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Background: Cancer precision medicine is an effective strategy to fight cancers by
bridging genomics and drug discovery to provide specific treatment for patients with
different genetic characteristics. Although some public databases and modelling
frameworks have been developed through studies on drug response, most of them
only considered the ramifications of the drug on the cell line and the effects on the
patient still require a huge amount of work to integrate data from various databases
and calculations, especially concerning precision treatment. Furthermore, not only
efficacy but also the adverse effects of drugs on patients should be taken into
account during cancer treatment. However, the adverse effects as essential
indicators of drug safety assessment are always neglected.

Method: A holistic estimation explores various drugs’ efficacy levels by calculating
their potency both in reversing and enhancing cancer-associated gene expression
change. And a method for bridging the gap between cell culture and living tissue
estimates the effectiveness of a drug on individual patients through the mappings of
various cell lines to each person according to their genetic mutation similarities.

Result: We predicted the efficacy of FDA-recommended drugs, taking into account
both efficacy and toxicity, and obtained consistent results. We also provided an
intuitive and easy-to-use web server called DBPOM (http://www.dbpom.net/, a
comprehensive database of pharmaco-omics for cancer precision medicine),
which not only integrates the above methods but also provides calculation
results on more than 10,000 small molecule compounds and drugs. As a one-
stop web server, clinicians and drug researchers can also analyze the overall effect of
a drug or a drug combination on cancer patients as well as the biological functions
that they target. DBPOM is now public, free to use with no login requirement, and
contains all the data and code.

Conclusion: Both the positive and negative effects of drugs during precision
treatment are essential for practical application of drugs. DBPOM based on the
two effects will become a vital resource and analysis platform for drug development,
drug mechanism studies and the discovery of new therapies.
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cancer precision medicine, drug efficacy, adverse effect, mapping from cell to tissue, web
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1 Introduction

Patients of the same cancer type, or even those at the same stage,
may respond differently to the same drug (Ginsburg and Phillips,
2018); hence, a comprehensive study of drug screen and the
mechanism of drug action on patients with specific pathological
and/or physiological conditions will be needed to facilitate
improved individualized therapy (Dietel et al., 2013). Pharmaco-
omics uses genomics and transcriptomics-based information to
help guide individualized drug therapy to maximize drug efficacy
and minimize adverse drug reactions (Weinshilboum and Wang,
2017). In the early stages of a drug’s development, its efficacy,
toxicity, and sensitivity are typically tested on cell lines (Monks
et al, 1991). Currently, the potential treatment outcomes of a drug
on a cancer cell line might be assessed by using certain indices like
half-maximal inhibitory concentration (IC50). In addition, another
increasingly accepted measurement is to compare changes in gene
expression signatures of disease samples before and after drug
treatment followed by identifying drugs with reversal relationships
on disease-associated genes. These studies also demonstrated that the
reversal potency of drugs is positively related to the efficacy and
therapeutic effect of drugs (Chen et al., 2017). However, the adverse
effects of drugs are usually ignored, which is a major concern for both
public health and the development of medicines as failing to identify
these negative outcomes could lead to significant amounts of
morbidity (Jing et al., 2020). Consequently, fully considering both
reversed expressions and adverse effects is a highly desirable and
meaningful strategy (Nguyen et al., 2021; Vilar and Hripcsak, 2017).
What is more, as cancer cells may develop drug resistance, it has been
suggested that treatments which employ drug combinations
potentially enhance efficacy and reduce toxicity (Wu et al., 2020),
and tools providing both toxicity and efficacy analysis of drug
combinations can increase the likelihood of clinical success
(Tanevski et al., 2020b; Ianevski et al, 2020a). Therefore, the
mechanism of synergy and new combination recommendations
have acted as a catalyst for intensive studies by academic
researchers and pharmaceutical enterprises.

Recently, with the development of high-throughput technology,
large amounts of cancer multi-omics data and related therapy data
have been released to facilitate cancer-related studies. The Cancer
Genome Atlas (TCGA, https://www.cancer.gov/tcga) (Weinstein et al.
, 2013), molecularly characterized over 20,000 primary cancer and
matched normal samples spanning 33 cancer types containing detailed
clinical information. The Gene Expression Omnibus database (GEO,
https://www.ncbinlm.nih.gov/geo/) (Edgar et al., 2002) is a widely
used public data repository of the array and sequence-based multi-
omics profiles and it stored data not limited to human cancer cells and
sample data but multi-species data. The Cancer Cell Line
(CCLE,
(Barretina et al., 2012) mainly collected and collated genomics,

Encyclopedia https://portals.broadinstitute.org/ccle)
epigenomics, and transcriptomics data of more than 1,000 cancer
cell lines.

Some public databases and modelling frameworks have also been
developed and widely used for studies of cancer precision medicine and
drug response, such as CMap (Subramanian et al., 2017), GDSC (Yang
et al,, 2012b), DSigDB (Yoo et al,, 2015), SynergyFinder (lanevski et al,
2020a), and CiDD (San Lucas et al., 2014). While useful, most of these
databases and computational tools only consider the effect of the drug on
the cell line but not on cancer tissues, resulting in a huge amount of work
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to integrate data from various databases, and then the calculation is still
required to evaluate both the therapeutic and adverse effects on patients,
particularly during precision treatment, which makes it extremely difficult
for clinicians and drug researchers to utilize these resources (Wakaskar,
2017). Here, we propose the creation of an open-source, comprehensive
database of pharmaco-omics for cancer precision medicine that is
supported by the collection and storage of drug information, and
analysis of the outcomes of drug integrative effect at both a cellular
and individual patient level.

In this study, we analysed over 19,000 compound gene expression
profiles from CMap database and over 3,000 transcriptomics profiles of
tumour and normal samples from TCGA database. To evaluate the effect
of a drug on individual patients and not just at a cellular level, we
quantified the Reversed and Adverse Drug Effect (RADE) by calculating
differential expressions of all the genes between the cancer sample and the
normal sample, the cancer cell line with and without drug treatment,
respectively, as well as the mapping between cell lines and cancer tissues
based on similarities in genetic mutations. By applying RADE to FDA-
approved medicines, we found that the potency of most FDA-approved
drugs and the ones in clinical trials have positive correlations with RADE
recommendations, which suggested the feasibility and potential of RADE
as an effective method for identifying drugs with effectiveness and safety.
Furthermore, we also analyzed the biological function of reversed and
adverse genes when different drug or drug combination treatments are
being administered, which can provide possible insights into studies of a
drug’s mechanism and play a guiding role in drug development and
recommendations. To make our approach more intuitive and easier to
use, we developed an easy-to-use web server named DBPOM to store all
the calculations of small molecule compounds and drugs across five
cancer types based on 28 cell lines for clinicians and drug researchers to
search and analyze both the reversed and adverse effects of a drug/drug
combination on cancer patients in accordance with the demand for
personalized drug analysis.

2 Methods

The framework outlined in Figure 1 includes the methods we
proposed and functions provided by the web server.

2.1 Data source and pre-processing

We collected genomics and transcriptomics data of over 3,000 cancer
and normal samples across five cancer types from TCGA, genomics data
of 28 relative cell lines from CCLE, gene expression profiles under more
than 19,000 compound perturbations from CMap, and over 500 drug
combination information from the literature (Cheng et al., 2019). Low-
count/low-expressed genes (Raw counts less than 10 in the cancer sample
group or normal sample group) were removed from the TCGA dataset for
each cancer. Small molecule compounds and drugs from CMap were
determined via the selected 28 cell lines and the perturbagen treatment
included 27 dosages and three treatment durations. After removing
18 pseudogenes, we retained 12,310 expressed genes and their
expression under various conditions from CMap. All data was
collected before September 2019 and the detailed information of the
data resources we used in this paper and calculations can be obtained free
of charge in the download centre of DBPOM without login requirement,
which was also summarized in Table 1.
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FIGURE 1
The overall framework includes the methods and DBPOM.

TABLE 1 Statistical information about the DBPOM.

Key information

19,406 Small molecular compounds and drugs

28 Cell lines
5 Cancer types
27 Dosages
3,078 TCGA cancer samples and normal samples
2,598 Specific mutations with high mutation frequency

397 FDA approved cancer drug combination pairs

112 Literature published cancer drug combination pairs

Total 376,486 files

2.2 Differential gene expression analysis and
comparisons

Differential gene expression analyses were performed on both
cancer tissue samples versus normal tissue samples (E1) from TCGA,
and molecular-compound-treated cell lines versus dimethyl sulfoxide
(DMSO)-treated cell lines (E2) from the CMap database. In El, to
identify genes associated with carcinogenesis at the gene expression
level, DESeq2 package (Love et al, 2014) was used for differential

Frontiers in Pharmacology 03

:

DBPOM osasise of harmaco-cmicsfor oncer Precision Medicne

Wt s DBPOM?
A comprehensive database of pharmaco-omics for £l
cancer precision medicine

DBPOM

® e Koz W o

0-0-

expression analyses between cancer and normal samples in TCGA. We
set the threshold as p-value = 0.001 and fold-change = 2. For each
cancer type, we defined the gene as upregulated (downregulated) and
labelled it as 1 (-1) if its fold-change is above two or less than -2 and
the p-value is less than 0.001; otherwise, it was labelled as 0.

In E2, Eq. 1 was used to estimate fold-change for differential
expression analysis between compound-treated and DMSO-treated
cell lines in the CMap to evaluate the transcriptomic changes after
compound treatment in the cell line. For compound c:

T() - D(<)

FC(e) = Max{|D(c)], 0.1}

1

where T(¢) and D(¢) represent the mRNA expression value of the j-th
gene in the compound-treated group and the DMSO-treated group,
respectively. FC(¢) represents the fold-change value. In order to
prevent overflow, we set 0.1 as the lowest expression value. For each
cell line, we defined the gene as upregulated (downregulated) and labelled
it 1 (-1) if its fold-change is above 2 or less than —2 when comparing
compounds with DMSO-treated cell lines; otherwise, it was labelled as 0.

2.3 Disease gene expression signatures and
assessment

We proposed a definition for distinguishing the reversed and adverse
genes on cancer samples after a specified compound or drug treatment by
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comparing the data stemming from the two groups of differential gene
expression results (E1 and E2), as shown in Figure 1. Both effectiveness and
side effects are all considered in this definition, by comparing the
transcriptomic changes of genes expressed in cancer tissues compared
to normal tissues, and genes significantly altered in cell lines after drug
treatment. When a cell line is treated with a compound, if the effect on a
gene is reversed, meaning it is upregulated in E1 and downregulated in
E2 or vice versa, we consider it to have a reversed effect on the mentioned
gene, which means that the treatment has the potential to correct the gene-
related biological process (van Noort et al, 2014; Chen et al, 2017).
Otherwise, if a gene is marked as 1 (E1) ~1(E2), —1(E1) ~-1(E2), 0 (E1)
~1 (E2) or 0 (E1) ~-1 (E2), with 0 standing for no change, the compound is
considered to have an adverse effect on this specific gene, which suggests
that the treatment has the potential to promote deterioration of the gene-
related biological process (Heinloth et al., 2004). For each compound, if it
reverses the expression of a cancer-associated gene, it is thought to be
effective on the gene. On the contrary, if the gene expression substantially
deviates after treatment with the compound, we believe that the drug has an
adverse effect on the gene. It should be noted that the adverse effects defined
here are different from the pharmacological adverse reactions in clinical
trials and we set different thresholds for reversed and reverse effects based
on the analysis of the distribution of FC values for reversed and adverse
genes (Supplementary Figure S1). The formulaic expression is defined as:

InEl: FC(c¢/)>2andInE2: FC(c/)< -2
InEl: FC(c/)< - 2andInE2: FC(c/)>2
InEl: FC(c’) = 0and InE2: |FC(c/)|> 15
Adverse effect { InE1: FC(c’) >2and InE2: FC(c/) > 15
{ InEl: FC(c/)< —2andInE2: FC(¢/) < - 15

)

Reversed effect {

To estimate the overall effect of a drug on each patient, we quantified
both the reversed and adverse effects of all the genes as RADE (the reversed
and adverse drug effect) to comprehensively assess both the effectiveness
and safety of each compound. RADE considers the number of reversed and
adverse genes of tissues after compound treatment, specifically, RADEF
denotes the score of compound c treating on cell line k:

K #Ad* (c) L #Mu (k)

RADE =
€ #Rek(c) #Rek(c)

©)

where sign # represents the number of elements in the set, Ad*(c) and Re*(c)
are the set of adverse and reversed genes in cell line k under the compound ¢
treatment, respectively. Mu(k) is the set of genes whose mRNA expression
significantly changed in cancer to which cell line k belongs, i.e., the absolute
fold-change above two and p-value less than 0.001 in E1. In Eq. 3, the first
term is the ratio of deteriorating and corrected transcriptomic changes,
which illustrates the power of the drug, and the second is the ratio of
significant transcriptomic  changes of cancer and the corrected
transcriptomic changes after the drug treatment, which underlines the
degree of reversal effect of compound ¢ on this cancer. The lower RADE
indicates the higher effectiveness and safety of the compound on the
cell line.

2.4 Mapping individual mutation phenotype
to cancer cell line

Genetic mutations of different cancer cell lines of the same cancer type
vary, which results in them responding divergently to the same drug (Zhao
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et al, 2020). Meanwhile, as an important reference for molecular subtypes,
the genomic mutation could reflect the individual characteristics of different
patients with the same type of cancer. Therefore, it is helpful for precision
medicine that starts with the estimation of the similarity between cancer cell
lines and genetic mutations of patients followed by personalised treatment
recommendations based on the cell line’s response to drugs.

We collected the genomic mutation information of cell lines and
cancer patients from the CCLE and TCGA database, and defined the
similarity score of a cancer cell line and a cancer tissue from the same
cancer type in the following manner:

# DE(s) N Mucl (k) @
#Mucl (k)
L(s) = arg lr{nax Matchy (s) (5)

Matchy (s) =

where sign # represents the number of elements in the set, Match(s) is
the matching score of sample s on cell line k, DE(s) is the set of
mutation genes in sample s, and Mucl(k) is the set of mutation genes of
cellline k. L(s) is the cell line with the highest matching score of sample
s. Sample ¢ was roughly labelled as a cancer type in TCGA and is re-
labelled as a cell line according to Eqs 4, 5.

Thus, there are three reference options with different sample
selection strategies in E1 by the method of estimating the similarity
of cancer samples to the mutation phenotype of cell line k.

(i) TCGA versus CMap: in El, all the cancer samples of the selected
cancer type in TCGA are utilized. While this is the general strategy in
current research, it does not consider individual differences. The web
server provides this option in case some users need it.

(ii) subTCGA-mutation versus CMap: in E1, the subset of cancer samples
in TCGA which have high matching scores with cell line k are utilized.
Compared with the last strategy, this one uses the sample matching
Eqgs 4, 5 and provides a more fine-grained comparison and result. In
practice, each cancer patient is first assigned to the most appropriate
sample group based on the similarity of the mutation and then the
effect of the drug on them is analysed. DBPOM provides users with
this option to suit diverse requirements.

=

(iii) subTCGA-specific versus CMap: E1 utilizes a subset of cancer
samples with the specific mutation that the user is highly
concerned with from TCGA, which match the specific
mutation that the user concerns with of cell line k in E2. We
proposed this strategy and expected to get a reasonable evaluation

of drug effects that could then assist precision medicine.

2.5 Pathway enrichment analysis

To better disclose the real effects of drugs on cancer samples,
we performed functional analysis on the adverse and reversed
genes of each perturbation experiment to find the main biological
pathways of KEGG, GO, PID, and REACTOME databases that the
compound potentially targets. The statistical significance of the
enrichment analysis is obtained based on the hypergeometric test

)

i=0

below:

(6)
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Outline and statistical analysis of Compound module. (A) The compound detail page includes concise information, details of reversed and adverse genes,
and pathway enrichment analysis. (B—D) Three responsive tables of users’ search results have been employed to prove the rationality of the RADE scores

raised by the DBPOM.

Here, N is the number of all genes in the transcriptome, M is the
number of genes in the gene set to be detected, # is the number of genes
intersecting with the adverse/reversed gene set in N, m is the number
of adverse/reversed genes in the pathway. P represents the enrichment
significance of adverse/reversed genes on the pathway and genes and P
0f 0.05 is the threshold indicating a statistically significant association.
FDR (False Discovery Rate) multiple testing correction (Benjamini
and Hochberg, 1995) is used in the hypergeometric test to reduce the
number of false-positive conclusions.

3 Results

This study aimed at assessing the effects of treatments on cancer
patients by integrating the gene signatures of different perturbation
experiments on cell lines, particularly cancer types or subtypes
associated with genes. To comprehensively represent our results
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(for almost 20,000 small molecules, 28 cell lines) and provide
researchers with a more flexible scenario to utilise our proposed
methods, we designed the DBPOM web server with three modules
including the compound effect on cancer samples, patient-centric
precision medicine, and drug effect comparison of known/unknown
drug combination pairs.

3.1 Search by compound

This module is compound-centric and contains response information
of each compound at different dosages and treatment durations when
applied to all cell lines. As shown in Figure 2A, when a user selects a
compound, the response information has two levels. One is the whole cell
level. Users can bring up the detail page for a more in-depth understanding
and pathway enrichment analyses, which are provided for analyzing the
functions of reversed and adverse genes. The other stratum is the pathway
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level. The database provides a panel focusing on the treatment effects of
drugs or compounds on the genes involved in cell proliferation, cell death
and 11 other key pathways of high attention for clinicians and drug
researchers, including cell cycle and apoptosis regulation. The module
also offers information about the compound like its IC50 and structure
from other databases. Users can choose a cell line in isolation to ascertain
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the responses of all compounds to this cell line at different dosages and
treatment durations. According to our calculation formula, a drug with a
higher score is thought to have a lower possibility of being both effective and
safe on a certain cell line.

We found that several drugs that were FDA-approved, and some
that are being employed in clinical trials for cancer treatment, have low
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RADE values in our database, which demonstrates that the RADB
reasonably has the potential to evaluate the drug’s efficiency and safety.
For example, vemurafenib is an FDA-approved drug used for the treatment
of metastatic melanoma with a mutation on the BRAF in the valine located
in the exon 15 at codon 600 (Luke and Hodi, 2012). When combined with
standard-of-care or novel-targeted therapies, it is also reported that
vemurafenib is effective on colorectal cancer (Yang et al, 2012a). Via
DBPOM, we discovered that the RADE value of vemurafenib acting on
COAD generally is extremely low as well (Figure 2B). As another example,
curcumin is a drug that has been used in clinical trials and been investigated
for the treatment and supportive care of clinical conditions, including
proteinuria, breast cancer, multiple myeloma, and non-small-cell lung
cancer (Gupta et al, 2013). The RADE value of curcumin is also very
low in DBPOM (Figure 2C). Moreover, NNC-55-0396 is a molecular
compound still in the drug development phase and reportedly could
prevent human cancer cell proliferation and induce cancer cell
apoptosis as a result of its ability to inhibit the function of T-type Ca**
channels (Huang et al, 2015); the experimental results are also in good
agreement with the value we proposed (Figure 2D).

3.2 Personalized medicine

There is a patient-centric module that contains three options for
precision medicine in DBPOM. The first is for an optimal match
between cell lines and cancer samples according to the similarity score
of their overall mutation patterns. When a cell line is chosen, the module
matches the referenced cancer samples with the cell line and performs the
aforementioned analysis (Figure 3A). The second relates to the specific
mutation that a user is interested in. When a certain mutation and a drug
are selected, this module compares both the reversed and adverse effects of
this drug on cancer patients versus ones without the mutation (Figure 3B).
For each cancer, we list the genes with high genetic mutation rates. Finally,
the user can also submit his/her own data regarding a patient’s mutation
profile for analysis (Figure 3C).

3.3 Drug combination

This module provides FDA-approved, text-mining-validated drug
pairs. For each pair, the user can search and compare their response to
the same cancer cell line in a different physical environment with the
assistance of a plotted Venn diagram that reflects the intersection or a
different set of reversed and adverse genes. Furthermore, they can also
search and investigate any drug pairs they are interested in. For instance, the
gemcitabine and docetaxel combination approved by FDA is used for the
therapy of breast, ovarian, and non-small-cell lung cancer and these two
drugs’ reversed and adverse genes on VCAP cell line are shown in a Venn
plot (Figure 3D).

3.4 Easy download

This module allows easy access to all the reversed and adverse effect
data of 19,406 small molecular compounds and drugs, and 509 drug
combinations on the 12,310 genes of cancer patients across five cancer types
and 28 cell lines with partial/complete download options. DBPOM displays
succinct information about the gene signatures of compounds and drugs
and detailed description files can be downloaded in this module.
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3.5 Database and web interface service and
implementation

DBPOM affords researchers an online analysis capability for
compounds, and they can easily download their query or
calculation results from any module. The data in the DBPOM was
all stored and managed by MySQL, and the web interface was
implemented using HTML and JavaScript. In addition, all of the
data analysis work was completed with R and Python.

4 Discussion and future directions

We proposed a series of methods to explore the effects of a potential
drug on cancer patients via the use of genomics and transcriptomics-based
information. Compared with previous prediction methods, we focused on
both the reversed and adverse genomic effects of a drug to
comprehensively assess the effectiveness and safety of the drug. We
also designed an easy-to-use web server called DBPOM which offers
users easy access to our results and the use of our methods for diverse
requirements. Clinicians and drug researchers could search and analyze
both the reversed and adverse effects of a drug or drug combination on
cancer patients according to their needs for personalized drug analysis,
which is unlike other similar databases or web servers that focus solely on
cell lines. In addition, DBPOM provides a worthwhile way to compare the
effect of different drugs through the analysis of gene expression change,
meaning it could assist in speeding up the process of drug development,
facilitate new uses of old drugs, and act as a catalyst for the discovery of new
therapies. As far as we know, DBPOM is the first large-scale database to
estimate adverse gene expression changes after drug treatment.

Considering the differences in the efficacy and safety requirements of
drugs at different stages of cancer, we also performed a systematic analysis
of RADB scores for the recommended drug for lung cancer and found
consistency between the existing clinical results and RADB. For example,
cisplatin (Group, 2004), gefitinib (Giaccone, 2004), and pemetrexed
(Rossi et al, 2009) are three FDA-approved drugs for lung cancer
treatment and rank high in the database (in detail, cisplatin reverses
676 genes, gefitinib reverses 646 genes, and pemetrexed reverses 588 genes
and they all do not have any adverse effect on any genes and rank 1/
20931). Thiocolchicoside, which has been shown to increase the risk of
developing cancer, has reversed effects on 1,165 genes and adverse effects
on 217 genes and ranks 20,928/20,931 according to 2.26 RADB score. In
addition, although topotecan is recognised as an effective treatment for
lung cancer, it shows a high adverse effect score in our database (in detail,
it has reversed effects on 1,165 genes and adverse effects on 217 genes and
ranks 18,415/20,931 with 0.4 RADB score), which is in line with the
existing drug instruction that recommends it as a treatment for small cell
lung cancer that has come back or spread and the effectiveness is more
important for such patients’. As mentioned above, some drugs do not
have any adverse effects on any genes, i.e., #4d"(c) = 0, and RADBs are set
as 0. Therefore, although RADB can assess both the safety and
effectiveness of drugs, it also makes sense to take the number of
reversed and adverse genes into account.

1 https://www.ema.europa.eu/en/news/european-medicines-agency-
recommends-restricting-use-thiocolchicoside-mouth-injection

https://www.cancerresearchuk.org/about-cancer/cancer-in-general/
treatment/cancer-drugs/drugs/topotecan
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In the future, We will continue to collect more data relating to other
cancer types, cell lines, compounds, and approved drug combinations to
enrich DBPOM. We will also develop and import more computational tools
for reversed effects, adverse effects and their comprehensive effect estimation
as well as extend the capabilities for precision medicine recommendations.
We expect the DBPOM to become a vital resource and analysis platform for
drug development, drug mechanism studies, and new therapy discoveries.
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