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Malaria is caused by the protozoan Plasmodium sp and affects millions of

people worldwide. Its clinical form ranges from asymptomatic to potentially

fatal and severe. Current treatments include single drugs such as chloroquine,

lumefantrine, primaquine, or in combination with artemisinin or its derivatives.

Resistance to antimalarial drugs has increased; therefore, there is an urgent

need to diversify therapeutic approaches. The disease cycle is influenced by

biological, social, and anthropological factors. This longevity and complexity

contributes to the records of drug resistance, where further studies and

proposals for new therapeutic formulations are needed for successful

treatment of malaria. Nanotechnology is promising for drug development.

Preclinical formulations with antimalarial agents have shown positive results,

but only a few have progressed to clinical phase. Therefore, studies focusing on

the development and evaluation of antimalarial formulations should be

encouraged because of their enormous therapeutic potential.
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Introduction

Malaria is a disease that affected 241 million people and led to 627,000 deaths

worldwide in 2020. It is considered a significant public health problem that preferentially

occurs in tropical and subtropical regions and is an endemic disease in 85 countries

(World malaria report, 2021).

The incidence of malaria occurs in an environment conducive to the spread of the

vector mosquito, geographically in developing and underdeveloped countries. Among the

85 countries reporting malaria cases in 2020, 29 accounted for 96% of malaria cases

worldwide, and six countries in the African continent accounted for 55% of global malaria

incidence. Malaria mortality rate (deaths per 100,000 inhabitants at risk) decreased from

30% in 2000 to 15% in 2015 and to 13% in 2019. However, in 2020, the mortality rate

increased to 15%. The increased mortality rate of malaria in 2020 was associated with the
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interruption of medical services for malaria treatment due to

COVID-19 pandemic (World malaria report, 2021).

The causative agent of malaria is the protozoan Plasmodium

sp, which is inoculated into the human body by mosquitoes of the

genus Anopheles during hematophagy. There is a complex

mosquito-human-parasite cycle, and five species of the

parasite can infect humans: Plasmodium falciparum,

Plasmodium vivax, Plasmodium ovale, Plasmodium malariae,

and Plasmodium knowlesi (Phillips et al., 2017; Ashley et al.,

2018). Clinical manifestation of the disease in humans occurs due

to the pre-programmed biology of the parasite in conjunction

with the human pathophysiological response (Milner, 2018;

Knackstedt et al., 2019). Two distinct stages occur in the life

cycle of Plasmodium sp: sexual cycle in the vector mosquito and

asexual cycle in the human host (Figure 1).

Pathophysiology

The pathogenesis of malaria is related to the blood cycle.

Symptoms usually appear approximately 10–15 days after

infection, and the disease evolves with febrile response and

potentially progresses to severe malaria, which is a

consequence of parasite multiplication and invasion of red

blood cells by parasites (Najer et al., 2018; Knackstedt et al.,

2019). Malaria can be classified as asymptomatic, uncomplicated,

and severe (World malaria report, 2020). Any Plasmodium sp can

cause asymptomatic malaria (Brazier et al., 2017) or

uncomplicated malaria, which is manifested as chills,

sweating, headache, nausea, or vomiting without severe organ

dysfunction (Phillips et al., 2017; Moxon et al., 2020). P.

falciparum causes the most severe malaria disease, with severe

organ damage, anemia, and hyperparasitemia (Brazier et al.,

2017; Moxon et al., 2020).

Disruption of Plasmodium sp-infected erythrocytes leads to

the release of malaria parasites and endotoxins, a complex of

parasite DNA and hemozoin (Brazier et al., 2017; Ashley et al.,

2018). Endotoxins are recognized by immune cells through Toll-

like receptor 9 (TLR9), which increases the production of

cytokines and chemokines (Karunaweera et al., 1992;

Mubaraki et al., 2017). Oxidative stress increases the

inflammatory response by releasing cytokines that cause organ

damage (Dunst et al., 2017; Katsoulis et al., 2021). The membrane

of erythrocytes infected by parasites hardens and loses its

FIGURE 1
Life cycle of Plasmodium sp. The cycle can be divided into two stages: mosquito vector or sexual cycle and human host or asexual cycle. The
mosquito ingests gametocytes while performing hematophagy. The zygote is formed from the union of gametocytes and generates oocyte. It
crosses the intestinal wall and forms oocyst that releases sporozoites, which migrate to the mosquito’s salivary glands, completing the sexual cycle.
The infected female Anopheles spmosquito inoculates sporozoites, performs hematophagy, and begins the asexual cycle of Plasmodium sp in
human. Sporozoites are transported to the liver through the blood, and asexual multiplication occurs in the hepatocytes, forming merozoites in the
pre-erythrocytic cycle (Ashley et al., 2018). In P. vivax and P. ovale infections, some sporozoites differentiate in the liver to a latent form called
hypnozoites. After rupture of the hepatocytes, merozoites are released into the bloodstream and penetrate the erythrocytes (erythrocyte phase),
assuming a ring-shaped configuration (Coban et al., 2018). Proliferative schizogony occurs in infected erythrocytes, where merozoites multiply
asexually, differentiating into schizonts and trophozoites. Erythrocytes rupture and release schizonts into the bloodstream, where one part
differentiates into male and female gametocytes, and another part infects new erythrocytes (Phillips et al., 2017; Ashley et al., 2018). Image was
created in BioRender.com.
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standard shape, contributing to the obstruction of capillaries and

thrombus formation. Consequently, when vital organs are

affected, severe malaria progresses to death (Coban et al.,

2018; Klinkhamhom et al., 2020).

Malaria treatment recommended by
World Health Organization

The first- and second-line of treatment recommended by the

World Health Organization (WHO) for uncomplicated P.

falciparum malaria and chloroquine-resistant P. vivax is

artemisinin-based combination therapies (ACTs) (Report on

antimalarial drug efficacy, 2020; World malaria report, 2020).

This therapy combines an artemisinin derivative with a partner

drug. Artemisinin compound plays an important role in reducing

the number of parasites during the first 3 days of treatment. After

this period, the partner drug eliminates the remaining parasites

(Report on antimalarial drug efficacy, 2020).

Currently, several drugs that act during different stages of the

parasite’s biological cycle are available for malaria prevention and

cure (Figure 2). Most antimalarial agents target erythrocytic and

asexual stages (Belete, 2020; Madhav and Hoda, 2021).

Tafenoquine and primaquine are approved antimalarial agents

FIGURE 2
Current drug targets for malaria treatment: I—Asexual cycle; II—Liver cycle, III, IV, VI—Erythrocytic cycle, V—Asexual and sexual cycles. Source:
Artemisinin-based combination therapies (ACTs) are recommended by the World Health Organization (World malaria report, 2020; Wicht et al.,
2020; World malaria report, 2021).

TABLE 1 WHO-recommended artemisinin-based combination therapies (ACTs).

P. falciparum (uncomplicated) P. vivax (uncomplicated)

Artemether-lumefantrine (AL) Chloroquine (CQ)

Artesunate-amodiaquine (AS-AQ) ACTs in areas with CQ resistance

Artesunate-mefloquine (AS-MQ)

Artesunate-pyronaridine (AS-PY)

Artesunate + sulfadoxine-pyrimethamine (AS + SP)

Dihydroartemisinin-piperaquine (DHA-PPQ)

Source: Adapted from Report on Antimalarial Drug Efficacy, Resistance and Response: 10 years of Surveillance (Report on antimalarial drug efficacy, 2020; World malaria report, 2020).
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against parasites and hypnozoites at the hepatic stage (Thriemer

et al., 2017; Commons Id et al., 2019).

The WHO currently recommends six ACTs as the first- and

second-line of treatment for uncomplicated cases (Table 1). In

regions where malaria transmission is moderate to high, the

WHO recommends intermittent preventive treatment in

pregnancy (IPTp) during consultation from the beginning of

the second trimester of pregnancy (Table 2) (Report on

antimalarial drug efficacy, 2020).

Resistance to antimalarials

Over the years, several endemic areas worldwide have

reported increased incidence of Plasmodium drug resistance.

Increasing drug resistance of Plasmodium sp is one of the

main factors responsible for treatment failure (Rai et al., 2017;

L-QuraishAy et al., 2020). In addition, the use of drugs from the

same chemical family or having a similar mode of action may

have intensified cross-resistance to antimalarial drugs (Capela

et al., 2019; Tse et al., 2019).

Several studies have reported that molecular mechanisms of

resistance to antimalarial drugs occur in several species of

parasites and include polymorphisms in proteins that alter the

physiological regulation in the parasite (Menard and Dondorp,

2017; Wicht et al., 2020). The occurrence of polymorphisms

makes it obvious that resistance to antimalarial drugs is

associated with the genetic factors of parasites. Single, double,

or quadruple mutations in different genes confer resistance in the

parasite to antimalarial drugs. For example, mutations in the

Pfmdr1, Pfcrt, Pfmrp, and Pfnhe1 genes confer drug resistance

(Cubides et al., 2018; WWARN K13 Genotype-Phenotype Study

Group, 2019).

Mutations in the Pfmdr1 membrane transporter found in

Plasmodium sp digestive vacuoles may influence parasite

susceptibility to chloroquine (Phillips et al., 2017; Bree and

levy, 2018). The Pfcrt and Pfmdr1 are vital multidrug

resistance proteins. The Pfmdr1 encodes a p-glycoprotein

homolog that affects sensitivity to multiple antimalarial drugs

(Ross et al., 2018; Xu et al., 2018) including artemisinin,

mefloquine, lumefantrine, quinine, and chloroquine (Patel

et al., 2017; Xu et al., 2018). Atovaquone is a synthetic

hydroxynaphthoquinone with antiprotozoal activity.

Atovaquone interferes with DNA synthesis by blocking

mitochondrial transport of electrons from the protozoan

respiratory chain, leading to cell death (Staines et al., 2018;

Kathpalia et al., 2020). Unique mutations in the Pfcytb gene

of P. falciparum caused resistance to atovaquone in in vitro/in

vivo experiments (Staines et al., 2018; Kathpalia et al., 2020). The

gene encoding P. falciparum Kelch 13 (PfKelch13) has been

identified as a genetic determinant of resistance (Bree and

levy, 2018; WWARN K13 Genotype-Phenotype Study Group,

2019). K13 mutations reduce protein function and cause

artemisinin resistance by reducing its activation (Talman

et al., 2019; Wicht et al., 2020).

All molecular targets of antimalarial drugs have not been

defined. Drug resistance can occur via several pathways, such

as processes that reduce drug toxicity, some catalytic processes

that promote changes in enzyme reactions, or amplification of

the gene encoding the target enzyme or transporter that

pumps the drug out of the parasite (Ross et al., 2018; Deda

et al., 2020). Surveillance of resistance to antimalarials is

performed using three complementary approaches: 1) in

vivo studies to evaluate the efficacy of medications in

patients, 2) in vitro studies to assess the parasite

susceptibility to medicinal products, and 3) molecular

studies to detect genetic mutations and/or gene copy

number alterations associated with drug resistance (Xu

et al., 2018; Nsanzabana, 2019; Report on antimalarial drug

efficacy, 2020). Many studies have described factors that

indicate resistance to most drugs used to treat malaria and

reveal possible targets for new drugs. With the advancement

of molecular biology, metabolomics and proteomics details of

the parasite support the development of new pharmacological

agents such as nanopharmaceuticals. The work between

academic research and pharmaceutical industry is essential

and positive for treating malaria cases in endemic regions with

efficient and technically targeted approaches.

TABLE 2 WHO-recommended treatment for uncomplicated malaria in pregnant woman.

P. falciparum

Not complicated ACT

First, second, and third-trimester of pregnancy Quinine + clindamycin ACT

P. vivax, P. ovale, P. malarie, P. knowlesi

Blood stage Not complicated Chloroquine or ACT

1st-trimester pregnant women Chloroquine or quinine

2nd trimester Chloroquine or ACT

Liver stage ( P. ovale/P. vivax ) Primaquinea

Source: Adapted from Report on Antimalarial Drug Efficacy, Resistance and Response: 10 years of Surveillance (Report on antimalarial drug efficacy, 2020; World malaria report, 2020).
aNot recommended for children <6 months, pregnant women, nursing mothers, or those with glucose-6-phosphate dehydrogenase (G6PD) deficiency.
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Disadvantages of conventional
antimalarials

The most evident disadvantage of conventional antimalarial

drugs is Plasmodium sp resistance due to genetic polymorphisms

(Bree and levy, 2018; Wicht et al., 2020). However, other

disadvantages that influence malaria treatment with

conventional antimalarial drugs include low water solubility,

low bioavailability, side effects, and relatively short half-life

(Alven and Aderibigbe, 2020; Rashidzadeh et al., 2021; Souza

Botelho et al., 2021). Side effects frequently related to

conventional antimalarial drugs include abdominal pain and

gastrointestinal symptoms such as vomiting, jaundice, itching,

hypoglycemia, anemia, dizziness, coma, and altered

consciousness (Novitt-Moreno et al., 2021; Rashidzadeh et al.,

2021). In addition, during prolonged use, there is a risk of

hemolysis (tafenoquine and primaquine), retinopathy, mental

confusion, cardiac complications (tafenoquine and chloroquine)

(Novitt-Moreno et al., 2021), and gastric irritation (primaquine)

(da Silva de Barros et al., 2021). Skin hypersensitivity reactions to

sulfadoxine-pyrimethamine (Stevens-Johnson syndrome), severe

hepatoxicity, and neuropsychiatric reactions to mefloquine have

also been reported (Frey et al., 2010; Ashley and Phyo, 2018). In

many cases, serious side effects resulted in treatment

discontinuation (Brito-Sousa et al., 2019; Who, 2019).

Development of new drugs/
pharmaceuticals

Metabolic pathways, such as nucleic acid synthesis, heme

detoxification, oxidative fatty acid synthesis, and stress, are the

primary targets for development of new drugs (Baruah et al.,

2017; Oyelade et al., 2019). In the search for new treatments,

pharmaceutical companies have studied a variety of drug

candidates for malaria control and elimination (Belete, 2020).

New agents such as arterolane, cipargamin, and KAF156 have the

potential to replace ACTs that fail to treat malaria infection.

Therefore, there is an urgent need to reassess the current

combination therapy for malaria treatment (Ashley and Phyo,

2018; Moyo et al., 2020).

To develop antiparasitic molecules, phenotypic screening

studies of the parasite are essential (Cowell and Winzeler,

2019; Yahiya et al., 2019). In addition, phenotypic screening

for the entire biological cycle of Plasmodium sp is needed to

gather data in chemical libraries and enable discovery of multiple

substances that have potential as antimalarials (Cowell and

Winzeler, 2019; Yahiya et al., 2019).

Kae609, KAF156, DSM265, and MMV048 are the four most

advanced antimalarials have emerged from multidisciplinary

collaboration and are currently in phase II trials. The main

objective of malaria treatment and elimination strategies is to

target multiple stages of the parasite cycle (Summers et al., 2021).

Combined antimalarial treatments that do not present

artemisinin (ART) are recommended by the WHO when

unavailable or suitable for treatment (Who, 2015). An open

randomized phase III clinical study compared the efficacy of

quinine/clindamycin with artemether/lumefantrine in treating

uncomplicated malaria in children below 5 years of age and did

not find evidence for the use of quinine/clindamycin when

artemether/lumefantrine is still effective (Obonyo et al., 2022).

A single monthly prophylactic antimalarial drug composed of a

combination of naphthoquinone-azithromycin (NQAZ) was

used in a randomized, placebo-controlled, double-blind study

to evaluate its protective effect against Plasmodium infection.

Treatment with NQAZ showed 93.62% protective efficacy with a

95% confidence interval [CI] of 91.72–95.52 (Yang et al., 2021). A

two-group, multicenter, and randomized comparative study

compared the efficacy of a dispersible tablet composed of a

combination of a fixed dose of arterolane maleate (AM)

37.5 mg and piperaquine phosphate (PQP) 187.5 mg and that

of artemether-lumefantrine (AL) in pediatric patients with P.

falciparum infection. Both treatments were considered safe with

good tolerance, and the efficacy of the AM-PQP combination was

compared to that of AL (Toure et al., 2016). There is an urgent

need to develop rapid action antimalarials that act during the

asexual stage in the blood to reduce the propensity to generate

resistance. The four most successful antimalarials primarily

target multiple stages of the malaria parasite’s life cycle

(Ashton et al., 2019).

Potential of nanotechnology in malaria

Recent studies have demonstrated the potential of

nanotechnology for the treatment of different diseases through

multiple techniques (Figure 3). Nanostructured drug delivery

systems have clinical applications in the treatment of

immunological disorders such as allergy, cancer,

arteriosclerosis, diabetes, and malaria (Calderó et al., 2017;

Charlie-Silva et al., 2018). FDA have already approved

nanotherapies for a variety of applications, but at the best of

our knowledge, none yet for malaria treatment (Mitchell et al.,

2021).

A considerable improvement in the pharmacokinetics and

efficiency of the encapsulated nano drug was observed

compared with that of the encapsulated free drug

(Abdolmaleki et al., 2021; Biosca et al., 2021). Critical

studies based on nanotechnology for the development of

antimalarial drugs are aimed to solve key problem in malaria

treatment, such as disease severity, and are focused on reduced

level of drug toxicity, interruption of transmission of

Plasmodium sp, increased efficacy of drugs, and mainly,

combating multidrug resistance (Manconi et al., 2019;

Nnamani et al., 2021). The use of nanostructured drug

delivery systems can potentially solve the critical issue of
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Plasmodium sp multidrug resistance to drugs used for a long

time in endemic regions, offering a new possibility of using the

same drugs at manometric concentrations with reduced side

effects (Marwah et al., 2020; Elmi et al., 2021).

Targeting a drug to unveil its precise mechanism of action is

a crucial strategy for treating malaria. Several barriers must be

eliminated to allow the drug to reach the intracellular parasite.

Bioavailability, concentration, and elimination of drugs are

important factors that need to be considered for successful

treatment. Nanopharmaceuticals have a promising prospect

(Panzarini et al., 2018; Akpa et al., 2020; Pestehchian et al.,

2020; Zhang et al., 2020; Guo et al., 2021; Wang et al., 2021).

The application of nano-based delivery systems as carriers of

antimalarial drugs has resolved some essential issues, such as

increased therapeutic effect of conventional antimalarials with

decreased resistance of Plasmodium sp and selective

distribution of drugs (Abazari et al., 2020; Rashidzadeh

et al., 2021) (Figure 4).

Cerebral malaria is considered to be extremely severe, which

is manifested by intense inflammatory conditions and severe

organ damage. The drugs used for the treatment of cerebral

malaria are generally administered intravenously; therefore, drug

concentration and side effects are the major issues that hinder the

treatment of patients with cerebral malaria. Nanostructured

delivery systems can potentially treat malaria with less harm

to patient (Golenser et al., 2020; Agbo et al., 2021). Different

polymer-based nanoparticle structures, such as drug delivery

systems, have been studied and improved in multiple studies

(Nosrati et al., 2018; Ramazani et al., 2018; Abazari et al., 2020;

Dias et al., 2020).

In vitro and in vivo studies used the Pfs25 sex stage gene from

P. falciparum, harmonized by codon in Escherichia coli

(CHrPfs25), as antigen conjugated to the gold nanoparticle

(GN) in different sizes and shapes. GNs can act as a vaccine

delivery vehicle because they strongly induce antibodies that

block P. falciparum transmission. Authors found IgG from mice

immunized with different GN-particles with highly potent

blocking activity regardless of IgG isotype differences (Kumar

et al., 2015).

A DNA vaccine study was carried out using magnetic vectors

composed of superparamagnetic iron oxide nanoparticles

(SPIONs), hyaluronic acid (HA), and polyethyleneimine (PEI)

added to the DNA encoding PyMSP1 19 of Plasmodium yoelii.

The complex induced cellular and humoral immunity against the

antigen PyMSP1 19 with increased production of antibodies by

an external magnetic stimulus. The immunization with the

FIGURE 3
Classes of Nanoparticles. Nanoparticles can be divided into organic (lipid-based and polymeric) and inorganic. Each class embodies several NPs
with the most relevant highlighted in the figure.

Frontiers in Pharmacology frontiersin.org06

Chaves et al. 10.3389/fphar.2022.999300

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.999300


FIGURE 4
Nanocarriers. (A) Nanocarriers targeting. A schematic diagram represents the active and passive targeting of NPs. In passive targeting, NPs are
carried by red blood cells and in the bloodstream to all tissues. During active targeting, NPs are conjugated with affinity ligands on their surface to
enhance their uptake by the target site and cells. Different targetingmoieties, such as antibodies, integrins, folate, glucose, or transferrin, can interact
with molecules on the target cell surface. (B) Nanocarrier uptake mechanism. In the blood, nanocarriers can be targeted to recognize only
parasitized red blood cells. These reduce the chances of resistant pathogen strains and side effects for the patient since the intake is considerably low
compared to traditional treatments. In addition, Plasmodium induces new permeation pathways (NPPs) that confer increased permeability to the
pRBC by changing the osmotic stability and enabling nanocarriers to enter the pRBC. In other tissues, intracellular uptake of nanocarriers follows
different endocytosis pathways. When nanocarriers reach the cell surface, they are taken up by endocytosis depending on their shape, charge, size,
or surface. Endocytosis can occur by macropinocytosis, driven by membrane ruffling and actin protrusions. After engulfment, they fuse with
lysosomal compartments to content degradation. Clathrin-mediated endocytosis is based on clathrin-coated pits on the cytosolic side of the
membrane forming clathrin-coated vesicles that undergo vesicular trafficking. Caveolae-mediated endocytosis undergoes the same dynamics.
However, they fuse to caveosomes, avoiding lysosomal degradation.
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complexes induced dendritic cell maturation through the

upregulation of CD86 expression in the spleen. The presence

of secondary effector T cell-mediated immune responses was

noted as CD4 helper T cells (Th). The complexes induced

antigen-specific Th1 and Th17 cells (Al-Deen et al., 2017). In

addition, a non-inflammatory delivery system based on

polystyrene nanoparticles (PSNPs) complexed with antigen

MSP4/5 (surface proteins of P. falciparum/P. vivax

merozoites) and Freund’s adjuvants and alum was tested in a

mice model. The non-inflammatory adjuvants associated with

PSNPs induced a Th1 immune response acting similarly to a

vaccine. The PSNPs-MSP4/5 conjugates induced immune

responses by Th1 and Th2, and antibody subclasses IgG1,

IgG2a, and IgG2b. The response using adjuvants was even

higher. IL-4-associated with Th2 responses induced

IgG1 antibodies, and IgG2 antibodies were related to

Th1 responses and dependent on IFN-γ. Immunization

protection against malaria blood-stage infection may depend

on IFN-γ production (Wilson et al., 2019).

TABLE 3 Main polymeric drug nano vehicles.

Nanosystems Application potential Application limitation References

Dendrimers Presence of internal spaces to encapsulate drugs;
external part with functional groups for
conjugation and targeting of therapeutic agents;
low polydispersity index; ideal for malaria
treatment

High cost; possibility of loss of encapsulated
substance

Dias et al. (2020), Hu et al. (2020), Nosrati
et al. (2018), Sahoo et al. (2020), Zhang et al.
(2020)

Nanogels Encapsulate therapeutic agents in the gel matrix
by diffusion; transport and encapsulate
hydrophilic and hydrophobic drugs; sustained
drug release

Rapid release of therapeutic agents; therapeutic
agent leakage

Dawre et al. (2018), Owonubi et al. (2018),
Rashidzadeh et al. (2021)

Micelles Internalization of hydrophobic drugs with
protection from degradation; control of drug
release rate; decreased side effects and
cytotoxicity

Micelle stability In vivo during blood
circulation due to dilution; decreased o tempo
de half-life; therapeutic agent leakage

Ramazani et al. (2018), Ismail et al. (2019),
Rashidzadeh et al. (2021)

Drug polymer
conjugate (PDC)

Direct drug delivery to the target site; sensitive to
the pH of the exposed environment for the
release of therapeutic agent

May cause hemolysis Nosrati et al. (2018), Rashidzadeh et al. (2021)

Liposomes Ability to encapsulate hydrophobic and
hydrophilic drugs; prevents degradation and
promotes the delivery of a therapeutic agent to a
specific site

Structural instability; drug leakage;
opsonization

Fotoran et al. (2019), Apolinário et al. (2020),
Rashidzadeh et al. (2021), Huang (2020)

Nanoparticles Drug targeting to take the drug to the exact site
of action, increasing bioavailability,
concentration, and elimination of drugs

High cost Kannan et al. (2019), Martí Coma-Cros et al.
(2019), Panzarini et al. (2018), Pestehchian
et al. (2020), Wang et al. (2021), Zhang et al.
(2020), Wilson et al. (2019)

Metallic and magnetic
nanoparticles

Metallic and magnetic nanoparticles containing
antigens of the sexual state and/or drug delivey
and induction of malaria transmission-blocking
immunity

Few studies on how size, shape, and surface
charge affect the efficiency of immunogenicity

Kumar et al. (2015), Al-Deen et al. (2017),
Powles et al. (2020)

Source: Recent advances in targeting malaria with nanotechnology-based drug carriers (Rashidzadeh et al., 2021).

FIGURE 5
Currently published articles on nano-formulated therapies
against malaria. The illustration shows that data recorded from
2017 to 2022were evaluated and retrieved from theNational Library
of Medicine USA databases (MEDLINE∕PUBMED—NLM),
Scientific Electronic Library Online (SciELO), and Google Scholar
(Google Scholar).
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Herein, we aimed to discuss the potential application of

nanotechnology in developing new antimalarial drugs and the

gap between preclinical and clinical studies based on

nanotechnology. Table 3 presents the potential and limitations

of nanotechnology.

Recent studies on nanotechnology in
malaria treatment

The number of publications on nanoparticles in treating

malaria over time is increasing. For instance, a search on the

TABLE 4 Summary of different drug-loaded micro- and nanoparticles reported from 2019 to 2021.

Nanoparticles
Microparticles

Drug used Types of
formulation

Kind of
study

References

Polymeric microparticles Primaquine Intravenous solution Preclinical Da Silva De Barros et al. (2021)

Nanoemulsions Primaquine; dihydroartemisinin; thiazoline;
azacarbazole®

Intravenous solution;
intragastric gavage

Preclinical In
vitro®

Umeyor et al. 2019, Silva and Cardoso (2020),
Jaromin et al. 2021, Wu et al. 2021

Lipid nanoparticles/lipid
carriers

Primaquine (in vitro/ex vivo)
dihydroartemisinin; artesunate; artemether;
lumefantrine; artefenomel (OZ439) (in vitro);
curcumin

Intranasal administration;
transdermal nanogel

Preclinical Salim et al. (2019), Umeyor et al. (2019),
Ghosh and Banerjee (2020), Agbo et al.
(2021), Guo et al. (2021), Nnamani et al.
(2021), Wu et al. (2021)

Unilamerlar vesicles Primaquine Intravenous injection Preclinical Al Fayes et al. (2021)

Liposomes/liposomes;
peguilated

Primaquine; chloroquine; decoquinate (
in vitro)

Intravenous solution Preclinical Duan et al. (2020), Marwah et al. (2020),
Miatmoko et al. (2021)

Multilamellar
nanoliposome

Chloroquine Intraperitoneal injection Preclinical Fotoran et al. (2019)

Nanodendrimer/globular
nanodendrimer

Chloroquine; curcumin 1HNMR spectroscopy
(in vitro)

Preclinical Elmi et al. (2021)

Dextran nanoparticle Chloroquine diphosphate; chloroquine Particle nanosuspension
dialysis (in vitro)

Preclinical Kashyap et al. (2018)

Metal nanoparticles (gold,
silver, ferrite, iron oxide)

Ciprofloxacin (in vitro); artemisinin; Salvia
officinalis; Indigofera oblongifolia; artesunate

Orally inoculated;
intraperitoneal injection

Preclinical Avitabile et al. (2020), Dkhil et al. (2019),
Kannan et al. (2019), Varela-Aramburu et al.
(2020), Zhang et al. (2020)

Decorated nanoparticle/
nanosphere

Artemisinin Intravenously administered Preclinical Gérard Yaméogo et al. (2020)

Conjugated micellar
nanocomplex/nanomicelle

Artemisinin; artesunate; pyrimethamine;
pluronic®F127

Intravenously
administered; oral solution;
intragastric gavage

Preclinical He et al. (2021), Ismail et al. (2019), Manconi
et al. (2019), Martí Coma-Cros et al. (2019),
Pestehchian et al. (2020)

Conjugated nanocapsules/
polysorbate

Artesunate; quinine Intraperitoneal injection;
oral solution

Preclinical Ismail et al. (2019), Michels et al. (2019),
Moreira Souza et al. (2020)

Lyophilized nano
suspension

Atovaquone; artesunate; artemether Oral gavage; intradermal
route; oral solution

Preclinical Kathpalia et al. (2020), Volpe-Zanutto et al.
(2021)

Pasty polymer Artemisone Subcutaneously injected Preclinical Golenser et al. (2020)

Immunoliposomal
nanovector

Atovaquone; pyronaridine Oral delivery Preclinical Biosca et al. (2019)

Phospholipid complex Lumefantrine Subcutaneous or
intramuscular injection

Preclinical Kaur et al. (2021)

Nanogel Artemether Nanogéis ART
transdérmicos

Preclinical Nnamani et al. (2021)

Zein nanoparticles Artemether Intravenously administered Preclinical Boateng-Marfo et al. (2021)

Flash nanoprecipitation Lumefantrine; artefenomel (OZ439) Oral delivery Preclinical Ristroph et al. (2019), Wang et al. (2021)

Neutral nanoparticle Curcumin Oral delivery Preclinical Biosca et al. (2021)

Nutrissomes Curcumin Oral solution Preclinical Manconi et al. (2019)

Gold nanoparticle Antigens delivery Subcutaneous or
intramuscular injection

Preclinical Kumar et al. 2015

Superparamagnetic
nanoparticles

Magnetic nanovector Subcutaneous or
intramuscular injection

Preclinical Nawwab al-deen et al. (2017)

Polystyrene nanoparticles Non-inflammation-inducing polystyrene
nanoparticle delivery system

Subcutaneous or
intramuscular injection

Preclinical Wilson et al. (2019)

Source: https://pubmed.ncbi.nlm.nih.gov/.
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National Library of Medicine USA databases found only one

publication from 1990 to 2000 and 8 from 2001 to 2010. Herein, a

total of 103 publications that address the study of nanoparticles

in malaria treatment were analyzed. They are divided yearly into

the following numbers: 2017-5 articles, 2018-9 articles, 2019-

13 articles, 2020-24 articles, and 2021-21 articles (Figure 5). In

2022, a growing number of publications that address studies

related to nanoparticles in treating malaria will be noticeable. In

2022, 31 publications related to this field are available for

consultation.

From 2019 to 2022, multiple studies based on

nanotechnology application in malaria treatment reaffirmed

positive conclusions, suggesting the potential of nanosystems.

Conversely, only a few ongoing clinical trials based on drug

delivery for malaria treatment have been reported. In the last

decade, dendrimers have caught interest for several biological

applications, such as drug and gene delivery and diagnostic[S1]

imaging agents (Araujo et al., 2018; Dias et al., 2020). Dendrimers

are quasi-spherical, nanometer-sized, tree-like polymeric

macromolecules containing many reactive functional

subgroups, branches, and protected interior spaces (Chauhan,

2018; Sherje et al., 2018). The ramifications of the nanostructure

generate layers, or “generations”, which characterize the size of

the cavity, being the most reported in the first, second, or third

generations (one, two, or three layers). These nanosystems can

carry hydrophilic and hydrophobic drugs, as they have many

functional groups in the periphery (Chis et al., 2020).

Furthermore, they target drugs to specific sites and favor

cellular uptake, mainly by endocytosis and passive diffusion

(Russier et al., 2015; da Silva Santos et al., 2016; Akbarzadeh

et al., 2018).

Preclinical studies using nanotechnology to treat malaria are

summarized in Table 4. For instance, ultrasmall gold

nanoparticles based on glucose or nanogold clusters (Glc-

NCs) were developed for use in the intraerythrocytic stage of

P. falciparum (in vitro) in both phases of parasitic development

(asexual and sexual) without nonspecific connections or red

blood cell lysis. Glc-NCs loaded with ciprofloxacin showed

50% higher antibiotic effect than that of free drug,

demonstrating its therapeutic potential (Varela-Aramburu

et al., 2020). Silver nanoparticles (AgNPs) synthesized using

Artemisia sp leaf extract showed high antimalarial activity in

P. falciparum cultures (Avitabile et al., 2020). AgNPs from Salvia

officinalis leaf extract showed hepatoprotective and antiplasma

effects, reducing parasitemia and hepatic oxidative stress markers

in an experimental malaria model (Metwally et al., 2021).

Moreover, AgNPs from Indigofera oblongifolia leaf extract

decreased parasitemia and showed anti-inflammatory,

antioxidant, and anti-apoptotic effects in mice infected by

Plasmodium chabaudi (Dkhil et al., 2019).

Hollow nanoparticles of mesoporous ferrite (HMFNs) with

ferromagnetic properties were prepared using artemisinin and

targeted to hemozoin produced by P. falciparum in infected

erythrocytes. It acted as a targeted delivery system, increasing the

local concentration of ART through its association with heparin,

suggesting its potential in antimalarial therapy (Wang et al.,

2021). Surface-loaded nanoparticles containing ART in two types

of formulations (nanospheres and nanocapsules) had longer

elimination half-life than that of an ART solution in ethanol,

suggesting their potential as intravenous antimalarial agents

(Gérard Yaméogo et al., 2020). Furthermore, a stable ART-

based injectable nanocomplex, composed of dimorphic

artesunate-choline (dACC) micelles coated with hyaluronic

acid (HA), demonstrated safety and antimalarial activity in

in vitro and in vivo experiments compared to those of free

artemisinin/artesunate, suggesting it as a promising injectable

alternative to the traditional artesunate (ATS) used in malaria

treatment (He et al., 2021).

In vitro and in vivo studies have shown that lipid

nanoemulsions with modified surface are ideal carriers of

dihydroartemisinin (Umeyor et al., 2019). Ester-linked

dihydroartemisinin trimer (DHA 3) prepared as self-

assembled nanoparticles (DHA 3 NPs) demonstrated superior

antimalarial effects compared to that of control in a murine

experimental model, with improved cure rate and survival time

and reduced recurrence rate in experimental animals (Guo et al.,

2021). ATS fortified with iron oxide-coated nanoparticles

showed increased cytotoxicity and selective damage to P.

falciparum in a murine experimental model, suggesting a

potent antimalarial agent against artemisinin-resistant malaria

(Kannan et al., 2019). Nanostructured lipid carriers (NLCs)

loaded with ATS for intranasal administration (ATS-NLCs)

showed great potential as an alternative to parenteral

administration in hard-to-reach regions, simplifying the

treatment of severe and cerebral malaria in adults and

children (Agbo et al., 2021). The nanocapsules based on

artesunate-heparin conjugate (ATS-HEP-NCPs) were used as

drug delivery vehicle for intracellular release; in vitro and in vivo

experiments showed increased stability and improved

pharmacokinetic properties (Ismail et al., 2019). In a murine

experimental model, the triple combination containing

atovaquone in a lyophilized suspension of proguanil-

artesunate demonstrated prophylactic efficacy.

In addition, the use of double (atovaquone/proguanil) and

triple (atovaquone/proguanil/artesunate) combination

formulations resulted in a complete cure (Kathpalia et al.,

2020). The injectable pasty polymer, formulated for controlled

release of artemisinin, reduced parasitemia and severe symptoms

in cerebral malaria and increased survival of animals, with an

increase in the half-life of the drug compared to that of free drug

in an experimental murine model (Golenser et al., 2020). The

nanovector immunoliposomal encapsulating the antimalarials

pyronaridine and atovaquone, which block the development of

gametocytes through targeting glycophorin in vitro, presented

significantly higher efficacy than that of the free forms (Biosca

et al., 2019).
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The improved solubility of lumefantrine (LUM) in an

aqueous medium by using lumefantrine phospholipid complex

(LMF-PC) enhanced antimalarial activity in a murine model

(Kaur et al., 2021). The matrices of microneedle (MN) containing

ART (MN-ART) and LUM (MN-LUM) in nanosuspensions,

applied as intradermal devices, showed increased solubility of

drugs and potential as an alternative treatment for malaria in

endemic regions with scarce resources (Volpe-Zanutto et al.,

2021). Transdermal artemether nanogel (TMT) as NLCs have

demonstrated good antimalarial properties in in vitro and ex vivo

skin permeation experiments. They offered 100% cure and

negligible side effects when two adhesives were applied per

week at a lower dose than that of free TMT (Nnamani et al.,

2021). Zein nanoparticles loaded with TMT showed good

encapsulation efficiency, reduced hemolysis, and prolonged

therapeutic effect compared to that of free TMT (Boateng-

Marfo et al., 2021). Caprol-based NLCs were prepared to

improve the bioavailability of artemether/lumefantrine

antimalarials; they showed improved oral bioavailability,

antimalarial activity, and potential compared to those of free

antimalarials (Akpa et al., 2020). In addition, nanocapsules (NC-

ATM) showed decreased neurotoxic and cardiotoxic effects in

mice infected with Plasmodium berghei, a safe alternative to TMT

for the treatment of malaria (Moreira Souza et al., 2020). Flash

nanoprecipitation (FNP) is a technique that enables the

production of nanoparticles from laboratory-scale to industrial

pilot-scale. Lumefantrine was processed by FNP to obtain

200 nm nanoparticles with increased bioavailability and

dissolution kinetics suitable for industrial-scale production

(Ristroph et al., 2019). The technique (FNP) was employed

for formulation of the substance OZ439 (artefenomel), which

is active against drug-resistant malaria, and the formulation

showed potential as a single-dose cure. Powder formulations

using spray dryer is appropriate for industrial-scale production.

In vitro tests have shown that the formulation of the antimalarial

OZ439 in a single-dose oral form had good stability against

humidity and temperature (Ristroph et al., 2019). The oral

bioavailability of OZ439 and the adjustment of interactions by

selecting alternative systems such as milk-like lipid nanoparticles

or powder systems can provide different possibilities for

enhanced solubilization and absorption for this drug (Salim

et al., 2019).

Neutral zwitterionic amphiphiles forming nanoparticles

(PBMA-MESBMA) using curcumin and targeted to infected

erythrocytes showed effective and faster antimalarial activity

than that of free curcumin in an animal model (Biosca et al.,

2021). Nutrisomes (phospholipid vesicles + Nutriose® FM06)

were modified to obtain new systems with increased efficacy of

curcumin as an antimalarial agent after oral administration.

Eudragit® L100 (EUD) was added to these vesicles to improve

their in vitro and in vivo performance, which showed an

increased ability to neutralize oxidative stress in intestinal

cells and increased survival of infected mice compared to

controls treated with free curcumin (Manconi et al., 2019).

The nanocapsules (NCP80) and nanospheres (NSP80) of

polysorbate 80 and nanocapsules (NCEUD) and

nanospheres (NSEUD) of Eudragit RS 100 containing

quinine were evaluated for their effects on the surface

characteristics and antimalarial efficacy in vitro and in vivo.

Cationic and anionic nanocapsules have been developed to

deliver quinine to erythrocytes using Eudragit RS 100. An

improvement in antiplasmodial efficacy was observed along

with altered characteristics of the cationic nanocapsules with

quinine such as protection against light and improvement of

quinine partition coefficient in vitro. Improvement in

biodistribution of quinine by NCEUD and increase in the

half-life of elimination of quinine in vivo suggest it as a

potential alternative for the treatment of malaria (Michels

et al., 2019). The nanoformulation of curcumin in

combination with the compound benzothiophene 6 (3-

bromine-N-(4-fluorobenzyl)-benzo[b]thiophene-2-

carboxamide) showed sustained release of curcumin,

increased stability and solubility in aqueous medium, and

antimalarial activity in in vivo and in vitro experiments

(Ghosh and Banerjee, 2020).

The nanoemulsion delivery system of azacarbazoles, derived

from carbazole (9 H-carbazole) with a concentrated form of ethyl

esters of polyunsaturated fatty acids n-3 and n-6, provided

evidence of increased antiplasmodial activities in vitro,

without cytotoxic effects against mammalian cells, showing

rapid absorption after intragastric administration (Jaromin

et al., 2021). In addition, thiazoline nanoemulsion (10-(4,5-

dihydrothiazol-2-yl)thio)decan-1-ol), a synthetic compound

similar to 3-alkylidene marine alkaloid being reported as an

antimalarial substance, reduced in vivo parasitemia and increased

antimalarial activity in vitro (Silva and cordoso., 2020). The

407 poloxamer nanomicelles loaded with pyrimethamine

showed potent antimalarial activity and lower liver damage in

a murine experiment than that of the free compound, indicating

potential for adaptation as an antimalarial formulation

(Pestehchian et al., 2020). In vitro and in vivo experiments

have shown that hybrid dendritic-linear-dendritic block

copolymer mycelial transporters based on Pluronic® F127

(HDLDBC-bGMPA) are promising for the development of

future antimalarial drugs aimed at penetrating erythrocytes

(<30 nm) infected by Plasmodium sp (Martí Coma-Cros et al.,

2019). In vitro and in vivo experiments of artelinic acid (AD)

derivatives formulated as liposomes (ADLs) showed superior

antimalarial efficacy compared with that of the control groups.

Pharmacokinetic results of ADLs demonstrated the slowest

elimination and highest total concentration in plasma,

showing potential for the treatment of malaria (Duan et al.,

2020).

Furthermore, primaquine polymeric microparticles

(PPM) in in vivo experiments using a murine model

showed partial efficacy and protection against parasite
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development compared with that of free primaquine,

suggesting the potential of this drug delivery system for the

treatment of malaria (da Silva de Barros et al., 2021). Three

drug carriers based on lipid formulations loaded with

primaquine, solid lipid nanoparticles, nanoemulsions and

nanostructured lipid carriers were developed and evaluated;

all lipid formulations could successfully protect erythrocytes

from cell lysis caused by free primaquine (Wu et al., 2021).

Phospholipid-free unilamellar vesicles (PFSUVs) composed

of Tween 80 and cholesterol were evaluated in experimental

models in vitro and in vivo. They effectively delivered

primaquine to the liver, selectively targeted hepatocytes,

and reduced erythrocyte uptake compared to that of free

primaquine, leading to reduced erythrocyte toxicity (Al

Fayes et al., 2021). In vivo experiments with PEGylated

liposomes containing primaquine and chloroquine for the

treatment of malaria in the hepatic stage demonstrated that

liposomal membrane fluidity was greatly affected by the

double burden of primaquine and chloroquine drugs, and

additional studies related to stabilization of these liposomes

are needed (Miatmoko et al., 2021). Decoquinate (DQN) is a

molecule that can potentially function as a substitute for active

primaquine against malaria in the hepatic stage was directed

to hepatocytes infected by the parasite using a liposomal

transporter system in vitro and in vivo. The study

concluded that glycyrrhizic acid receptors participated in

the targeted delivery of DQN liposomes to the hepatocytes

(Marwah et al., 2020). Multilamellar nanoliposomes stabilized

by hydrogen bonds containing chloroquine targeted to

infected erythrocytes showed antiparasitic effect superior to

that of free chloroquine in in vitro and in vivo studies, being

permissive for smaller and larger molecules (Fotoran et al.,

2019). The loading of chloroquine in G2 nanodendrimers

showed antiplasmodial activity and decreased toxicity of

structured nano chloroquine compared to that of free

chloroquine, indicating that this compound is an effective

antiplasmodic agent in vivo in a murine model (Elmi et al.,

2021). 1H NMR spectroscopy was used to study the effect of

anionic linear globular dimerized nanocomplexes based on

curcumin loaded with chloroquine G2 and antiplasmodial

effect against P. falciparum in vitro (Elmi et al., 2021). In

addition, dextran NPs loaded with chloroquine diphosphate

(CHQ-DEX-NPs) were developed to overcome resistance of P.

falciparum to chloroquine in vitro. CHQ-DEX-NPs could

trigger the parasite’s apoptotic pathway by accumulating in

food vacuoles and were found safe for parenteral

administration (Kashyap et al., 2018). The biocompatible

and biodegradable nanoparticles of chitosan-

tripolyphosphate-chloroquine triggered elimination of

multidrug-resistant parasites through redox action,

modulating pro- and anti-inflammatory responses,

suggesting a new approach to treat multidrug-resistant

malaria. The CS-TPP CQ nanoparticles killed the parasite

and diminished the production of the pro-inflammatory

cytokines TNF-α and IFN-γ, and increased the anti-

inflammatory cytokines IL-10 and TGF-β (Das et al., 2021).

The incorporation of proteins or peptides of interest can occur

both during the preparation of the NP (e.g., antigens), and

through their complexation/conjugation on the nanocarrier

surface (e.g., plasmids or antibodies). For example, Cherif

et al. (2011) developed polymeric NPs formed by pDNA

complexed with PEI (cationic polymer) and PLA

(biocompatible polymer), which were tested in vivo against

P. yoelii in different administration routes (IV, SC, and IP) in

mice. They observed an increase in the immune response

regarding the levels of IgG, T cells (CD4+ and CD8+), IFN-γ
and IL-12. Another study carried out by Collins et al. (2017)

developed NPs conjugated to the surface antigen of the

circumsporozoite protein CSP-hepatitis B, acting in the

pre-erythrocyte stage of infection by P. falciparum.

Moderate levels of protection were induced through the

immune response mediated by CSP-specific antibodies. In

addition, this vaccine was immunogenic (cellular and

humoral immune response) at low doses. Also, when

administered with Abisco-100 and Matrix-M adjuvants, it

induced protection against transgenic sporozoites (Collins,

2017).

Articles have discussed the multi-component vaccination to

challenge both humoral and cellular immunity and adjuvants as

the best strategy to reach all stages of malaria.

The association of polymeric and lipid NPs is also described,

as reported by Kumar et al. (2015). Nanoemulsion containing

squalene, chitosan/PLGA NPs and CHrPfs25 were developed

and evaluated against P. falciparum. Results regarding the

functional immunogenicity generated by CHrPfs25 are

promising. Authors found IgG from mice immunized with

different GN-particles with highly potent blocking activity

regardless of IgG isotype differences. Most studies in this

article suggest nanoformulations as drug delivery systems,

indicating their potential for the treatment of malaria (Table 4).

Limitations of nanotechnology in malaria
treatment

Nanotechnology has enormous potential for the

development of new drugs against malaria, although there

are limitations. Despite significant advantages of nano-

pharmaceutical release systems, factors such as high

preparation cost, interaction with biological components,

difficulty in production scale up depending on the

development method, failure to define the appropriate

route of administration, and failure in therapeutic

reproducibility demotivated researchers to lead preclinical

research for clinical application (Neves Borgheti-Cardoso

et al., 2020; Rashidzadeh et al., 2021).
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The cost of producing nanosystems is a primary concern

for their use in treating diseases such as malaria. The large-

scale production of nano drugs to provide access in malaria

predominant regions is difficult due to financial, logistical,

and political issues, among other limiting factors (Feng et al.,

2019; Ristroph et al., 2019). In addition, majority of malaria-

affected population is concentrated in developing countries,

which have low resources invested in health and medical care.

This panorama of resource scarcity failed to foster industry

interest in the development of new antimalarial medicines on

a large scale because of low financial returns (Ristroph et al.,

2019; Volpe-Zanutto et al., 2021).

Despite considerable volume of studies based on nanotechnology

application for the treatment of malaria, it is possible to perceive a

difference between the number of preclinical and clinical studies,

which are lower. Preclinical studies that employ nanoparticles in other

diseases, such as cancer, tumors, and Alzheimer’s disease, present

more signifying results and often involve theranostic nanomedicine

(Gandhi et al., 2020; Abdolmaleki et al., 2021). High cost of

preparation, drug administration routes, bioaccumulation, toxicity,

and interaction with biological components are some critical issues to

be resolved to contemplate the success of new nanotechnological

strategies for the treatment of malaria (Apolinário et al., 2020;

Rashidzadeh et al., 2021).

To overcome the clinical failures of antimalarial therapy,

developing new medicines is urgent and necessary. However,

developing a new drug is expensive, complex, and time-

consuming. In this case, strategies that increase the therapeutic

efficacy of current conventional antimalarial drugs and reduce

their toxicity are promising alternatives. For that, nanotechnology

can be considered an approach to solving these inherent limitations,

such as the low water solubility, biodegradability, bioavailability, and

parasite resistance (Jawahar et al., 2019; Puttappa et al., 2019;

Rashidzadeh et al., 2019; Abazari et al., 2020; Bagheri et al., 2020).

Several organic, inorganic, and hybrid nanometric systems were

discussed in this review and offer many alternatives as drug

delivery systems for antimalarial drugs (Table 3). Therefore, these

efforts must be continued to accelerate the clinical application of these

systems to treat malaria.

Some companies have explored the potential of dendrimers. For

instance, Starpharma developed the DEP® platform for drug delivery

applied to antitumor drugs. Or diagnostic kits component as 3DNA®

from Gemisphere, or transfection agents such as Polyfect® and

Superfect® from Qiagen (Dias et al., 2020). In addition, according

to information from the American repository ClinicalTrial.gov, some

clinical trials evaluate drugs associated with dendrimers for treating

cancer, bacterial infection, or COVID-19 (Caminade, 2022).

However, up to date, there are no dendrimer-based medicines to

treat malaria, either under clinical evaluation or commercialization.

Conclusion

Malaria is a disease affecting millions of people worldwide.

Despite the current treatments, resistance to antimalarial drugs

has increased. Advances in nanotechnology for the development

of new drug delivery systems are promising and being

increasingly studied in preclinical tests, with significant and

instigating results. However, no nano-formulated antimalarial

drug is currently available for clinical use.

New approaches to malaria treatment are urgently needed

owing to the complexity of the biological cycle of the parasite,

spread of the disease in conditions where sanitary and social

conditions are precarious, and reports of resistance of the

parasite to conventional therapies. The interaction between

academic research, pharmaceutical industry, and political leaders

is the most promising path for the development of new drugs and

nanostructured drug delivery systems.
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