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Bone homeostasis depends on a precise dynamic balance between bone

resorption and bone formation, involving a series of complex and highly

regulated steps. Any imbalance in this process can cause disturbances in

bone metabolism and lead to the development of many associated bone

diseases. Autophagy, one of the fundamental pathways for the degradation

and recycling of proteins and organelles, is a fundamental process that

regulates cellular and organismal homeostasis. Importantly, basic levels of

autophagy are present in all types of bone-associated cells. Due to the

cyclic nature of autophagy and the ongoing bone metabolism processes,

autophagy is considered a new participant in bone maintenance. Novel

therapeutic targets have emerged as a result of new mechanisms, and bone

metabolism can be controlled by interfering with autophagy by focusing on

certain regulatory molecules in autophagy. In parallel, several studies have

reported that various natural products exhibit a good potential to mediate

autophagy for the treatment of metabolic bone diseases. Therefore, we briefly

described the process of autophagy, emphasizing its function in different cell

types involved in bone development and metabolism (including bone marrow

mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and

osteoclasts), and also summarized research advances in natural product-

mediated autophagy for the treatment of metabolic bone disease caused by

dysfunction of these cells (including osteoporosis, rheumatoid joints,

osteoarthritis, fracture nonunion/delayed union). The objective of the study

was to identify the function that autophagy serves in metabolic bone disease

and the effects, potential, and challenges of natural products for the treatment

of these diseases by targeting autophagy.
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Introduction

The bone acts as the primary structural component of the

human body, which serves the functions of providing structural

support, protection and movement, mineral storage,

hematopoiesis, hormone secretion, and cognitive regulation.

The supposedly robust and static bone tissue is dynamically

remodeled continuously and regularly to carry out these intricate

duties (Hadjidakis and Androulakis, 2006). This is necessary for

microfracture recovery, the maintenance of calcium homeostasis,

and the adaptation of the bone to different stresses (Sims and

Gooi, 2008). Any imbalance in this process can cause

disturbances in bone metabolism, leading to the development

of many bone diseases such as osteoporosis (OP), osteoarthritis

(OA), rheumatoid arthritis (RA), and fracture nonunion/delayed

union, which can seriously impair patients’ quality of life and

possibly put their lives in danger (Wang S. et al., 2020). Although

various drugs have helped to reduce pain, restore bone strength,

prevent bone deformities, and maintain daily activities to some

extent, they have always had less satisfactory drawbacks, such as

the inability to reverse the disease, high costs, restrictions on

long-term drug use, and side effects (Ruderman, 2012; Sugiyama

et al., 2015; Hunter and Bierma-Zeinstra, 2019). As a result, the

current treatment strategy for these common metabolic bone

diseases is largely conservative. Researchers have never stopped

looking for novel medications, but the creation of new

medications must be supported by a thorough comprehension

of the disease mechanisms.

Autophagy provides a new perspective for understanding

metabolic bone disease, which is an intracellular survival

mechanism critical for cellular function (Kuma and

Mizushima, 2010). Autophagy is constitutive as well as

adaptive; under normal physiological conditions, basal levels

of autophagy help remove damaged and malfunctioning

cellular components and maintain basic energy homeostasis,

whereas, under various stress conditions (especially

nutritional deficiencies), upregulation of autophagy

generates energy to maintain metabolism by providing

additional nutrients from the recovered cellular components

(Kim and Lee, 2014; Li et al., 2020b). The role of this

mechanism transcends a single cell type or tissue and

extends to the entire organism. Autophagy is the

fundamental process that maintains cellular and organismal

homeostasis (Dikic and Elazar, 2018). Novel therapeutic

targets have emerged as a result of new mechanisms, and

altering autophagy by focusing on certain regulatory

molecules in autophagy can affect a number of disease

processes (Al-Bari et al., 2021). Thus, autophagy is a crucial

pharmacological target for drug development and therapeutic

intervention in a variety of diseases, including bone metabolic

disorders. More intriguingly, natural compounds derived from

plants, animals, and microorganisms have been demonstrated

to have the ability to influence autophagy through a variety of

mechanisms, and as a result, may be crucial in the prevention

or treatment of metabolic bone disease, implying the

emergence of alternative drugs with lower costs, fewer side

effects, and longer-term applications (Luk et al., 2020; Zheng

H. et al., 2020; Mueller et al., 2021).

In this review, we provided a review of the current knowledge

on the role of autophagy in bone metabolism disorders, to

explore the potential relationship between autophagy and

bone metabolism disorders. To serve as a resource for future

studies, we also presented an overview of the functions and

mechanisms of natural compounds that have been suggested to

control autophagy in the treatment of prevalent metabolic bone

disease in recent years.

Initiation and regulation of autophagy

Mammals have so far been classified as having three different

types of autophagy: chaperone-mediated autophagy (CMA),

micro-autophagy, and macro-autophagy (Mizushima and

Komatsu, 2011). This paper focuses on macro-autophagy,

henceforth referred to as autophagy. Autophagy is influenced

by multiple signaling pathways, of which the most widely studied

are the phosphoinositide3 kinase (PI3K)/protein kinase B (Akt)

and 5ʹ AMP-activated protein kinase pathways. Together, these

pathways converge on the mammalian target of rapamycin

(mTOR). mTOR recruits various proteins to form two distinct

complexes, mTORC1, and mTORC2. mTORC1 is involved in

the regulation of autophagy and is a recognized negative

regulator of autophagy (Jung et al., 2010; Chen X. D. et al.,

2020). Autophagy is a highly conserved process that typically

consists of several phases, including initiation, nucleation,

elongation, maturation, and degradation (Yin et al., 2016;

Markaki and Tavernarakis, 2020). The UNC-51-like kinase

(ULK1) complex (which is composed of ULK1, ATG101,

ATG13 and FAK family kinase-interacting protein of 200 kDa

(FIP200), etc.) is activated and recruits the class 3 PI3K complex

(which is composed of vacuolar protein sorting (Vps) 15, Vps34,

ATG14 and Beclin1, etc.) to the autophagy initiation site to form

an isolated membrane. autophagy-related protein (Atg) seven

then binds the Atg12-Atg5-Atg16 complex and microtubule-

associated protein one light chain 3 (LC3) I with

phosphatidylethanolamine (PE) to produce LC3 II

(Rabinowitz and White., 2010). LC3 II modifies the expanding

phagophore to participate in cargo recognition and recruitment

(Li et al., 2020a). The phagophore eventually enlarges and closes

to form an autophagosome, a double membrane structure

(Ravikumar et al., 2010). After maturing into the

autophagolysosome, which is made up of the autophagosome

and lysosome, acidic proteases break down the

autophagolysosome and its contents into amino acids, lipids,

nucleotides, and energy for cellular recycling (Ravikumar et al.,

2010) (Figure 1).
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Autophagy in bone metabolism

As an active metabolic tissue, bone undergoes a continuous

remodeling cycle. Cells of different lineages perform specific

skeletal functions, with osteoblasts and chondrocytes from

bone marrow mesenchymal stem cells (BMSCs) shaping bone

for maximum adaptability and osteoclasts of the monocyte/

macrophage lineage resorbing large surfaces of predominantly

cancellous bone to maintain mineral homeostasis (Zaidi, 2007).

This complex mechanism of simultaneous activation couples

bone formation and bone resorption, carefully balancing the

development and maintenance of bone size, shape, and integrity

(Boyle et al., 2003; Zaidi, 2007). Osteocytes, which are descended

from osteoblasts, operate as sensors embedded in the matrix and

may translate mechanical stimuli into biochemical signals

(Palumbo and Ferretti, 2021). With the cyclic nature of

autophagy and the continuous remodeling of bone tissue, and

the levels of basal autophagy found to be present in all bone-

related cells, it is reasonable to assume that autophagy plays an

important role in bone homeostasis.

Autophagy in BMSCs

Autophagy participates in fundamental processes such as

stem cell quiescence, self-renewal, differentiation, and

pluripotency by regulating cell remodeling, and metabolism,

and as an important mechanism of quality control (Boya

et al., 2018). Adult stem cells known as BMSCs are

pluripotent and may differentiate into a variety of cell types,

including osteoblasts, adipocytes, chondrocytes, and neurons, etc

(Chen et al., 2018). Autophagy in BMSCs is activated in response

to environmental induction and hormones, which are essential

for the survival, anti-aging, and differentiation of BMSCs. Early

activation of autophagy can effectively inhibit apoptosis in

BMSCs under conditions of hypoxia (28), serum deprivation

(Zhang et al., 2012), oxidative stress (Song et al., 2014; Fan et al.,

2019), inflammatory environments (Yang et al., 2016), highly

saturated fatty acid environments (Liu et al., 2018), radiation

(Alessio et al., 2015), and glucocorticoids administration (Wang

et al., 2015). When exposed for an excessively long or severe

period, this defense mechanism causes a switch from protective

to destructive autophagy, which appears to depend on the

intensity and duration of the stressful environment (Hu et al.,

2019).

We concentrate on the function of autophagy in the

osteogenic differentiation of BMSCs since specialized

differentiation of BMSCs, such as differentiation to neurons

(Li et al., 2016) or adipocytes (Song et al., 2015), needs the

participation of autophagy. Undifferentiated BMSCs tend to

accumulate large amounts of undegraded autophagic vacuoles

with limited autophagic conversion, which continues to increase

FIGURE 1
A concise description of the macro-autophagy process. During macro-autophagy, cellular components are sequestered in autophagosomes
and transported to lysosomes for degradation to achieve recycling use.
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FIGURE 2
The effects of autophagy in various bone cell. (A) autophagy in BMSCs is activated during cellular differentiation, responding to external stress.
(B) the specialized differentiation process in BMSCs is modified by autophagy. (C) autophagy in osteoblasts is activated caused by the stimulation of

(Continued )
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when osteogenic differentiation is initiated (Nuschke et al., 2014),

which may be driven by elevated bioenergetic needs. Autophagy

provides the morphology and structure required to support

osteogenic differentiation, the energy required for metabolic

remodeling and anabolic precursors (Ceccariglia et al., 2020),

which is also reflected in the dependence of autophagy on 5’

AMP-activated protein kinase (AMPK)/Akt/mTOR signaling

early in osteogenic differentiation (Pantovic et al., 2013), and

inhibition of autophagy would significantly inhibit the osteogenic

differentiation capacity of BMSCs. Furthermore, the efficiency of

the autophagic process is decreased with age (Wu et al., 2009),

which for BMSCs is frequently reflected in an imbalance of

osteogenic and lipogenic differentiation, leading to bone loss

and fat accumulation (Moerman et al., 2004). Inhibition of

autophagy can put young BMSCs into a relatively senescent

state, predisposing them to lipogenic differentiation. In contrast,

the autophagy activator rapamycin reverses this property, which

may be due to the correlation between the regulation of

autophagy on reactive oxygen species (ROS) levels and the

expression of P53 (a regulator of senescence) (Ma et al.,

2018), suggesting that reasonable maintenance of autophagy

levels would be beneficial for the prevention of aging and

rejuvenation of BMSCs (Yang et al., 2018; Kondrikov et al.,

2020) (Figures 2A,B).

Autophagy in osteoblasts

Osteoblasts are the primary constructors of bone, and

these cells deposit bone matrix through continuous

synthesis and resection activities (Yin et al., 2019). Deletion

of autophagy-related genes impairs autophagy and negatively

affects osteoblast activity and function. Increased

susceptibility to oxidative stress damage and suppression of

osteoblast proliferation and differentiation result from the

deletion of Atg5 (Weng et al., 2018). Specific knockdown of

Atg7 induces endoplasmic reticulum (ER) stress during bone

development and remodeling stages thereby promoting

apoptosis in osteoblasts (Li H. et al., 2018), and this

deletion, if present early in the differentiation of the

osteoblast lineage, can even affect the transition of

osteoblasts to osteocytes and disrupt the formation and

maintenance of the osteocyte network, so severely that

more than 50% of mice with Atg7 knockdown will fracture

as a result (Piemontese et al., 2016).

At the same time, autophagy facilitates the survival of

osteoblasts under various stressful environments. Through the

ER stress pathway, early activation of autophagy in osteoblasts

can successfully reduce intracellular ROS levels and remove

damaged mitochondria, counteracting the damage brought on

by oxidative stress (Li D. Y. et al., 2017). This protective effect is

equally beneficial in alleviating osteoblast apoptosis induced by

toxic stimuli such as tumor necrosis factor-alpha (TNF-α)
(Zheng L. W. et al., 2020), glucocorticoids (Wang et al., 2019),

lipotoxicity (Al Saedi et al., 2020), acidity (Zhang et al., 2017), and

metal ions (Xu G. et al., 2021; Liu et al., 2021).

Osteoblasts are dedicated mineralized cells, and the presence

of double-membrane autophagosomes containing apatitic

pinpoint-like structures was found in primary osteoblast cell

lines, suggesting that intracellular mineralization, one of the

mechanisms of mineralization, may be mediated by

autophagy, with autophagosomes acting as carriers of the

secretion of mineralization (Nollet et al., 2014). This shift

from a low steady state to a high autophagic flux may be

designed to meet the high-energy demands of active

osteoblasts during mineralization, thus promoting a high

synthesis of secreted proteins and the removal of misfolded

bone matrix proteins. In contrast, the deletion of Atg7 and

Beclin1 significantly reduces the mineralization efficiency of

osteoblast cell lines (Nollet et al., 2014). Osteoblast

proliferation to mineralization is inhibited when FIP200 (a

component of the complex that initiates autophagosome

formation) is specifically deleted (Liu et al., 2013). In contrast,

deletion of RUBCN (a negative regulator gene of

autophagosome-lysosome fusion) leads to enhanced osteoblast

differentiation and mineralization and elevated expression of key

transcription factors related to osteoblast function such as

Runx2 and Bglap/Osteocalcin, which may be achieved through

accelerated autophagic degradation of the intracellular structural

domain of NOTCH (Yoshida et al., 2022) (Figure 2C).

Autophagy in osteocytes

Organelle recycling is required to give nourishment and

adapt to the new environment as a result of the major

changes in the spatial location and morphology of cells during

the transition of osteoblasts to osteocytes (Dallas and Bonewald,

2010). Considering that those mature osteocytes are terminally

differentiated cells that do not actively divide, intracellular

FIGURE 2 (Continued)
external stress. It can maintain redox balance within osteoblasts and affect the cellular mineralization and differentiation process. (D) terminally
differentiated osteocytes canmaintain lifespan and adapt to harsh environments via autophagy. The interaction between autophagy andmechanical
stress is critical for the functions of osteocytes. (E) autophagy is an essential part of BMSCs differentiating into chondrocytes. Autophagy can regulate
the secretion of type II collagen. Glycophagy can supply energy for chondrocytes. (F) the differentiation, migration, and bone resorption
functions of osteoclasts are supported by autophagy.
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degradation mechanisms are required to protect them from

undergoing cell death (Stroikin et al., 2005). However, because

of their lengthy longevity, they must be able to endure conditions

with low oxygen, high levels of oxidative stress, nutrient

deprivation, and constant mechanical stress. This biological

evidence highlight autophagy as a potential mechanism to

ensure the survival of osteocytes in their unique

microenvironment. Osteocyte resistance to oxidative stress

and hypoxia-induced cell death is naturally facilitated by

osteoocytes higher autophagic activity than osteoblasts (Zahm

et al., 2011; Kurihara et al., 2021). The oxidative stress in the

bones of youngmice climbs to elderly levels when Atg7 is lacking,

and this causes skeletal abnormalities that are comparable to

those brought on by aging (Onal et al., 2013).

The osteocytes are mechanoreceptive cells, which mediate

the adaptive response to bone loading, perceive mechanical

forces and translate them into graded structures as well as

ensure metabolic changes (Qin et al., 2020). Mechanical

loading is a specific and potent stimulus for osteocytes, which

improves bone strength and inhibits defects in bone aging (Klein-

Nulend et al., 2012). Autophagy is highly sensitive to the changes

in mechanical stress in slime mold and mammalian cells (King

et al., 2011). Periodic mechanical stretching alters the size and

shape of osteocytes and promotes the network development of

osteocytes, which is associated with upregulated autophagy

(Inaba et al., 2017). Fluid shear stress-induced autophagy in

osteocytes in vitro promotes osteocyte survival by preserving

adenosine triphosphate (ATP), which is an adaptive response of

osteocytes to mechanical stress (Zhang et al., 2018). Furthermore,

the interaction between autophagy and mechanical tension is

essential for regulating the secretory capacity of osteocytes, and

mechanical tension can activate autophagy and enhance the

secretion of fibroblast growth factor-23 (FGF23) (a

homeostatic regulator within mineralization and phosphate) in

osteocytes via AMPK signaling, thereby promoting the

development and formation of osteoblasts (Xu H. et al., 2021)

(Figure 2D).

Autophagy in chondrocytes

Most bones develop by endochondral ossification. Apoptosis

of chondrocytes, calcification of the mesenchyme, new bone

deposition, and longitudinal development of the diaphysis are

all ongoing processes that occur in the cartilage growth plate at the

confluence of the epiphysis and the diaphysis. The cartilage growth

plate is mainly composed of chondrocytes and extracellular matrix

(ECM). Chondrocyte proliferation, differentiation, hypertrophy,

and ECM formation are essential for skeletal development and

linear growth (Berendsen and Olsen, 2015). Autophagy is required

for the conversion of mesenchymal stem cells to proliferating

chondrocytes, as reflected by the completion of a multi-step

differentiation process from mesenchymal condensation to

calcification during normal ATDC5 cell culture, whereas

COL2A1 expression is completely blocked during the culture of

Atg7-deficient ATDC5 cells (Wang X. J. et al., 2021). Even if the

transformation can be completed, deletion of Atg5 or Atg7 in the

chondrocyte will also result in decreased chondrocyte proliferation

and higher apoptosis, as well as related growth retardation and

shorter bone length in mice (Vuppalapati et al., 2015; Wang X.

J. et al., 2021). At the same time, due to the vascularization of the

growth plate, chondrocytes grow in a hypoxic and nutrient-

deficient environment. It is also necessary to rely on

autophagosomes to selectively wrap glycogen in the

chondrocytes so that the glycogen is catabolized to glucose to

provide energy, which is known as glycophagy (Vuppalapati et al.,

2015; Ueno and Komatsu, 2017).

On the other hand, functional cartilage requires the

homeostasis of chondrocytes and the integrity of cartilage

ECM (Luo et al., 2019). Autophagy regulates the secretion of

type II collagen, which is a major component of cartilage ECM,

and deletion of Atg7 would result in type II procollagen not being

transported and remaining within the ER (Cinque et al., 2015).

Under the stresses of aging, inflammation and mechanical

stimulation, increased apoptosis, decreased ECM production

and excessive activation of proteases in chondrocytes

contribute to the degeneration of cartilage and the destruction

of the joint microarchitecture, leading to the development of

diseases such as OA and RA. Contrarily, increased autophagy in

chondrocytes can reduce the progression of these disorders by

influencing intracellular metabolic processes, demonstrating the

benefits of autophagy on chondrocyte survival and prevention of

cartilage deterioration (Tian et al., 2021) (Figure 2E).

Autophagy in osteoclasts

Hematopoietic cell-derived mononuclear osteoclast

precursors are drawn to resorption sites where they combine

to become terminally differentiated multinucleated osteoclasts

(Montaseri et al., 2020). The alternating between migration and

phases of bone resorption as well as considerable phenotypic

alterations show that they are extremely mobile (Roy and Roux,

2020). After adhering to the area of bone resorption, osteoclasts

undergo cytoskeletal reorganization and polarization, leading to

the formation of a series of membrane domains such as the

sealing zone, ruffled border, basolateral domain and functional

secretory domain, which work together to complete the osteolysis

process when osteoclasts lyse bone tissue (Georgess et al., 2014).

The sealing zone, formed by a dense arrangement of actin-rich

podosomes, forms a unique microenvironment between the cells

and the bone surface. The transient reabsorption complex, which

consists of actin rings and a ruffled border, is sealed off from the

extracellular fluid in this region to form an absorption lacuna

(Saltel et al., 2008). The ruffled border is formed by the fusion of

acid-donating vesicles, which release hydrolases such as

Frontiers in Pharmacology frontiersin.org06

Li et al. 10.3389/fphar.2022.999017

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.999017


cathepsin K (CTSK), matrix metalloproteinase9 (MMP9), and

tartrate-resistant acidic phosphatase (TRAP), and is the site truly

responsible for bone resorption (Saltel et al., 2008). This fusion

process takes place in the sealing zone, where several intracellular

membranes are moved to create lengthy folds resembling fingers.

Furthermore, in the non-resorption/migration state of

osteoclasts, the relaxed osteoclasts undergo depolarization as

they switch from the sealing zone to the podosome belts (Ory

et al., 2008).

Autophagy is essential for osteoclast differentiation, migration

and maintenance of bone resorption function. The receptor

activator of nuclear factor-κB (NF-κB) (RANK)/receptor

activator of NF-κB ligand (RANKL)/osteoprotegerin system

mediates the process of osteoclast differentiation involving a

series of signaling molecules, and the calcium signaling pathway

Ca2+/calcineurin/nuclear factor of activated T-cell c1 (NFATc1),

as one of the key pathways, can be mediated by Ca2+-permeable

channels such as transient receptor potential vanilloid 4 (TRPV4)

or P2X7 receptor (P2X7R). On the other hand, by inhibiting

autophagy and Ca2+/calcineurin/NFATc1 signaling, suppression

of either TRPV4 or P2X7R prevents osteoclast differentiation (Cao

et al., 2019; Ma et al., 2022). The expression of Atg5, Atg7, Atg4B,

and Beclin1 is increased in RANKL-stimulated bone marrow

macrophages, and inhibition of Beclin1 will significantly reduce

RANKL-mediated Atg activation and osteoclast differentiation

(Arai et al., 2019). Meanwhile, after RANKL stimulation, the

ubiquitin ligase tumor necrosis factor receptor-associated factor

6 (TRAF6) is recruited to RANK, thereby initiating Atg and

subsequent osteoclasts differentiation at an early stage by

mediating Beclin1 ubiquitination (Arai et al., 2019). In addition,

RANKL can promote osteoclastogenesis via the B-cell lymphoma

2 (BCL2)/Beclin1 pathway, and the mechanism may be related to

the fact that RANKL induces Beclin1-dependent protective

autophagy by promoting BCL2 phosphorylation at the

Ser70 site in osteoclast precursors (Ke et al., 2019; Ke et al.,

2022). The tet methylcytosine dioxygenase 2 (TET2)/Beclin1 or

kruppel-like factor 2 (KLF2)/Beclin1 autophagy-related pathways

have also been shown to promote osteoclastogenesis (Laha et al.,

2019; Yang et al., 2022). Deletion of Atg5 or Atg7 would also

impede autophagy, which would result in a reduction in osteoclast

differentiation and the expression of osteoclast markers such as

NFATc1, TRAP, CTSK, and MMP9 (Lin et al., 2016; Chen W.

et al., 2021).

One of the key components of the osteoclast’s exercise of

bone resorption is migration over the bone matrix. Podosome

rings undergo continuous and rapid assembly disassembly and

drive osteoclast migration by exerting traction on the bone

surface (Georgess et al., 2014). kindlin3 is an important

bridging protein in the podosome, and downregulation of

autophagy due to the deletion of LC3 II would enhance the

interaction between kindlin3 and integrins, thereby inhibiting

the breakdown of the abandoned podosome rings and leading to

the disassembly of the actin cytoskeleton and impaired migration

of osteoclasts (Zhang Y. et al., 2020). For optimal resorption of

the bone matrix, osteoclasts require lysosomal transport and

fusion to produce fold-edge boundaries and gaps for acidic

resorption (Na et al., 2020). The fusion of lysosomes with the

border of the fold is similar to the fusion of lysosomes with

autophagosomes, suggesting that autophagy proteins are

involved in regulating lysosomal localization and the release of

reabsorbed molecules (Dawodu et al., 2018). Atg5, Atg7, and

Atg4B, together with LC3, which is necessary for the formation of

actin rings and the release of tissue proteinase K, are required for

the construction of the edge of the fold (DeSelm et al., 2011;

Chung et al., 2012) (Figure 2F).

CMA and micro-autophagy in bone

As with macro-autophagy, CMA similarly responds to

nutrient deficiency (Cuervo et al., 1995), oxidative stress

(Kaushik and Cuervo, 2006), hypoxia (Hubbi et al., 2013),

genotoxic (Park et al., 2015) and other stimuli. Unlike macro-

autophagy, CMA does not utilize autophagosomes, chaperone

HSC70 and cochaperones deliver protein cargoes containing

specific KFERQ-like sequences directly to the lysosome, where

they are then transported via lysosome-associated membrane

protein type 2A (LAMP2A) translocation system is transferred

into the lysosome (Sahu et al., 2011; Akel et al., 2022). Compared to

the wild type, vertebral cancellous bone mass was significantly

lower in LAMP2A and LAMP2C global knockout mice, which was

associated with increased osteoclastogenesis due to increased

RANKL expression (Akel et al., 2022). BMSCs also exhibited

higher CMA activity during osteogenic differentiation, this

trend promotes the transition of BMSCs to OBs while

inhibiting the potential of BMSCs to differentiate into lipogenic

cells and chondrocytes (Gong et al., 2021). Downregulation of

LAMP2A in BMSCs is also closely associated with impaired

osteogenic differentiation during aging (Gong et al., 2021).

Furthermore, leptin affects CMA-mediated expression of

megalin (lipoprotein-related protein 2, a key receptor for

25(OH)D3 entry into BMSCs) by inhibiting the levels of

LAMP2A and HSC70, thereby increasing the utilization of

25(OH)D3 by BMSCs and making 25(OH)D3-induced

enhanced osteogenic differentiation potential of BMSCs, which

also suggests that CMA is essential for the role of vitamin D in

bone health (He et al., 2021).

During microautophagy, lysosomes and late endosomes

capture a small amount of surrounding cytoplasm through

membrane protrusion and invagination and degrade it in the

endolysosomal lumen (Sahu et al., 2011). In mammalian cells, the

exact mechanisms of microautophagy regulation remain largely

elusive, with only studies exploring the association of

dysfunctional microautophagy with various neurodegenerative

diseases (e.g., Alzheimer’s disease, Parkinson’s disease, and

amyotrophic lateral sclerosis) and cancer, the knowledge that
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may open a new window for the use of microautophagy in the

skeletal domain (Wang L. et al., 2022).

Mitophgay in bone

Lemaster first defined “mitochondrial autophagy” to emphasize

the non-random nature of the mitochondrial autophagic process

(Lemasters, 2005). This selective autophagy process mediates

mitochondrial quality control by removing damaged mitochondria

and coordinating the dynamic balance between mitochondrial and

cellular energy requirements (Liang et al., 2020). Similarly, this

activity plays an important role in bone cells to mediate the

homeostasis of bone metabolism. An increase in mitochondrial

mass implies an accumulation of damaged mitochondria and

requires a corresponding mitochondrial autophagic activity to

maintain a good mitochondrial mass. The induction of

mitochondrial autophagy eliminates damaged and unnecessary

mitochondria from dental pulp stem cells and preserves healthy

mitochondria, which promotes their differentiation into osteoblasts

(Maity et al., 2022). During TNF-α-induced osteoblast senescence,

the impaired bone anabolic activity can be ameliorated by restoring

mitochondrial dysfunction and promoting mitochondrial autophagy

(Lu et al., 2022). Furthermore, in vitro estrogen administration also

promotedmitochondrial autophagy to some extent, which effectively

increased osteoblast activity and promoted their proliferation (Sun

et al., 2018). Interestingly, just like autophagy, the role played by

mitochondrial autophagy seems to depend on the spatiotemporal

location of the cell. In high-glucose-treated osteoblasts,mitochondrial

autophagy accelerates their osteogenic dysfunction, and

pharmacological and genetic inhibition of mitochondrial

autophagy can effectively rescue osteoblast differentiation and

mineralization (Zhao et al., 2020). the PTEN-induced putative

kinase 1 (PINK1)/Parkin pathway is a key player in regulating

mitochondrial homeostasis and the most important player in

mitochondrial autophagy (Ploumi et al., 2017). For osteoclasts, the

mitochondrial deacetylase sirtuin three promotes mitochondrial

metabolism and mitochondrial autophagy in osteoclasts by

deacetylating PINK1, which in turn promotes osteoclast

differentiation. Thus, although osteoclast progenitors from sirtuin

3-deficient aged mice are able to differentiate into osteoclasts,

however, these differentiated cells exhibit impaired polykaryon

formation and resorption activity, further emphasizing the

importance of mitochondrial autophagy regulation in bone cells

and its contribution to skeletal disease (Ling et al., 2021).

Natural product-targeted autophagy
for the treatment of metabolic bone
disease

The growing body of research connecting autophagy and

bone metabolic hints at the possibility of treating metabolic bone

disease by inhibiting autophagy. Natural materials derived from

natural plants and animals, minerals and their processed

products are characterized by novel and diverse structures,

better activity and less toxic side effects, and are a “treasure

trove” for the development of drugs and nutrients (Li et al., 2021).

With the increasing use of natural products, a variety of natural

compounds have been screened as effective modulators of

autophagy. Importantly, several of these natural compounds

can cure metabolic bone disease by targeting autophagy

through a number of distinct modes of action. The discovery

and research of natural compounds that control autophagy now

focus mostly on autophagy inducers and inhibitors because of the

dual nature of autophagy during bone metabolism. The

regulatory function of these natural products in OP, RA, OA,

and fracture nonunion/delayed union is highlighted in this

section through activation or inhibition of autophagy.

Osteoporosis

The majority of patients with OP are unaware that they have

this sneaky illness, which is defined by decreased bone density,

degeneration of the microarchitecture of bone tissue, increased

skeletal fragility, and an increased risk of fractures, including hip,

spine, and wrist fractures (Sànchez-Riera et al., 2010). The

pathogenesis of this most common skeletal disease is based on

an imbalance in the activity of osteoblasts and osteoclasts during

bone metabolism (Zaidi, 2007). OP is classified as primary or

secondary OP, and the former includes postmenopausal OP and

senile OP. Due to diverse underlying causes and rates of

development, autophagy has distinct functions in the various

OP. In the early stage of the postmenopausal OP, estrogen

decreases and bone metabolism has a high-conversion pattern,

at this time osteoclastic bone resorption is enhanced and exceeds

bone formation, and autophagy plays a more important role in

bone resorption (Li et al., 2020b). Progressively lower levels of

autophagy in osteocytes with aging are thought to be the

underlying cause of bone loss (Chen et al., 2014), and

defective autophagy in BMSCs due to aging will also lead to

an imbalance in osteogenic and lipogenic differentiation. Bone

conversion is delayed in the advanced stages of senile OP or

postmenopausal OP (Ma et al., 2018). The predominant

pathogenesis of secondary OP, such as the most prevalent

glucocorticoid-induced OP, is characterized by impaired

osteogenic differentiation, increased osteoblast and osteocyte

apoptosis, and prolonged osteoclast lifespan, which results in

reduced bone formation and early massive bone loss (Jia et al.,

2006; Wang T. et al., 2020). While autophagy plays a role in

promoting osteoclastic bone resorption and maintaining the

survival of osteoblasts as well as osteocytes, this is usually

dependent on glucocorticoid dose and duration of treatment

and is regulated by systemic metabolism (Chen et al., 2014).

Furthermore, in the disturbed bone microenvironment caused by
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oxidative stress or inflammation, damaging apoptosis of bone

cells and enhanced osteoclast activity are the main causes of bone

loss, and the level of autophagy often depends on the changes in

the microenvironment and the severity of the stress.

Based on our current review, the mechanisms of action of

natural products that target autophagy for the treatment of OP

can be divided into four groups: promoting autophagy to

encourage osteogenic differentiation of BMSCs and osteoblast

mineralization, inhibiting autophagy to prevent the

differentiation of osteoclasts, inhibiting autophagy to prevent

apoptosis in bone cells, and raising the level of protective

autophagy in stressful environments. Leonurine, the active

ingredient of Leonurus japonicus, promotes the proliferation

of BMSCs in SD rats, upregulates the gene and protein levels

of Atg5, Atg7, and LC3, and promotes the differentiation of

BMSCs toward osteoblasts through activation of autophagy that

depends on the PI3K/Akt/mTOR pathway (Zhao et al., 2021).

Icariin is an important active ingredient in Epimedium

brevicornum and is mainly metabolized to Icaritin after

ingestion. Icariin reduces ovariectomy (OVX)-induced

osteoclast formation in OP mice and promotes osteogenic

differentiation by enhancing autophagy in BMSCs (Liang

et al., 2019). Similar to osthole, a key component of Cnidium

monnieri and Angelica pubescens, osthole is a coumarin

derivative that alleviates OP symptoms in OVX mice by

preserving autophagy and encouraging osteogenic

differentiation of BMSCs (Zheng et al., 2019). Arbutin, a

natural hydroquinone glycoside abundant in plants such as

Vaccinium, Asteraceae and Ericaceae, promotes bone

formation by activating autophagy to promote osteoblast

differentiation and mineralization and attenuate

dexamethasone-induced bone mass and loss of trabecular

bone structure (Zhang et al., 2021a). In addition, Ginsenoside

Rg3, an extract of Panax ginseng, significantly attenuated OVX-

induced weight gain, decreased bone mineral density and

histological alterations in femoral tissue in rats. And in vitro,

it significantly enhances AMPK signaling, autophagy, osteogenic

differentiation and mineralization, inhibits mTOR signaling, and

attenuates OVX-induced osteoporosis (Zhang X. et al., 2020).

Kaempferol, a natural flavonol, exists in large quantities as a

dietary substance in fruits and vegetables such as tea, citrus fruits

and cauliflower, and is also widely distributed in medicinal herbs

such as Bauhinia microstachya, Chromolaena odorata and

Ardisia japonica (Bangar et al., 2022). Concentrations of

Kaempferol above 50 μM inhibit RANKL-induced osteoclast

differentiation and formation of resorption pits in RAW

264.7 cells, with the mechanism being related to degradation

of p62/SQSTM1 (autophagy-related scaffold protein) to inhibit

autophagy and activate apoptosis (Kim et al., 2018). Ursolic acid,

a pentacyclic triterpene found mainly in the Lamiaceae family,

ameliorates OVX-induced osteoporosis in rats by blocking the

autophagic process, reducing the expression of the major

transcription factor and NFATc1 affecting osteoclast

formation and the activity of the inhibitor of NF-κB kinase/

NF-κB of its upstream pathway (Zheng H. et al., 2020).

Autophagy may be a major self-protective mechanism for

osteocytes in response to excess glucocorticoids (Li et al., 2020b).

Enhanced autophagy in osteocytes treated with low doses of

glucocorticoids acts as anti-apoptotic self-protection (Wang T.

et al., 2020), therefore, activation of appropriate levels of

autophagy to protect osteocytes from apoptosis is a promising

strategy to combat glucocorticoid-induced OP and

glucocorticoid-associated osteonecrosis of the femoral head.

Pinocembrin, a natural flavonoid compound isolated from

compositae and propolis, attenuates dexamethasone-induced

active damage and apoptosis in mice with long bone cell

Y4 by inhibiting PI3K/Akt/mTOR signaling to activate

autophagy (Wang X. Y. et al., 2020). It is also important to

activate autophagy in osteoblasts to maintain cellular activity and

prevent apoptosis. The bisbenzylisoquinoline alkaloid

fangchinoline, which is obtained from the roots of Stephania

tetrandra, shares the same structural features as tetrandrine

(Zhang et al., 2021b). Fangchinoline administration

dramatically lowers osteoblast apoptosis in prednisolone-

induced osteoporosis rats by triggering autophagy, improves

altered microstructural parameters in rat vertebrae, and avoids

bone loss (Zhu W. et al., 2019). Similarly, iridoid glycoside

Aucubin, which is abundant in Eucommia ulmoides, and

monoterpene glucoside Paeoniflorin, which is abundant in the

roots of Paeonia lactiflora, can enhance autophagy via AMPK

and Akt/mTOR signaling pathways, respectively, to prevent

glucocorticoid-induced apoptosis in osteoblasts, thereby

effectively reducing OP symptoms (Yang et al., 2021; Yue

et al., 2021). Another mechanism strongly linked to OP is the

NF-κB signaling, which when activated promotes osteoclast

activation and creation whereas when inactivated encourages

osteoblast differentiation in vitro and bone formation in vivo

(Nandy et al., 2018). In contrast, Timosaponin B-II, a component

of the major steroidal saponin of Anemarrhena asphodeloides,

attenuates high glucose-induced oxidative stress and osteoblast

apoptosis by inhibiting the mTOR/NF-κB pathway to activate

autophagy (Wang N. et al., 2021).

Oxidative stress is a key mechanism leading to the

uncoupling of osteoclast and osteoblast functions in OP

(Domazetovic et al., 2017), which may be brought on by

excessive ROS production and then brings on OP (Baek et al.,

2010). In age-induced oxidative stress, the excessive production

of ROS impairs the proliferation and osteogenic differentiation of

BMSCs, blocks the maturation of osteoblast precursors and

induces apoptosis by inhibiting osteoblast mineralization

(Coipeau et al., 2009; Cervellati et al., 2014). Contrarily, it is

now generally accepted that the degree of autophagy is inversely

connected with oxidative stress and that activating autophagy

lowers oxidative stress damage and apoptosis while inhibiting

autophagy would increase oxidative stress in osteoblasts (Li D. Y.

et al., 2017). Other studies have shown that the damage caused by
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oxidative stress to osteoblasts can be mitigated by the early

initiation of autophagy (Yin et al., 2019). Moreover, activation

of autophagic activity also reduces apoptosis in osteocytes under

high oxidative stress (Manolagas and Parfitt, 2010). The phenolic

glycoside Curculigoside, which is abundant in Curculigo

orchioides, inhibits phosphorylation of Forkhead box O1

(FOXO1), an upstream protein of antioxidant enzymes, and

increases the expression of FOXO1 in osteoblasts with iron

overload, thereby increasing the levels of antioxidant enzymes

and LC3, promoting osteoblast autophagy and mineralization,

and inhibiting oxidative damage caused by iron overload (Zhang

et al., 2019). Similarly, monotropein, an iridoid glycoside

extracted from the roots of Morind officinalis, similarly

inhibits H2O2-induced reactive oxygen species production in

osteoblasts, enhances autophagy-mediated antioxidant effects via

the Akt/mTOR pathway, and guards against oxidative stress in

osteoblasts (Shi et al., 2020).

The upregulation of systemic inflammation is an important

mechanism in the aging process, often referred to as

inflammatory aging (Flynn et al., 2019). The ongoing

stimulation of inflammatory pathways in bone tissue, such as

NF-κB signaling, throughout this process has a number of

detrimental impacts on the preservation of bone mass,

including the suppression of osteoblast development and

mineralization and aberrant activation of osteoclast activity

(Park et al., 2007; Chang et al., 2009). The current study

suggests that autophagy is closely related to inflammation in

the development of OP. For example, the inflammatory factor

TNF-α induces increased expression of ATG7 and Beclin1 in

arthritis models (Lin et al., 2013), and low concentrations of

interleukin (IL) 17A activates autophagy via the c-Jun amino-

terminal kinase (JNK) pathway, thereby promoting osteoclast

differentiation and bone resorption activity (Ke et al., 2018).

Therefore, reconciling inflammation with autophagy levels

would be beneficial to inhibit osteoclast activity and bone

resorption. For instance, autophagy is in charge of osteoclast

development and enhanced activity in lipopolysaccharide-

induced inflammatory bone loss (Chen L. et al., 2020).

Extracts of Glycyrrhiza root isoliquiritigenin can inhibit

RANKL-induced NF-κB expression and nuclear translocation,

and suppress the expression of LC3 II and Beclin1 in vitro. And

by drastically decreasing NF-κB-dependent autophagy of

osteoclast precursors and consequently limiting osteoclast

development, it may be able to treat lipopolysaccharide-

induced inflammatory bone deterioration (Liu et al., 2016)

(Table 1; and Figure 3).

Rheumatoid arthritis

RA is characterized by progressive inflammation and

destruction of bone and cartilage in the affected joint, which

TABLE 1 Natural products for the treatment of OP by targeting autophagy.

Natural
products

Activation/
inhibition
of autophagy

Autophagy-Related
Mode of
Action

Effect of treatment References

Icariin Activation P62, Beclin1, LC3 Promotes BMSCs osteogenic differentiation and inhibits
osteoclast formation

Liang et al. (2019)

osthole Activation Beclin1, LC3 Promotes BMSCs osteogenic differentiation Zheng et al. (2019)

Arbutin Activation Atg7, P62, Beclin1, LC3 Promotes osteoblast differentiation and mineralization Zhang et al. (2021a)

Ginsenoside Rg3 Activation P62, Beclin1, LC3, AMPK/
mTOR

Promotes osteoblast differentiation and mineralization Zhang X. et al. (2020)

Kaempferol Inhibition Atg5, P62, Beclin1, LC3 Inhibits osteoclast differentiation and promotes apoptosis Kim et al. (2018)

Ursolic acid Inhibition P62, LC3, NF-κB Inhibits osteoclast formation Zheng H. et al. (2020)

Pinocembrin Activation P62, Beclin1, LC3, PI3K/Akt/
mTOR

Inhibits osteocytes apoptosis Wang X. Y. et al.
(2020)

Fangchinoline Activation Atg5, Beclin1, LC3 Inhibits osteoblast apoptosis Zhu W. et al. (2019)

aucubin Activation Beclin1, LC3, AMPK Inhibits osteoblast apoptosis Yue et al. (2021)

Paeoniflorin Activation Beclin1, LC3, Akt/mTOR Inhibits osteoblast apoptosis Yang et al. (2021)

Timosaponin B-II Activation Beclin1, LC3, mTOR/NF-κB Antagonizes oxidative stress damage and inhibits osteoblast
apoptosis

Wang N. et al. (2021)

Curculigoside Activation p62, Beclin1, LC3 Antagonizes oxidative stress damage and promotes
osteoblast mineralization

Zhang et al. (2019)

Monotropein Activation Beclin1, LC3, Akt/mTOR Antagonizes oxidative stress damage and inhibits osteoblast
apoptosis

Shi et al. (2020)

isoliquiritigenin Activation Atg5, Beclin1, LC3, NF-κB Improves inflammatory response and inhibits osteoclast
differentiation

Liu et al. (2016)
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essentially depends on the interaction between the immune

system, fibroblast-like synoviocytes (FLSs) and bone (Komatsu

and Takayanagi, 2022). The immune system promotes the tissue-

destroying properties of FLSs and influences the function of bone

cells, such as increased bone resorption by osteoclasts (Komatsu

and Takayanagi, 2022).

With its capacity to produce inflammatory mediators such as

matrix-degrading enzymes, cytokines, and chemokines, FLSs are

thought to play a significant role in the pathogenesis of RA,

ultimately leading to the destruction of bone and cartilage

(Karami et al., 2020). By preventing excessive immune cell

activation and cytokine generation, the proper operation of

FIGURE 3
The primarymodes andmechanisms of natural products targeting autophagy to regulate bonemetabolism disorders. Natural products, used as
autophagy activators or inhibitors, can effectively control osteoporosis, rheumatoid arthritis, osteoarthritis, and fracture nonunion/delayed union.
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the apoptotic program can reduce inflammation (Vomero et al.,

2018). However, studies have found a reduced rate of apoptosis

and apoptotic mediators of FLSs in RA, suggesting that these cells

are resistant to apoptosis (Firestein et al., 1995). Activation of

autophagy was shown to be an important pathway of the anti-

apoptosis of FLSs in RA, this can be explained by the fact that

autophagy is a cellular pro-survival mechanism and high levels of

autophagy in FLSs, although the detailed mechanism between

autophagy and apoptosis remains to be elucidated (Shin et al.,

2010). Baicalin and Silibinin are two different flavonoid

compounds from the dried roots of Scutellaria baicalensis and

Silybum marianum, respectively, both of which can induce

apoptosis and reduce inflammation by inhibiting autophagy in

RA FLSs (Tong et al., 2018; Chen X. et al., 2022). Similarly,

Oridonin, a kaurene-type diterpenoid isolated from Rabdosia

rubescens, and Daphnetin, a coumarin derivative widely

distributed in the thymelaeaceae family, also have the ability

to inhibit the autophagy of RA FLSs and thus inhibit proliferation

and induce apoptosis (Deng et al., 2020; He et al., 2020).

Triptolide, a significant epoxy diterpene lactone derived from

Tripterygium wilfordii, prevents cell migration and preserves the

redox status of RA FLSs by preventing autophagy (Xie et al.,

2019). The cytokine IL 21, a key immunomodulator, invokes a

variety of immunomodulatory functions in RA including FLSs

proliferation, the differentiation of T-cell subsets, and B-cell

activation, and induces autophagy in adjuvant arthritis (AA)-

FLSs through a PI3K/Akt-dependent manner (Niu et al., 2010;

Dinesh and Rasool, 2019). In contrast, Berberine, an isoquinoline

alkaloid (Zhu et al., 2022) widely distributed in the

Berberidaceae, Papaveraceae, Menispermaceae, Ranunculaceae,

and other botanical families, inhibits IL 21/IL 21R-mediated

autophagy of AA-FLSs, inhibits the proliferation of a

subpopulation of CD4+ T cells (T helper lymphocyte 17

(Th17)), and induces cellular differentiation of another

subpopulation of CD4+ T cells (regulatory T lymphocyte

(Treg)) that are suppressive of RA, thereby restoring an

immune imbalance of Th17/Treg (Dinesh and Rasool, 2019).

Additionally, excessive levels of pro-inflammatory cytokines

cause neutrophils and activated macrophages to secrete ROS,

which is then created by mitochondria to the extent of 90%

(Zhang et al., 2016). Resveratrol, a non-flavonoid polyphenolic

compound from Vitis, can lead to the accumulation of ROS by

inhibiting autophagy, which in turn induces mitochondrial

dysfunction and leads to apoptosis in FLSs (Cao et al., 2018).

Immune cells of various subtypes have a role in the

development and progression of RA. As well as having a

phenotype of delayed apoptosis and releasing high amounts of

degradative enzymes and reactive oxygen species, activated

neutrophils can also induce autoimmunity and worsen tissue

damage by forming neutrophil extracellular traps (NETs)

(Cascão et al., 2010; Khandpur et al., 2013). Several natural

products, including Andrographolide, a diterpene compound

derived from Andrographis paniculata, quercetin, a flavonoid

compound derived from various vegetables and fruits, and

Emodin, an anthraquinone derivative widely found in herbs

such as Rheum palmatum, Polygonum cuspidatum, and

Cassiae semen, exhibit effects of inhibiting the autophagy of

neutrophils, promoting apoptosis and inhibiting NETs

formation (Li X. et al., 2019; Zhu M. et al., 2019; Yuan et al.,

2020) (Table 2; Figure 3).

We concentrate further on how autophagy contributes to RA

joint degeneration. First, the secretion of pro-inflammatory

factors and RANKL in FLSs allow osteoclast differentiation to

be induced and bone resorption to be activated. The activation of

autophagy is demonstrated by the high expression of Beclin1 and

Atg7 in osteoclasts of human RA, while overexpression of

Beclin1 induces osteoclastogenesis and significantly enhances

their resorptive capacity (Lin et al., 2013). In the Atg7-

deficient RA mice model, inhibition of autophagy reduces the

number of osteoclasts and resists TNF-α-induced bone erosion

(Lin et al., 2013). Similar to this, in bone marrow mononuclear

cells from RA mice caused by K/BxN serum, there is a

dramatically increased expression of autophagy-related genes

such as Beclin1, Atg7, and LC3 II, and the production of

autophagic vesicles is greatly enhanced during osteoclast

differentiation (Laha et al., 2019).

Secondly, one of the primary factors contributing to the

degeneration and loss of articular cartilage in RA is thought to be

the apoptosis of articular chondrocytes. The autophagy inhibitor

3-MA increases joint inflammation and cartilage damage and

induces chondrocyte apoptosis in rats with AA, whereas the

autophagy activator Rapa reduces joint inflammation and

chondrocyte apoptosis, suggesting that autophagy activation

ameliorates damage to chondrocytes in AA rats by inhibiting

apoptosis (Zhou et al., 2019). The accumulation of large amounts

of acid in the synovial fluid is one of the important pathological

features of RA, and elevated acid has been found in synovial

biopsies of patients with early RA (Chang et al., 2005).

Extracellular acidification causes chondrocytes to undergo

apoptosis through the action of acid-sensitive ion channel 1a

(ASIC1a), which is a crucial factor in the destruction of articular

cartilage in RA (Xie et al., 2018). Contrarily, several studies have

shown that estrogen protects articular cartilage from acidosis-

induced damage by encouraging the breakdown of the ASIC1a

protein. This is related to the fact that estrogen increases

autophagy in chondrocytes to some extent, which in turn

encourages the breakdown of the ASIC1a protein, which is

reliant on the autophagy-lysosome pathway (Xie et al., 2018;

Song et al., 2020; Su et al., 2021). However, we would like to ask,

in the treatment of RA, should we choose to inhibit autophagy to

attenuate osteoclast differentiation and bone resorption, or

should we choose to promote autophagy to protect

chondrocyte apoptosis and cartilage metabolism and repair?

Does this rely on various RA triggers, phases, or the

activation of autophagy brought on by various substances and

signals? Nevertheless, RA can be treated by regulating autophagy
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in a cell-specific manner. But despite the fact that we have not yet

discovered any studies on the pertinent natural products that

interfere in the treatment of RA by focusing on autophagy in

osteoclasts or chondrocytes, we do think that this may be an

intriguing area for future investigation (Figure 3).

Osteoarthritis

OA is themost common degenerative joint disease, manifested

by articular cartilage erosion, synovial inflammation, osteoid

formation, and subchondral osteosclerosis (Hunter and Bierma-

Zeinstra, 2019). The most severe degenerative alterations among

them are found in articular cartilage, which is intimately connected

to the metabolic imbalance and abnormal apoptosis of

chondrocytes due to aging or overuse of cartilage (Fujii et al.,

2022). Therefore, modulating chondrocyte behavior and thus

restoring homeostasis of articular cartilage is a central theme in

the study of OA (van der Kraan, 2012). It is debatable whether OA

causes an increase or decrease in the amount of autophagy. An

earlier study has demonstrated that ULK1, Beclin1, and

LC3 proteins are expressed in articular chondrocytes of both

humans and mice and are reduced in aging or surgery-induced

OA as well as increased apoptosis of chondrocytes (Caramés et al.,

2010). Another study from the same time period, however, found

increased expression of LC3 and Beclin1 in OA chondrocytes,

particularly when the chondrocytes were experiencing nutritional

stress and catabolism, and this study attributed this differential

result to the different locations of the collected samples of OA

cartilage (Sasaki et al., 2012). A recent study explained this issue in

a targeted manner by observing changes in autophagy in different

weight-bearing states and at different stages of OA, and it was

observed that autophagy was stronger in weight-bearing areas than

in the non-weight-bearing areas and was stronger in the 4-week

group than in the 10-week group, in other words, autophagy was

differentially expressed in different stages of OA, with stronger

expression in the early stages of OA and diminishing expression as

the disease progressed (Zhang et al., 2022). In any case, however,

these results demonstrate that autophagy is a protective process for

maintaining homeostasis in the cartilage. Therefore, starting with

chondrocyte autophagy and activating the autophagy activity of

chondrocytes can effectively reverse the state of autophagic failure

and provide an effective way to prevent and treat OAdegeneration.

Currently, most studies based on natural products for the

treatment of OA have been conducted by inducing autophagy in

cartilage, and these products include the saponin Astragaloside IV

from Astragalus membranaceus (Liu et al., 2017), polyphenol

curcumin from Curcuma longa (Li X. et al., 2017; Chen T.

et al., 2021; Yao et al., 2021; Jin et al., 2022), coumarins

isopsoralen from Psoralea corylifolia seeds (Chen Z. et al.,

2020), Icariin (Mi et al., 2018; Tang et al., 2021a),

furocoumarin Columbianetin from the root of Radix Angelicae

Pubescentis (Chen W. et al., 2022), glucoxilxanthone mangiferin

from in various parts of Mangifera indica (Li Y. et al., 2019),

flavonoid baicalin from the root of Scutellaria baicalensis (Li Z.

et al., 2020), polyphenolic compound chlorogenic acid from coffee

and plants such as Lonicera japonica (Zada et al., 2021),

polyphenol anthocyanidin delphinidin from various brightly

colored fruits and vegetables (Lee et al., 2020), polyphenol

tannin punicalagin from the peel of Punica granatum (Kong

TABLE 2 Natural products for the treatment of RA by targeting autophagy.

Natural
products

Activation/
inhibition
of autophagy

Autophagy-Related
Mode of
Action

Effect of treatment References

Baicalin Inhibition Beclin1, Atg5, Atg7, Atg12, LC3 Promotes FLSs apoptosis and reduces inflammatory
response

Chen X. et al. (2022)

Silibinin Inhibition Beclin1, LC3, NF-κB, SIRT1 Promotes FLSs apoptosis and reduces inflammatory
response

Tong et al. (2018)

Oridonin Inhibition Beclin1, LC3, Atg5 Inhibits FLSs proliferation and promotes apoptosis He et al. (2020)

Daphnetin Inhibition Beclin1, LC3, Atg5, Akt/mTOR Inhibits FLSs proliferation and promotes apoptosis Deng et al. (2020)

Triptolide Inhibition Beclin1, LC3, PI3K/Akt Inhibits FLSs migration and maintains redox
homeostasis

Xie et al. (2019)

Berberine inhibition Beclin1, LC3, Atg5 Restores Th17/Treg immune imbalance Dinesh and Rasool,
(2019)

Resveratrol Inhibition LC3, Atg5 Induces mitochondrial dysfunction and promotes FLSs
apoptosis

Cao et al. (2018)

Andrographolide Inhibition P62, Beclin1, LC3, PAD4 Promotes neutrophil apoptosis and inhibits NETs
formation

Li X. et al. (2019)

Quercetin Inhibition Beclin1, LC3, Atg5 Promotes neutrophil apoptosis and inhibits NETs
formation

Yuan et al. (2020)

Emodin Inhibition Beclin1, LC3, Atg5 Promotes neutrophil apoptosis and inhibits NETs
formation

Zhu M. et al. (2019)
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et al., 2020), natural carotenoid compound Lycopene from bright

red-orange fruits and vegetables such as Lycopersicon esculentum

(Wu et al., 2021), polymethoxylated flavonoid Sinensetin from

citrus fruits (Zhou et al., 2021), isoflavonoid glabridin from the

root of Glycyrrhiza glabra (Dai et al., 2021), triterpenoid saponin

compound saikosaponin D from Bupleurum falcatum (Jiang et al.,

2020), polyphenols (-)-Epigallocatechin 3-gallate from green tea

(Huang et al., 2020), flavonoid rhoifolin from Rhus succedanea

(Yan et al., 2021), quercetin (Lv et al., 2022), and naphthoquinone

compound Shikonin from the root of Lithospermum

erythrorhizon (Wang A. et al., 2022). Because of the large

number, we have summarized in the table the specific

mechanisms involved in these studies. Inhibiting chondrocyte

apoptosis, regulating the metabolic balance of ECM synthesis

and degradation, and re-establishing the disturbed

microenvironment within the cartilage are all ways that these

medications affect the autophagic process of chondrocytes in OA

caused by various triggers (aging, inflammatory factors, oxidative

stress, oxygen-glucose deprivation, and serum deprivation)

(Table 3; Figure 3).

Fracture nonunion/delayed union

Despite the strong self-healing ability of bone tissue, about

5–10% of patients still experience problems with fracture healing

TABLE 3 Natural products for the treatment of OA by targeting autophagy.

Natural products Activation/
inhibition
of autophagy

Autophagy-Related Mode
of Action

Effect of treatment References

Astragaloside IV Activation P62, LC3 Inhibits chondrocyte apoptosis Liu et al. (2017)

Curcumin Activation P62,Beclin1, LC3, ERK1/2,NF-κB,
miR-34a, Akt/mTOR, AMPK/
PINK1/Parkin

Inhibits chondrocyte apoptosis and inflammatory
signal transduction and maintains mitochondrial
homeostasis

Li X. et al. (2017), Chen T. et al.
(2021), Yao et al. (2021), Jin et al.
(2022)

Isopsoralen Activation P62, LC3, LAMP1 Inhibits chondrocyte apoptosis Chen Z. et al. (2020)

Icariin Activation Atg5, Atg7, LC3, NF-κB, PI3K/
AKT/mTOR

Reduces inflammatory response and inhibits
chondrocyte apoptosis

Mi et al., 2018; Tang et al. (2021a)

Columbianetin Activation P62, Beclin1, LC3 Reduces inflammatory response and inhibits
chondrocyte apoptosis

Chen W. et al. (2022)

Mangiferin Activation Atg5, p62, LC3, LAMP2, AMPK/
mTOR

Antagonizes oxidative stress damage and inhibits
chondrocyte apoptosis and ECM degradation

Li Y. et al. (2019)

Baicalin Activation Beclin1, LC3, miR-766-3p/AIFM1 Inhibits chondrocyte apoptosis and ECM
degradation

Li Z. et al. (2020)

Chlorogenic acid Activation P62, LC3 Antagonizes oxidative stress and inhibits
chondrocyte apoptosis

Zada et al. (2021)

Delphinidin Activation Nrf2, NF-κB, LC3 Antagonizes oxidative stress and inhibits
chondrocyte apoptosis

Lee et al. (2020)

Punicalagin Activation Atg12-5, LC3, Beclin1, ULK1, p62,
LAMP2

Antagonizes oxidative stress damage and inhibits
chondrocyte apoptosis and ECM degradation

Kong et al. (2020)

Lycopene Activation MAPK, PI3K/Akt/NF-κB, Beclin1,
LC3, mTOR

Reduces inflammatory response, antagonizes
oxidative stress damage, increases chondrocyte
proliferation and inhibits apoptosis

Wu et al. (2021)

Sinensetin Activation P62, Beclin1, LC3, AMPK/mTOR Antagonizes oxidative stress damage, inhibits
chondrocyte apoptosis and ECM degradation

Zhou et al. (2021)

Glabridin Activation Beclin1, Atg5, LC3, mTOR Antagonizes oxidative stress damage, inhibits
apoptosis and promoting ECM synthesis

Dai et al. (2021)

Saikosaponin D Activation PI3k/Akt/mTOR, NF-κB Reduces inflammatory response, antagonizes
oxidative stress damage, inhibits apoptosis, and
promotes ECM synthesis

Jiang et al. (2020)

(-)-Epigallocatechin 3-
gallate

Activation P62, Beclin1, LC3,mTOR Reduces inflammatory response, delays cartilage
degeneration, and inhibits chondrocyte apoptosis
and ECM degradation

Huang et al. (2020)

Rhoifolin Activation Atg12-5, P62, LC3, Beclin1, P38/
JNK, PI3K/AKT/mTOR

Reduces inflammatory response and inhibits
ECM degradation

Yan et al. (2021)

Quercetin Activation TSC2/RHBE/mTOR Promotes chondrocyte viability, inhibits
apoptosis, and promotes ECM synthesis

Lv et al. (2022)

Shikonin Activation P62, LC3, Beclin1 Restores the balance between chondrocyte
anabolism and catabolism

Wang A. et al. (2022)
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(Nelson et al., 2003). LC3 II is upregulated in bone tissue after

internal fixation in a rat femoral fracture model and positively

correlates with the number of cells positive for Proliferating cell

nuclear antigen (a key protein for osteoblast proliferation) (Zhou

et al., 2015). Systemic administration of rapamycin-induced

autophagy in a rat femur fracture model, significantly

promoting mineralization, formation, and remodeling of bone

scabs and the expression of proliferating cell nuclear antigen and

vascular endothelial growth factor (Yang et al., 2015). It has also

been demonstrated that AMPK activation accelerates the healing

of fractures by increasing autophagy, which improves osteoblast

differentiation and mineralization (Li G. et al., 2018). Autophagy,

therefore, presents a possible therapeutic target for the clinical

treatment of fracture nonunion/delayed union given the significant

role it plays in bone development and bone mineralization.

However, there are focused research on medications,

particularly those involving natural compounds, that monitor

and target autophagy using fracture nonunion or delayed union

models (only two items). β-Ecdysterone, a polyhydroxylated

steroid hormone found mainly in Achyranthes bidentata and

Cyanotis arachnoidea, activates autophagy by inhibiting PI3K/

Akt/mTOR signaling pathway in femoral tissue of rats with

femoral fractures, promoting osteoblast differentiation and

mineralization, inhibiting apoptosis, and accelerating fracture

healing (Tang et al., 2021b). Similarly, curcumin-treated rat

femur fracture osteoblasts exhibited rapid fracture healing and

autophagy activation, whereas the rate of fracture healing was

noticeably slowed in the presence of curcumin plus 3-MA (Li Y.

et al., 2018) (Figure 3).

Conclusion and prospects for the
future

The orderly conduct of bone metabolic processes and the

maintenance of homeostasis in bone depend on the coordinated

cooperation of multiple cell types, which requires the proper

functioning of BMSCs, osteoblasts, osteocytes, osteoclasts and

chondrocytes. It has been established through investigation of

certain autophagy-related gene knockdowns that autophagy is

crucial to the maintenance of these cell types’ functional integrity.

Consequently, increasing autophagy may be a key therapeutic

focus for treating metabolic bone disease. Meanwhile, recent

studies have reported the therapeutic role of natural products as

inducers or inhibitors of autophagy in various diseases, including

diseases caused by various disorders of bone metabolism, such as

OP, RA, OA, and fracture nonunion/delayed union.

Despite the surprising results, there are still some challenges

that have not been overcome and are inevitable to be addressed.

On the one hand, both bone metabolism and autophagy are

dynamic processes, with different metabolic bone diseases and

affected bone cells, various disease stages, varying trigger

intensities and durations, and different degrees of inhibition

or activation of autophagy in different individuals. This

undoubtedly increases the demand for precise regulation of

autophagy. We must be cautious when identifying autophagic

“defects” and determining the “positive or negative” functions

performed by autophagy before we seek to restore cellular

viability by the elimination of cellular damage via autophagy.

For example, excessive activation may result in increased

secondary mineral deposition and bone fragility even if

impaired autophagic activity in osteocytes is linked to

decreased bone mass and slowed bone turnover (Li et al.,

2020b). For many skeletal tissues with low cell numbers and

extended lifespans, excessive induction of autophagy may

accelerate apoptosis and senescence thereby exacerbating the

disease state (Shapiro et al., 2014). Another illustration is the

transformation of early activated protective autophagy into

destructive autophagy with ongoing or increased stress, which

necessitates an accurate measurement of the spatiotemporal

location and autophagic state of the afflicted cells. Therefore,

there is no consensus on the therapeutic potential of autophagy.

The stage of autophagy should be included in follow-up research,

and it is necessary to build a dynamic observation system of

autophagy under various illness phases in order to standardize

and unify follow-up investigations. The close association between

bone cells in particular calls for increased specific targeting of

autophagy, which requires us to identify the level of autophagy in

the main affected bone cells in different metabolic bone diseases;

for example, bone resorption by osteoclasts and bone formation

by osteoblasts both require autophagic activity, which requires us

to choose between inhibition or activation of autophagy.

On the other hand, to cope with the need for precise autophagic

regulation, it is necessary to continuously figure out the effective

dose of natural products, early and late administration, specific

targeting of different cells, precise regulation and rangemaintenance

of autophagic levels, and differential responses of different

individuals. The bioavailability of many natural compounds is

constrained by features including poor absorption, quick

metabolism, and rapid elimination (Rahman et al., 2020). As a

result, it may be advantageous to structurally alter natural products

based on the control of autophagy to enhance their targeting,

efficacy, and safety. Also, the development and utilization of

nanocarriers may be effective in improving the stability,

solubility, and sustainability of natural products, as demonstrated

by excellent precedents such as the treatment of ischemia-

reperfusion with curcumin and the promotion of nerve recovery

with resveratrol (Kalani et al., 2016; Fan et al., 2020). Furthermore,

translation to clinical application is a difficult threshold to cross in

the short term, and although some natural products have shown

promising results in clinical trials for the treatment of skeletal

disorders, it has not been elucidated whether their effects are

associated with autophagy. A recent randomized, placebo-

controlled trial in middle-aged adults investigated the role of

Urolithin A, a natural compound produced by intestinal flora

following ingestion of pomegranate, berries and nuts, in
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improving muscle performance by promoting mitochondrial

autophagy, which may inform subsequent clinical studies of

natural products modulating autophagy in the treatment of

skeletal disorders (Singh et al., 2022).

Finally, although we have reviewed studies on the regulation

of autophagy by natural products to treat common metabolic

bone diseases, more metabolic bone diseases should be included,

such as osteolysis, Paget disease of bone, and osteogenesis

imperfecta, and there is still a paucity of studies on natural

products in the treatment of these diseases, and the role of

autophagy in these diseases is obscure. What’s more, it is

anticipated that more pertinent mechanisms will be

discovered, leading to an increase in the validity of the

theoretical underpinnings and options for natural product-

targeted autophagy in the treatment of various metabolic bone

diseases. In any case, the regulation of autophagy is thought to be

an exciting strategy for drug development.
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Glossary

OP osteoporosis

OA osteoarthritis

RA rheumatoid arthritis

CMA chaperone-mediated autophagy

PI3K phosphoinositide3 kinase

Akt protein kinase B

AMPK 5ʹ AMP-activated protein kinase

mTOR mammalian target of rapamycin

mTORC mammalian target of rapamycin complex

ULK1 UNC-51-like kinase

FIP200 FAK family kinase-interacting protein of 200 kDa

Vps vacuolar protein sorting

Atg autophagy-related protein

LC3 microtubule-associated protein one light chain three

PE phosphatidylethanolamine

BMSCs bone marrow mesenchymal stem cells

ROS oxygen species

ER endoplasmic reticulum

TNF-α tumor necrosis factor-alpha

ATP adenosine triphosphate

FGF23 fibroblast growth factor-23

ECM extracellular matrix

PC2 type II procollagen

CTSK cathepsin K

MMM9 matrix metalloproteinase nine

TRAP tartrate-resistant acidic phosphatase

NF-κB nuclear factor-κB
RANK receptor activator of NF-κB
RANKL receptor activator of NF-κB ligand

NFATc1 nuclear factor of activated T-cell c1

TRPV4 transient receptor potential vanilloid four

P2X7R P2X7 receptor

TRAF6 tumor necrosis factor receptor-associated factor 6

BCL2 B-cell lymphoma two

TET2 tet methylcytosine dioxygenase 2

KLF2 kruppel-like factor 2

LAMP2A lysosome-associated membrane protein type 2A

PINK1 PTEN-induced putative kinase one

OVX ovariectomy

FOXO1 Forkhead box O1

IL interleukin

JNK c-Jun amino-terminal kinase

FLSs fibroblast-like synoviocytes

AA adjuvant arthritis

Th17 T helper lymphocyte 17

Treg regulatory T lymphocyte

NETs neutrophil extracellular traps

ERK extracellular signal-regulated kinases

PINK1 PTEN-induced putative kinase one

LAMP lysosomal associated membrane protein
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