro-inflammatory factors such as cytokines and

proteases perpetuate immune responses and remodel ECM

(Ni and Dong, 2018; Brightling and Greening, 2019). In

COPD, higher neutrophil elastase activity was associated with

emphysematous tissue destruction (Walton et al., 2016), and

lower trans-endothelial T cell migration (Rao et al., 2004).

Consequently, biomechanical properties of lung tissue of

patients with COPD are altered, such as loss of elasticity,

increased stiffness around small airways, and decreased

stiffness in the emphysematous regions (Burgess and

Harmsen, 2022). These changes are bound to alter the

characteristics of cellular migration.

2.3 Asthma

Asthma is characterized by hallmark features such as airway

inflammation and remodelling. Airway remodeling, a feature of
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asthma—but also seen in COPD, refers to the structural and

ECM changes in both small and large airways (Hough et al.,

2020). The profile of ECM is altered in the asthmatic airways with

less deposition of collagen type IV, elastin, and more deposition

of collagen type I, fibronectin, laminin, periostin, versican,

decorin, and lumican (Burgess et al., 2010; Hough et al., 2020;

Dekkers et al., 2021). Recently, also fibrillar collagen was shown

to be fragmented and disorganized in the lamina propria of large

and small airways from patients with asthma (Mostaco-Guidolin

et al., 2019). Several factors have been identified in asthma that

led to abnormal turnover of ECM components such as epigenetic

modifications, recurrent viral infections and excess fibrolysis

(Pech et al., 2018; Nemani et al., 2021; Weckmann et al.,

2021; Ronnow et al., 2022).

Several immune cells, including neutrophils, eosinophils,

monocytes, macrophages, and mast cells, among others, are

considered to play an important role in airway remodeling in

asthma (Holgate et al., 2015; Helfrich et al., 2019). Alveolar

macrophages, mast cells, eosinophils, and neutrophils were

shown to degrade ECM by releasing matrix metalloproteinase

(MMP)−9 (Hough et al., 2020). MMP-driven degradation of

collagen released biologically active fragments in asthma such as

the pro-neutrophilic matrikine PGP (Patel and Snelgrove, 2018).

Another significant matrikine in asthma is tumstatin, a non-

collagenous domain of collagen type IV α3 which was shown to

be significantly reduced in airways from patients with asthma

(Burgess et al., 2010). Interestingly, when mice were treated with

tumstatin the inflammatory cell counts in the lungs were reduced

(Burgess et al., 2010).

It was recently suggested that migration of tissue eosinophils

in ECM - likely occurs via periostin interactions which were

particularly higher in T2-high asthmaand correlated with

FIGURE 1
Schematic representation of structural ECM changes in lung diseases, ideal properties for modeling immune cell migration through ECM in
these disease conditions and challenges associated with generating such models. COPD = chronic obstructive pulmonary disease, ARDS = acute
respiratory distress syndrome, ECM = extracellular matrix, BM = basement membrane, 3D = three-dimensional.
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recruitment of eosinophils to the airway (Johansson, 2017;

Burgess et al., 2020). Another study reported the chemotaxis

of neutrophils was reduced on tumstatin-induced asthmatic

airway smooth muscle cell-derived ECM (Harkness et al.,

2017). Using a human airway-on-chip, transmigration of

immune cells to the epithelial lumen from the vascular

microchannel during a viral infection was analyzed. Greatest

neutrophil adhesion at the surface of the microvascular

endothelium was observed in presence of IL-13 stimulation

(to mimic T-helper cell type 2 asthmatic phenotype) rapidly

followed by neutrophil trans-endothelial migration through a

combination of migratory events (Nawroth et al., 2020).

2.4 Acute respiratory distress syndrome

In ARDS, changes in pulmonary ECM are a direct

consequence of the inflammatory injury and subsequent repair

responses (Tomashefski, 2000; Ito et al., 2019). The changes in

ECM can be divided in distinct ARDS phases, with ECM

destruction and alveolar and capillary damage predominating

in the early phase, which transitions to a fibroproliferative repair

phase later. However, the phases are not strictly separated as early

fibroblast activation and matrix deposition are also present

(Meduri et al., 1998; Boyd et al., 2020).

Early recruitment of neutrophils and monocytes, following

lung injury results in ECM degradation, predominantly through

the production of MMPs (Torii et al., 1997; Davey et al., 2011).

Fragments generated from degradation of ECM play a role in

amplifying recruitment of inflammatory cells. The matrikines

PGP and its acetylated form induce neutrophil chemotactic

activity and migration (Biesalski, 2007; Pierpaoli et al., 2011;

Sava et al., 2015; Misiura and Miltyk, 2019; Palmieri et al., 2019).

This effect was dose dependent (van Houwelingen et al., 2008)

and occurred through C-X-C motif chemokine receptor two

interaction on leukocytes (Weathington et al., 2006; Braber

et al., 2011; Kim et al., 2011; Hahn et al., 2015; Sharma et al.,

2018; Robison et al., 2021). Additionally, the matricellular

protein cellular communication network factor 1 (CCN1) was

found in high concentrations in BAL fluid of patients with ARDS,

while mice overexpressing CCN1 spontaneously developed

ARDS coinciding with neutrophil influx (Grazioli et al., 2015;

Morrell et al., 2020). The direct effect of CCN1 on cell migration

is not straightforward, as it appeared to increase chemokinesis by

interaction with αMβ2 integrins. However, prolonged presence

of CCN1 inhibited cell migration and played a role in neutrophil

clearance through efferocytosis (Lobel et al., 2012; Jun et al.,

2015). Fibronectin deposition in the acute phase of ARDS

facilitated neutrophil migration partly by higher expression

and redistribution of intracellular adhesion molecule-1

(ICAM-1) in endothelial cells (Sava et al., 2015). In a model

of S. aureus induced skin infection, hyaluronic acid deposition

was increased in ARDS and the failure to digest this ECM

increased neutrophil influx (Hällgren et al., 1989; Dokoshi

et al., 2020).

Less is known about the exact ECM changes in the

fibroproliferative phase of ARDS. Synthesis of collagen types I

and III was present, but unlike lung fibrosis; at this stage no

information on the crosslinking states of these collagens exists.

Interestingly, commonalities including similar ECM

composition and distribution between IPF and ARDS have

been recognized (Raghu et al., 1985). In patients with ARDS,

epithelial lining fluid levels of C-terminal propeptide (marker of

collagen type I synthesis) were increased, while degradation

products of collagen type I/II were reduced compared to

individuals at risk of ARDS/ALI (Armstrong et al., 1999).

BAL measurement of N-terminal peptide of alveolar

procollagen type III, a precursor of collagen type III, has been

validated as a diagnostic tool to indicate fibroproliferation in

ARDS patients as well as to identify patients who can benefit

from corticosteroid treatment (Forel et al., 2015; Hamon et al.,

2019). Serological and BAL levels of hyaluronic acid were found

associated with ARDS severity and organ failure (Esposito et al.,

2017). Recently, lung tissue obtained from patients with

coronavirus disease (COVID-19) induced ARDS, stained

positively for hyaluronic acid which was associated with the

degree of alveolar damage (Hellman et al., 2020). An in vitro

chemotaxis model recently showed that collagen type III had an

inhibitory effect on neutrophil migration regarding track length,

direction, and targeting (Kraus et al., 2021). However, it is still

unknown whether these mechanisms are active in ARDS.

3 In vitro modeling

To further strengthen understanding of interactions between

infiltrating immune cells and ECM in the context of migration,

development of innovative in vitro models is key. Some of the

ideal properties for in vitromodeling of immune cell migration in

different types of lung diseases are illustrated in Figure 1.

Moving towards in vitromodels for studying ECM influences

on immune cell migration, ECM-derived in vitro models are

emerging as a novel methodology. ECM-derived systems have

been established using single proteins or by decellularization of

native lung tissue. These models recapitulate the biochemical and

mechanical properties of native ECM more closely than 2D

models in which cells are cultured on plastic with

unrepresentative polarity. To facilitate the investigation of

altered biomechanics separately or in combination with

altered composition of lung ECM, development of novel

methodologies and ECM-mimicking biomaterials is warranted.

This includes but is not limited to: changing pore size or fiber

density without changing ECM-composition or altering

mechanical properties without changing fiber density. In a

recent study from our group, we demonstrated the possibility

of modulating stromal mechanical properties without altering
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composition (Nizamoglu et al., 2022). Another study

implemented macromolecular crowding to induce changes in

the collagen fibril networks, without significantly changing the

bulk stiffness (Ranamukhaarachchi et al., 2019).

In addition to native ECM-based models, patient-derived

materials are an important source of cells that are essential for

establishing in vivo representative models. Involving multiple cell

types (such as epithelial cells or fibroblasts) adds to the

physiological relevance of a model and these cell-cell

interactions can provide invaluable information about disease-

driving mechanisms. Effects of cell-cell interactions on immune

cell migration has been demonstrated for many types of immune

cells, such as between peripheral blood-derived monocytes and

leukocytes (Costa et al., 2016), between fibroblasts and

macrophages (Ford et al., 2019), and between epithelial

spheroids and neutrophils (Surendran et al., 2021).

Investigating the influence of these cell-cell interactions on

(infiltrating) cell migration within the context of diseased

ECM could bring new perspectives to our current

understanding of lung disease pathobiology.

3.1 Challenges associated with 3D
migration models

Patient-derived material has the highest physiological

relevance when used for modeling in vitro systems, however,

such samples pose various challenges associated with their

nature. The availability of human lung tissue for scientific

research is rare, except in some specialized clinical centers.

Moreover, large volumes of tissue cannot be obtained for

every disease; for instance, for asthma and ARDS usually only

small bronchial biopsies are available. Furthermore, obtaining

true healthy control tissue is an added obstacle. Control “healthy”

material is often obtained from lung tissue resected during

lobectomies, tumors, or transplantation. The resected tissue is

assessed for morphological and anatomical normalcy and

although the cells and tissues may appear to be healthy, their

microenvironment is possibly altered as a consequence of disease

compared to a healthy individual. Patient-to-patient variability

creates additional challenges while working with the small(er)

sample sizes that are inherent to such models. Modeling chronic

diseases should also be accompanied by modeling with

appropriate controls, which include important considerations

such as matching for age, sex, and smoking history. However, the

limitations in the availability of precious patient material also

constrains the inclusion of proper controls to perform

appropriate comparisons. This challenge of limited availability

of donor material also extends to models that utilize human-

derived ECM. Another important consideration for ECM-based

models is heterogeneity of mechanical properties in different

compartments of the available human material. For example,

small airways in COPD become stiffer but the parenchyma on the

whole appears softer due to enlarged emphysematous regions

while the remaining alveolar walls are measured as having

stiffness similar to control alveolar walls (Burgess and

Harmsen, 2022). There are several well-established protocols

to decellularize the lung to obtain either intact scaffolds or

solubilized ECM, that is, reconstituted to form hydrogels

(Wagner et al., 2013; Gilpin and Wagner, 2018; de Hilster

et al., 2020). An unmet challenge for these models, however,

is recellularization (Wagner et al., 2013). Current efforts at

recellularization are unable to ensure appropriate 3D

distribution of cells. Advances in 3D bioprinting technology

such as ECM based bioinks reinforced with cells can bolster

the development of models with correct spatial distribution of

cells (De Santis et al., 2021; Falcones et al., 2021).

Conducting experiments in 3D provides a plethora of

information in addition to the physiological relevance. An

extra dimension goes hand-in-hand with added challenges for

retrieving readouts to generate these data. Visualizing the

network of ECM with varying degrees of resolution, is

possible using histological staining (Masson Trichrome,

Picrosirius Red), immunohistochemistry and/or

immunofluorescence staining, scanning electron microscopy,

and atomic force microscopy. However, sample processing

techniques may limit the extent of visualization and/or

introduce artefacts. For example, sectioning the sample for

staining procedures limits the information provided to only

one plane, the harsh treatments necessary for scanning

electron microscopy sample preparation can alter ECM

structure. Similarly, fluorescence imaging approaches might be

hindered by auto-fluorescence of native ECM. Second harmonics

generation and multiphoton microscopy are emerging as

prominent high-resolution imaging techniques for visualizing

the matrix and overcoming these limitations (Mayorca-Guiliani

et al., 2017; Tjin et al., 2017). Fluorescent-labeling of cells or

matrix has also allowed deciphering matrix changes and cellular

movement in different studies (Fischer et al., 2022). Digital

holographic microscopy has been utilized to visualize cell

migration in 3D Matrigel matrices (Hellesvik et al., 2020).

While each visualization method has advantages and

disadvantages (Martinez-Garcia et al., 2022), combination of

different techniques for the visualization of migrating cells

and the ECMnetworkmight be the key for advancing knowledge.

Another important feature of the lung is the presence of

oxygen gradient. The alveolar-arterial (A-a) oxygen gradient has

been previously used as an indicator of disease severity and

outcome in pneumonia and recently in COVID-19 (Singh et al.,

2022). Often, acute and chronic lung diseases are also

characterized by hypoxemia and hypoxia. Thus, modeling

gradients in vitro systems, although challenging, is crucial as

cells modulate their responses depending on the oxygen levels in

their microenvironment (Zenewicz, 2017). Most 3D migration

systems are modeled under static conditions, missing the

dynamic state of the lung. Inclusion of respiratory mechanics
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associated with breathing and blood flow also poses a challenge

while modeling these systems. One such event is cyclic

deformations which have been mimicked in lung-on-chip

models recently (Kumar et al., 2022; Zhu et al., 2022).

Including cyclic deformations in the state-of-the-art ECM-

based migration models would increase the translational

capacity of the models and bring them one step closer to in

vivo. Similarly, the lack of (interstitial) flow is an important

aspect that can add another dimension to these migration

models. The effect of interstitial flow was elucidated when

tumor-associated interstitial flow promoted tumor-like

characteristics in healthy macrophages (Li et al., 2018).

Similarly, neutrophils were shown to infiltrate cancer-derived

spheroids deeper when a flow was present in the in vitro system

(Surendran et al., 2021).

Altogether, using innovative 3D in vitro models to mimic

migration of infiltrating immune cells in lung diseases has been

emerging as a new possibility. Developing new systems to

represent altered ECM composition, structure, organization

and mechanics in each of these lung diseases will help us

advance our understanding how the ECM-immune cell

interplay influences the migration of these cells.

4 Conclusion: Highway to heal

Interactions with the microenvironment critically direct cell

behavior, including cell migration. Therefore, it is highly likely

that disrupted ECM homeostasis in lung diseases such as lung

fibrosis, COPD, asthma and/or ARDS alters the behavior of

infiltrating inflammatory cells, similar to how a hazardous

highway would hinder the smooth flow of traffic. Advances in

methodologies for 3D culture systems and advances in the

biomaterials field in the last decade have greatly improved our

understanding of how migrating cells interact with their

microenvironment with respect to the biochemical and

biomechanical properties. Emerging data suggest that the

contributions of different ECM properties may differ when

assessed individually as compared to when in combinations.

Targeting isolated parameters within an altered ECM is one of

the important questions upon which future research should

focus. Another important aspect that remains unknown is the

influence that lung-resident cells, such as epithelial cells,

endothelial cells and fibroblasts, have on migration of immune

cells. Multicellular in vitro models are necessary to investigate

whether resident lung cells modulate immune cell migration

through abnormal ECM in lung diseases. Developing 3D ECM

in vitro models helps to further our understanding of the

pathobiology of a disease (Tabdanov et al., 2021). Recently,

modulating cancer ECM has been shown to have potential for

therapeutic targeting as weakening cell-matrix adhesion and

reducing fiber rigidity reduced cancer cell invasiveness (Pal

et al., 2021). Therefore, it is not unlikely that similar

approaches targeting the contribution of altered ECM to

immune cell recruitment could be employed as therapeutic

strategies against lung diseases.

The lack of techniques to obtain information from these novel

models poses a future challenge. Nevertheless, steady progress has

led to advances in new qualitative and quantitative methodologies

for studying disease mechanisms using 3D models. Newer

approaches for better imaging, improved compositional

analyses, recellularization, and modeling dynamic conditions are

paving the way for improved and innovative models.

Incorporation of patient-derived material such as native ECM

and cells in research will play an important role in our

understanding of disease origin and progression.

In summary, understanding the recruitment of immune cells

from peripheral blood during lung diseases and how the diseased

ECM alters their behavior is a key factor to deepen our

knowledge of these diseases and to start generating hypotheses

revolving around targeting these interactions for the

development of new treatment strategies.
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