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Introduction: Electroconvulsive therapy (ECT) remains one of the most effective
approaches for treatment-resistant depressive episodes, despite the potential
cognitive impairment associated with this treatment. As a potent stimulator of
neuroplasticity, ECT might normalize aberrant depression-related brain function
via the brain’s reconstruction by forming new neural connections. Multiple lines of
evidence have demonstrated that functional connectivity (FC) changes are reliable
indicators of antidepressant efficacy and cognitive changes from static and dynamic
perspectives. However, no previous studies have directly ascertained whether and
how different aspects of FC provide complementary information in terms of
neuroimaging-based prediction of clinical outcomes.

Methods: In this study, we implemented a fully automated independent component
analysis framework to an ECT dataset with subjects (n = 50, age = 65.54 ± 8.92)
randomized to three treatment amplitudes (600, 700, or 800milliamperes [mA]). We
extracted the static functional network connectivity (sFNC) and dynamic FNC (dFNC)
features and employed a partial least square regression to build predictivemodels for
antidepressant outcomes and cognitive changes.

Results:We found that both antidepressant outcomes and memory changes can be
robustly predicted by the changes in sFNC (permutation test p < 5.0 × 10−3). More
interestingly, by adding dFNC information, the model achieved higher accuracy for
predicting changes in the Hamilton Depression Rating Scale 24-item (HDRS24, t =
9.6434, p = 1.5 × 10−21). The predictive maps of clinical outcomes show a weakly
negative correlation, indicating that the ECT-induced antidepressant outcomes and
cognitive changesmight be associatedwith different functional brain neuroplasticity.

Discussion: The overall results reveal that dynamic FC is not redundant but reflects
mechanisms of ECT that cannot be captured by its static counterpart, especially for
the prediction of antidepressant efficacy. Tracking the predictive signatures of static
and dynamic FC will help maximize antidepressant outcomes and cognitive safety
with individualized ECT dosing.

OPEN ACCESS

EDITED BY

Adrian Preda,
University of California, Irvine,
United States

REVIEWED BY

Yong Xu,
First Hospital of Shanxi Medical University,
China
Doris Doudet,
University of British Columbia, Canada

*CORRESPONDENCE

Christopher C. Abbott,
cabbott@salud.unm.edu

Zening Fu,
zfu@gsu.edu

SPECIALTY SECTION

This article was submitted to
Neuropharmacology,
a section of the journal
Frontiers in Pharmacology

RECEIVED 18 November 2022
ACCEPTED 11 January 2023
PUBLISHED 23 January 2023

CITATION

Fu Z, Abbott CC, Sui J and Calhoun VD
(2023), Predictive signature of static and
dynamic functional connectivity for ECT
clinical outcomes.
Front. Pharmacol. 14:1102413.
doi: 10.3389/fphar.2023.1102413

COPYRIGHT

© 2023 Fu, Abbott, Sui and Calhoun. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviations: AUD, auditory domain; CB, cerebellum domain; CC, cognitive-control domain; CV, cross-
validation; dFNC, dynamic functional network connectivity; DM, default-mode domain; DMN, default-mode
network; ECT, electroconvulsive therapy; fMRI, functional magnetic resonance imaging; FC, functional
connectivity; HDRS24, Hamilton Depression Rating Scale 24-item; HVLT, Hopkins Verbal Learning Test; ICA,
independent component analysis; ICN, intrinsic connectivity network; MDD, major depressive disorder; MNI,
Montreal Neurological Institute; PLSR, partial least square regression; QC, quality control; QIDS, Quick
Inventory of Depressive Symptomatology; sFNC, static functional network connectivity; SC, subcortical
domain; SM, sensorimotor domain; TC, time-course; TR, repetition time; VS, visual domain.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 23 January 2023
DOI 10.3389/fphar.2023.1102413

https://www.frontiersin.org/articles/10.3389/fphar.2023.1102413/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1102413/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1102413/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1102413&domain=pdf&date_stamp=2023-01-23
mailto:cabbott@salud.unm.edu
mailto:cabbott@salud.unm.edu
mailto:zfu@gsu.edu
mailto:zfu@gsu.edu
https://doi.org/10.3389/fphar.2023.1102413
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1102413


KEYWORDS

resting-state functional MRI, dynamic functional connectivity, ECT outcomes prediction,
antidepressant outcomes, cognitive changes

Introduction

Characterized by depressed mood, abnormal psychomotor
activity, and impaired cognitive function, major depressive disorder
(MDD) is amongst the most prevalent debilitating diseases worldwide
(Kessler et al., 2003), affecting approximately 300 million individuals
in 2017 (James et al., 2018). Besides its pervasiveness, MDD also has a
high recurrence rate (about 80% of patients in remittance experience
at least one recurrence) (Vos et al., 2004) and shows great
heterogeneity in symptoms that might influence that diagnosis and
treatment (Malgaroli et al., 2021). Fortunately, there are numerous
effective treatments for treatment-resistant depressive episodes, such
as electroconvulsive therapy (ECT), transcranial magnetic stimulation,
and other brain stimulation therapies. As an exceptionally effective
medical treatment for MDD patients, ECT provides effective and safe
antidepressant outcomes by applying brief electrical stimulation to the
scalp to induce changes in neurotransmitter levels and improve
neuroplasticity (Bahji et al., 2019).

Independent of the antidepressant outcomes, the stigma and fear
of ECT-mediated cognitive impairment reduce ECT utilization
(Wilkinson et al., 2021). ECT cognitive meta-analyses demonstrate
acute but transient cognitive impairment immediately after the acute
phase of the series (Semkovska and McLoughlin, 2010; Semkovska
et al., 2011). Numerous mechanisms of ECT cognitive impairment
have been proposed, including excessive neuroplasticity and disrupted
long-term potentiation (Ousdal et al., 2022). However, the findings on
ECT-induced changes in cognition are somehow contradictory, with
substantial cognitive deficits (Sackeim et al., 2007; Semkovska and
McLoughlin, 2010) and improvement in cognitive function (Bosboom
and Deijen, 2006; Fujita et al., 2006) documented in the literature. Due
to this inconsistency, the precise characterization of cognitive changes
is still a debated topic in this area. ECT-mediated functional brain
neuroplasticity has been implicated in antidepressant and cognitive
outcomes (Wang et al., 2020; Fu et al., 2021c). Functional connectivity
(FC) changes show relationships with ECT-induced symptom
improvements and cognitive changes (Perrin et al., 2012; Wang
et al., 2020), where different brain regions can have diverse
associations with clinical outcomes. For instance, while left
hippocampal FC did not change significantly, right hippocampal
FC increased after ECT treatment, correlating with depressive
symptom reduction (Abbott et al., 2014). Such regional
heterogeneity of FC to ECT outcomes, when considered in
isolation, poses a challenge in precisely characterizing brain
signatures of ECT responses. Existing studies have used the
machine learning tool to combine a set of distributed FC features
into a single index for predicting ECT-induced outcomes (Moreno-
Ortega et al., 2019; Long et al., 2020; Yang et al., 2020). Potentially
most exciting is the demonstration that combining different resting-
state brain FC can increase the predictive power for the ECT treatment
responses (Moreno-Ortega et al., 2019).

Despite such progress, the previous study using FC for ECT
outcome prediction has been limited by an implicit assumption of
spatial and temporal stationarity in the relationships between brain
regions. The human brain is a highly dynamic system with
continuously changing local activation and inter-communication

even during the resting-state (Gray, 1990; Berger, 2011; Allen et al.,
2014). The temporal variation in FC reflects the brain adaptation to
both internal and external stimuli (Chang and Glover, 2010; Allen
et al., 2018), which might represent functional neuroplasticity, a key
brain mechanism associated with ECT. Recent studies have found
prominent relationships between dynamic FC changes and
antidepressant outcomes and clinical changes after ECT (Fu et al.,
2021c; Dini et al., 2021). However, some challenging issues related to
FC-based prediction of ECT outcomes remained unaddressed. First,
previous studies focused on static FC and dynamic FC in isolation and
did not combine them into the prediction model. The additional
predictive potential of dynamic FC to static FC is unknown. Second,
the utility of FC-predicted clinical outcomes is generally established by
probing the predictive signatures for the antidepressant efficacy and
cognitive deficits alone. Previous investigations have yet to disentangle
distinct from potential overlapping antidepressant and cognitive FC
patterns in predictive modeling.

In this work, we used an FC-based machine learning approach
within full cross-validation (CV) analyses to probe reliable and robust
imaging signatures for the ECT-induced antidepressant outcomes and
cognitive changes from whole-brain static and dynamic FC. We
hypothesized that the dynamic information in FC is not redundant
but conveys additional mechanisms of ECT to the static FC analysis.
Specifically, we hypothesized that 1) both antidepressant outcomes
and cognitive changes can be reliably predicted by unique patterns of
static FC; and 2) adding dynamic FC information improves accuracy
for predicting antidepressant outcomes or cognitive changes relative to
static FC alone.

Materials and methods

Study design and participants

The present study used an ECT dataset approved by the University
of New Mexico Human Research Protections Office (Abbott et al.,
2021). Participants signed procedural consent or assented to the
investigation under protocols approved by the Institutional Review
Board. 62 participants aged between 50 and 80 years old were recruited
fromDecember 2016 to September 2019, who had a diagnosis of major
depressive disorder and met the clinical indication for ECT. This
investigation focused on mid-life and older patients (age range:
50–80 years) with major depressive disorder. Clinically, this age
range is the optimal laboratory to investigate targeted brain
engagement and clinical outcomes (Abbott et al., 2021). Computer
modeling has demonstrated the importance of age-related brain
changes in relation to ECT-induced electric field strength (Deng
et al., 2015). In addition, lateralized brain neuroplasticity is most
evident in older patients treated with right unilateral electrode
placement (Abbott et al., 2014; Dukart et al., 2014). Older age is
also associated with an increased probability of response (Tew et al.,
1999) and ECT-mediated cognitive impairment (Squire and Chace,
1996). The risk of cognitive impairment, which is both scientific
(Sterling, 2000; Frank, 2002) and public (Breggin, 2008) opponents
of ECT as evidence of brain damage, deters the patient or the surrogate
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decision maker from this potentially life-saving treatment. The
reversal of disease-related regional brain connectivity in this older
patient sample is significant because it will demonstrate
neuroplasticity throughout the life span as a therapeutic
antidepressant mechanism. All participants tapered and
discontinued their psychotropic medications before the assessment
to minimize the medication confounds. Details of the inclusion and
exclusion criteria can be found in (Abbott et al., 2021).

Participants were randomly assigned to three pulse amplitudes
[600, 700, or 800 milliamperes (mA)] (Sackeim et al., 2000; Abbott
et al., 2021), starting the ECT treatment with right unilateral electrode
placement with either an ultra-brief pulse width [0.3 milliseconds
(ms)] or brief pulse width (1.0 ms). Raters and subjects were blinded to
randomization. Participants received clinical and cognitive
assessments and the imaging session before ECT (v1), after the first
six ECT treatments (v2), and within 1 week of finishing all ECT series
(v3). The primary clinical outcomes are depression severity measured
by the Hamilton Depression Rating Scale 24-item (HDRS24) total
score and cognition measured by Hopkins Verbal Learning Test
(HVLT)-total Repetition (HVLT-R) and Delayed Recall (HVLT-
DR) scores. If subjects had a <25% reduction in HDRS24 at v2
(compared to the assessment at v1), they were switched to
bitemporal electrode placement with a brief pulse for the
remaining ECT series. We have uploaded the ECT imaging
(unprocessed), clinical, and demographic data to the National Data
Archive. More details of the study design, participants, and clinical
and cognitive assessments can be found in Abbott et al. (2021).

Image acquisition and preprocessing

Resting-state functional magnetic imaging (fMRI) data were
collected by a 3T-Siemens scanner with the following parameters:
repetition time (TR) = 745 ms, echo time = 29 ms, flip angle = 75°,
slices = 192, voxel size = 2.0 × 2.0 × 2.0 millimeter (mm)3, and total
acquisition time 4:58 (minutes:seconds). Participants received one or
two resting-state scans at each visit. We preprocessed the resting-state
fMRI data via a combination of the FMRIB Software Library
v6.0 toolbox and the Statistical Parametric Mapping 12 toolbox,
under the MATLAB 2020b environment. Specifically, we
performed slice timing correction followed by distortion correction.
Then we corrected the head motion and normalized the data to the
standard Montreal Neurological Institute (MNI) space. Finally, we
smoothed the fMRI data with a 6 mm Gaussian kernel.

We performed quality control (QC) on the preprocessed fMRI
data for selecting subjects for further analysis. Subjects were excluded
if their head motions were larger than 3 mm translations or 3°

rotations. We also excluded subjects if their images did not show
good normalization to the MNI standard space (by comparing the
individual mask with the group mask). Details of the preprocessing
and QC criteria are provided in the Supplementary Material.

Analysis flowchart

In this study, we build a machine learning model within fully CV
analyses based on the static and dynamic connectivity features to
investigate whether 1) functional network connectivity (FNC) features
can predict ECT-induced depressive symptoms’ changes and cognitive

changes, and 2) dynamic features provide additional information to
the predictive model to enhance the accuracy. The whole analysis
framework is displayed in Figure 1. Crucially, the investigation of the
predictive brain signatures from both static and dynamic perspectives
allows us to understand whether and how dynamic FNC (dFNC)
signatures add ECT-related information to the static FNC (sFNC)
features.

Neuromark framework for extracting subject-
specific networks

In this study, we applied an automated independent component
analysis (ICA)-based framework, namely Neuromark (Du et al., 2020),
to estimate the functional networks and the corresponding time
courses (TCs) for each subject. This Neuromark framework used
two large publicly available datasets to construct a group of robust
network templates. The network templates were then used as the
reference in the spatial-constrained ICA to extract subject-specific
networks and their TCs. The identified meaningful networks were
defined as intrinsic connectivity networks (ICNs). ICNs had their
activation peaks located across the whole-brain gray matter areas and
were labeled according to their prior anatomical and functional
knowledge. Neuromark provides comparability of networks across
subjects and sessions while allowing single-scan variability in the
network maps. Previous studies have shown the efficacy of the
Neuromark framework in capturing robust neuroimaging
biomarkers in a wide range of brain diseases (Fu et al., 2020; Tu
et al., 2020; Fu et al., 2021a; 2021b). We provided more details of the
Neuromark framework in the Supplementary Material.

Static functional network connectivity

After having the ICNs and TCs for each subject, we performed the
post-processing steps on the TCs to remove the additional
confounding effects. We first detrended linear, quadratic, and cubic
trends from the TCs. Then a multiple regression was performed to
regress the six realignment parameters and their derivatives. Thirdly,
we removed the detected outliers from the TCs. Finally, we performed
band-pass filtering with a cutoff frequency of 0.01–0.15 Hz on the TCs.
Pearson correlation coefficient was calculated between the post-
processed TCs to measure the sFNC. The whole-brain sFNC (C ×
C, C is the number of ICNs) was further z-scored to have the zero
mean and standard variation.

Dynamic functional network connectivity and
global dynamism

The resting-state brain continuously integrates and coordinates
different neural populations to adapt to the demands of internal and
external environments. Here, we employed a sliding-window
approach on the post-processed TCs to estimate the whole-brain
dFNC. Within each window, a graphic lasso method was
implemented to estimate the correlation matrix (C × C). We chose
the window size as 20 TRs and slid the window in 1 TR, resulting in a
W × C × C (W is the number of windows) array for each subject,
representing the FNC changes across time.
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We performed a meta-state analysis based on fuzzy k-means
clustering to quantify the global dynamism of FNC (Miller et al.,
2016). This analysis modeled dFNC as weighted sums of maximally
independent connectivity patterns. Each dFNC was represented as a
discretized vector of connectivity pattern weights, called a meta-state.
Four dynamism measures were defined by the meta-state analysis,
including 1) meta-states number (the number of distinct high-
dimensional meta-states passed through); 2) meta-states switching
times (the number of times switching among different meta-states); 3)
occupied meta-states range (the divergence of the meta-states); 4)
overall traveled distance (the overall traveled distance among different
meta-states), reflecting high dimensional dynamic properties of the
whole-brain network. The effectiveness of the meta-state analysis in
capturing the overall patterns of dynamic brain networks has been
proved in numerous pieces of literature (Miller et al., 2016; Mennigen
et al., 2018; Fu et al., 2019).

Development of FNC-based predictive
models

Partial least square regression (PLSR) was employed to build
predictive models for the percentage change of HDRS24 and each
of the subdomains of HDRS24 separately. PLSR can capture reliable
brain-phenotype relationships and has been widely used in predictive
neuroimaging. PLSR did not require prior feature selection or prior
training to achieve dimension reduction, as it worked by projecting
high-dimensional features into a small set of latent components. This
strength can facilitate the comparison of predictive models based on
different types of features.

We placed the prediction model in a tenfold CV framework.
Specifically, 90% of the data were chosen as the training set and the
remaining 10% were used for the testing set. Model building was
performed using another CV framework using the training set. The

FIGURE 1
Flowchart of the prediction analyses. To examinewhether ECT-induced antidepressant outcomes and cognitive changes have neural representations on
static and dynamic functional connectivity, we develop separate predictive models for HDRS and HVLT based on the sFNC features and global dynamism
features and examine their weight maps at connection and functional domain levels. (A) Templates construction and individual network estimation. (B) Static
functional network connectivity (sFNC) features. (C) Dynamic functional network connectivity (dFNC) features. (D) Prediction of ECT outcomes.
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testing set was independent of the training process to prevent leakage
between them. The predictive model, namely beta value, was directly
applied to the testing set without any modifications. Considering the
division of data folds was conducted randomly, we further employed
shuffle-split techniques by repeating the prediction procedure
1,000 times to control this influence. Model performance was
quantified as the correlation r between actual and predicted scores,
averaged across 1,000 repetitions.

The sFNC changes between v1 and v3 (v1–v3) were first calculated
and used as the input features in the PLSR model. Because the sFNC
matrix is symmetric, we only used the upper triangle elements of the
sFNC matrix, which results in 1,378 sFNC features for the predictive
model. Then we added four dynamism measures, resulting in
1,382 features for the predictive model. We investigated whether
adding dFNC features can improve prediction accuracy or not. We
also built a PLSR model for the prediction of ECT-induced cognitive
changes, which are measured by the changes in HVLT scores. A
similar prediction framework was employed in building the PLSR
model for predicting HVLT changes.

The relative contribution of each feature to prediction is quantified
by extracting the regression coefficients from the predictive model (the
returned beta in plsregress). We generated the static feature
representation and the dynamic feature representation for the
predictive model by averaging 10,000 weight maps
(1,000 repetitions × 10 folds). To unveil how functional domains
play a disproportionate role in explaining the success of predicting
ECT outcomes, we grouped the whole-brain ICNs into seven
functional domains according to their anatomical and functional
prior information. Next, for each pair of the functional domains
(between- or within-domain), weights of all FNC were added up
and then normalized by the total number of FNC belonging to that
pair to control for the influence of domain size.

We examined the validity and stability of predictive models
through the following analyses. First, the mean and standard
deviation of the sFNC and dynamic feature weights across
1000 CV were calculated and displayed. Second, to show the
significance of prediction accuracy, we performed a permutation
test with 1,000 iterations. Third, to confirm that the predictive
models were not biased by the potential confounding effects, we
regressed out the covariates of age, sex, current, treatment number,
and pulse width from the input features, and reperformed the PLSR
framework based on the cleaned features.

Code availability

The codes of the Neuromark framework have been released and
integrated into the group ICA Toolbox (https://trendscenter.org/
software/gift/), which can be downloaded and used directly by
users worldwide. Other MATLAB codes of this study can be
obtained from the corresponding authors.

Results

Intrinsic connectivity networks

The Neuromark QC selected 50 subjects for the present study,
demographic information is provided in Supplementary Table S1. The

selected subjects have at least one good resting-state fMRI scan at both
v1 and v3 sessions that passed the QC. The Neuromark framework
identified 53 meaningful ICNs across the whole brain, which were
organized into seven functional domains: subcortical (SC), auditory
(AUD), visual (VS), sensorimotor (SM), cognitive-control (CC),
default-mode (DM), and cerebellar domains (CB). The spatial
maps of ICNs (components) were displayed in Supplementary
Figure S1 and details of the ICN coordinates and labels are
provided in Supplementary Table S2.

Static and dynamic connectome-based
prediction of ECT-induced antidepressant
outcomes

The sFNC features were the correlations between 53 ICNs while
the dFNC features were the four dynamism features captured by a
fuzzy k-means clustering with five connectivity patterns. The number
of connectivity patterns is within a reasonable range (4–7) in the
previous studies. Based on the sFNC features, we built predictive
models for antidepressant outcomes which are measured by HDRS24.
Separate models were built for the composite HDRS24 and each of its
sub-scores within a repeated CV framework. In Figures 2A, C, sFNC
features can successfully predict the HDRS24 composite score changes
(r = 0.5169 ± 0.0444, R2 = 0.2691 ± 0.0453, permutation test p < 2.0 ×
10−3). When adding dynamic features to the prediction model, the
combined features can achieve better prediction accuracy (r = 0.5358 ±
0.0433, R2 = 0.2889 ± 0.0455, permutation test p < 2.0 × 10−3). The
two-sample t-test in Figure 2B shows that using combined features
provides higher prediction accuracy compared to using only static
features (t = 9.6434, p = 1.5 × 10−21). sFNC can also predict two sub-
scores of HDRS24. Specifically, sFNC can predict changes in
depersonalization score and anxiety score, with mean correlations
between actual versus predicted values as r = 0.4564 ± 0.0557 and r =
0.3531 ± 0.0504 (permutation test p < 2.3 × 10−2). Same to the HDRS24
composite score, combined static features with dynamic features can
increase the prediction accuracy (r = 0.4646 ± 0.0564, t = 3.2626, p =
0.0011, and r = 0.4720 ± 0.0448, t = 55.7600, p = 1.0 × 10−30). We also
found that the sFNC features can predict the change in sleep condition
which is measured by the Quick Inventory of Depressive
Symptomatology (QIDS) late sleep score (r = 0.5394 ± 0.0466, R2 =
0.2931 ± 0.0491, permutation test p < 1.0 × 10−3). Combining both
static and dynamic FNC features can achieve better prediction
accuracy (r = 0.6034 ± 0.0419, R2 = 0.3658 ± 0.0502, t = 32.2820,
p = 2.3 × 10−30). Note that, although the prediction accuracies slightly
decreased after controlling for the potential covariates, they are still
significantly higher than the accuracies from the permutation test (p <
5.0 × 10−2). More importantly, the models built on combined features
can achieve consistently higher prediction accuracy than those built on
sFNC features only (Supplementary Table S3).

Static and dynamic connectome-based
prediction of ECT-induced cognitive changes

To exploit the FNC signatures for ECT-induced cognitive changes,
we further built predictive models for cognitive performance
measured by HVLT scores. Separate models were built for each of
the HVLT t-scores within a repeated CV framework. We found that
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the sFNC features can predict changes in the HVLT-DR score and
HVLT-R score (r = 0.4958 ± 0.0387, R2 = 0.2473 ± 0.0381, and r =
0.4669 ± 0.0403, R2 = 0.2196 ± 0.0374, permutation test p < 5.0 × 10−3,
Figures 3A, C). Different from the prediction of antidepressant
outcomes, we found that adding dFNC features to the model did
not improve the prediction accuracy (r = 0.4590 ± 0.0388, R2 =
0.2122 ± 0.0355, and r = 0.4223 ± 0.0459, R2 = 0.1805 ± 0.0383,
permutation test p < 1.0 × 10−2, Figures 3A, C). Instead, using only
sFNC features provided better performance in predicting cognitive
changes (t = −21.2111, p = 3.2 × 10−20, and t = −23.0381, p = 2.4 × 10−30,
Figure 3B). The overall prediction results are replicated after
controlling for the potential confounding effects, where models
built on combined features did not improve the prediction
accuracy compared to those built on sFNC features only
(Supplementary Table S3).

Predictive anatomy of intrinsic connectivity
network and global dynamism

As we leveraged the whole-brain static connectome to make
predictions, each sFNC feature obtained a predictive weight
representing its contribution to each prediction task. We
summarized the weight at the original FNC pair level and at the
functional domain level for the predictive model of the HDRS24
composite score, with the results displayed in Figure 4. Here we
selected the HDRS24 for the presentation because the weight maps

for antidepressant outcomes are highly similar (vs. HDRS24
Depersonalization, r = 0.4310, p = 1.1 × 10−63; vs. HDRS24 Anxiety,
r = 0.5633, p = 3.3 × 10−116; vs. QIDS Late Sleep, r = 0.4800, p = 2.5 ×
10−80). In the prediction of antidepressant outcomes, FNC between SC
and SM domains, between SC and CB domains, and between VS and
CB domains have prominent negative weights (Figures 4A, B). In
contrast, FNC within the AUD domain and DM domain, between
AUD and DM domains, and between SM and CB domains show
prominent positive weights. CC-related FNC shows different weight
patterns. On one hand, FNC between CC and AUD/SM domains
demonstrate strongly negative weights, especially for FNC between the
middle frontal gyrus and multiple SM ICNs and between MTG and
multiple CC ICNs. On the other hand, FNC between CC and DM/VS
shows obviously positive weights. Similar patterns are observed when
we averaged the weights and displayed the results at the domain-pair
level (Figures 4C, D). Regarding the dynamic features, only the total
distance of the dynamic range shows negative weight while the other
dynamism measures show positive weights.

We also summarized the weight for the predictive model of the
HVLT-DR score and displayed the results in Figure 5. Note that, the
weight maps for the HVLT-DR score and theHVLT-R score are highly
correlated (r = 0.7576, p = 3.6 × 10−257). For predicting cognitive
changes, FNC within CB, AUD, and DM show prominent negative
weights. FNC between SM and CB, and between SM and VS have
positive weights (Figures 5A, B). Again, CC-related FNC demonstrates
more diverse weight maps. FNC between CC and SC shows negative
weights while FNC between CC and VS, and between CC and CB show

FIGURE 2
FNC-based prediction results for antidepressant outcomes induced by ECT. (A) Distribution of prediction accuracies across 1,000 repetitions of cross-
validation and distribution of accuracies based on permutation testing across 1,000 iterations. (B) Statistical analysis between prediction accuracies based on
sFNC features only and based on combined features (sFNC+dFNC). (C) Scatter plot shows prediction of changes in HDRS24 scores and QIDS score.
Considering that the prediction framework was repeated 1,000 times, we only show results from the iteration with the median prediction accuracy.
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more positive weights. For the dynamic features, the number of states
and the change of states show negative weights while state span and
total distance show positive weights. We further examined the overlap
of predictive models for antidepressant outcomes and cognitive
changes by evaluating the correlation between their weight maps.
Their weight maps only show a weakly negative correlation
(r = −0.0566, p = 0.0356). Some functional domains exhibiting
great involvement in predicting both antidepressant outcomes and
cognitive changes are in the same direction, while some are in opposite
directions. For example, FNC between SM and CB shows positive
weights for both predictive models of antidepressant outcomes and
cognitive changes. In contrast, FNC between SC and CC demonstrate
more negative weights in the prediction of cognitive changes while
these FNC show more positive weights in the prediction of HDRS
changes.

Discussion

Our work combined a fully automated ICA-based framework with
a machine learning model to achieve an individual-level estimation of
ECT-induced antidepressant outcomes and cognitive changes. Firstly,
the Neuromark is a well-established framework for capturing reliable
connectivity features that are comparable across subjects, scans, and
sessions (Fu et al., 2020; 2021c; Tu et al., 2020). Unlike atlas-based
analysis, this framework allows single-scan variability in network
representations, which can therefore retain more scan-specific
information in the connectivity features (Du et al., 2020). Secondly,
we capitalized on advances in machine learning technology to
characterize the connectivity signatures of antidepressant outcomes
and cognitive changes in a purely data-driven manner (Jiang et al.,
2022). Instead of focusing on isolated FNC pairs, the PLS prediction

FIGURE 3
FNC-based prediction results for cognitive changes induced by ECT. (A)Distribution of prediction accuracies across 1,000 repetitions of cross-validation
and distribution of accuracies based on permutation testing across 1,000 iterations. (B) Statistical analysis between prediction accuracies based on sFNC
features only and based on combined features (sFNC+dFNC). (C) Scatter plot shows prediction of changes in HVLT scores. Considering that the prediction
framework was repeated 1,000 times, we only show results from the iteration with the median prediction accuracy.
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model concentrates on aggregating thousands of antidepressant
outcome- and cognitive change-related FNC changes into a single
measure that best captures their neural representations. Moreover, the
predictive analysis combined dynamic features with static features in
the modeling, which might extend our understanding of ECT outcome
prediction dominated by the studies focusing on either connectivity
feature alone (Perrin et al., 2012; Redlich et al., 2016; Moreno-Ortega
et al., 2019; Dini et al., 2021).

We also envision the potential translational impact of the
predictive FC changes for improving personalized ECT
treatments. During the ECT evaluation, the clinician will need
as much information as possible to individualize anticipated risks
and benefits. In acute cases with episodic depressive episodes (e.g.,

severe depressive episodes associated with poor oral intake and
acute suicidality), family history of mood disorders, or relatively
short depressive episodes (<2 years), the clinical decision-making
will be clear and straight-forward in favor of ECT. In the context
of non-episodic depression, extensive treatment failures, or a less
severe depression severity, the clinician will benefit from
additional predictive biomarkers, such as neuroimaging
biomarkers, to facilitate clinical decision-making. Combined
with future studies that might build relationships between
subjects’ demographic features, pre-ECT imaging, and FC
changes, our predictive models will have a significant
translational impact, especially in the absence of clear clinical
and demographic features.

FIGURE 4
Distributions of weight maps in predicting antidepressant outcomes (HDRS24 composite score). (A) Distributions of raw predictive weights at the FNC
pair level averaged across 10,000 CV rounds. (B) Functional connectome plots with the top 50 positive weights and top 50 negative weights. ICNs are
arranged into seven functional domains with different colors. (C) The cell plots show the domain-level representation of the predictive weights. For each pair
of domains (between-domain and within-domain), we averaged predictive weights of all sFNC belonging to that domain pair. Positive weights and
negativeweightswere separately summarized for each domain pair to demonstrate their relative contribution. (D)Meanweights distribution of within-domain
and between-domain sFNC in the predictive models. Error bars indicate standard deviation. (E) Mean weights distribution of dFNC features in the predictive
models.
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Existing work has widely established that the depressive brain
shows significant relationships with abnormal FC (Greicius et al.,
2007; Zeng et al., 2012). Widespread FC abnormalities in major
depressive individuals might give rise to a portion of the MDD-
related emotional and cognitive disturbances (Zeng et al., 2012). As
one of the most popular ECT mechanisms, the neurogenic hypothesis
believes that generating new neurons is beneficial for the depressive
brain because of its impairment of producing neurons for mood
control (Scott et al., 2000; Petrik et al., 2012). Evidence from
previous FC studies demonstrates that ECT significantly affects the
whole-brain FC, where the resulting FC changes show associations
with clinical outcomes (Perrin et al., 2012; Abbott et al., 2014; Wang
et al., 2020). A variety of functional networks are involved in ECT,
including the frontoparietal control network, the default-mode

network (DMN), the subcortical network, and the cerebellum
network (Perrin et al., 2012; Wang et al., 2020; Pang et al., 2022).
DMN, a system responsible for self-referential information processing,
awareness, and memory processing is supposed to play a key role in
MDD and is also promising as a target for ECT-induced
antidepressant outcomes (Abbott et al., 2013; Mulders et al., 2015;
Pang et al., 2022) and cognitive changes (Wang et al., 2020). Our
present results are consistent with the previous findings by showing
that DMN-related FNC, especially the FNC within DM, significantly
contributes to the prediction models of clinical outcomes.
Interestingly, we found that DMN-related FNC shows diversely
positive and negative effects in the prediction of ECT outcomes,
which are in line with previous studies where both increased and
decreased DMN FC are observed after ECT (Li et al., 2017; Pang et al.,

FIGURE 5
Distributions of weight maps in predicting cognitive changes (HVLT-DR score). (A) Distributions of raw predictive weights at the FNC pair level averaged
across 10,000 CV rounds. (B) Functional connectome plots with the top 50 positive weights and top 50 negative weights. ICNs are arranged into seven
functional domains with different colors. (C) The cell plots show the domain-level representation of the predictive weights. For each pair of domains
(between-domain and within-domain), we averaged predictive weights of all sFNC belonging to that domain pair. Positive weights and negative weights
were separately summarized for each domain pair to demonstrate their relative contribution. (D) Mean weights distribution of within-domain and between-
domain sFNC in the predictive models. Error bars indicate standard deviation. (E) Mean weights distribution of dFNC features in the predictive models.
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2022). Our study further extends the previous findings by
demonstrating that DMN FC might show reverse effects in
predicting antidepressant outcomes and cognitive changes. That is,
more decreased FNC within DM is associated with more
antidepressant outcomes and fewer cognitive side effects. In
addition, our model reveals that the cerebellum is a complicated
brain system implicated in ECT responses. Recent studies have
shown that the cerebellum is not a pure motor-control system
(Schmahmann, 2004; Schmahmann and Caplan, 2006; Schutter and
van Honk, 2006) and its abnormalities show prominent associations
with neural deficits in brain diseases (Andreasen, 1997; Fatemi et al.,
2012; He et al., 2018). The cerebro-cerebellar neuroplasticity may also
imply a potential neural pathway for the mitigation of ECT-induced
side effects (Depping et al., 2017; Porta-Casteràs et al., 2021; Wei et al.,
2021). Based on the cerebellum’s role in cognition and emotional
processing (Schmahmann, 2004; Schmahmann and Caplan, 2006;
Schutter and van Honk, 2006), we speculate that ECT may impact
the cerebellum and modulate its communication with cerebral
systems, especially the sensory networks, which therefore influences
the allocation of attentional resources to sensory-motor processing,
and emotional experience and leads to symptom improvements and
cognitive changes (Wang et al., 2018). Collectively, our present work
suggests that ECT affects interactions between a variety of functional
networks that directly or indirectly impact ECT-induced
antidepressant outcomes and cognitive changes.

Most of the aforementioned studies assumed the FC static over
the entire resting-state. The assumption of static interactions
between brain regions during the resting-state might be limited
as it might oversimplify the representation of brain connectivity
(Allen et al., 2014). Indeed, fluctuations in FC have long been
appreciated in fMRI studies, which might convey neuronally
original underpinning of the brain mechanisms (Hutchison et al.,
2013). Existing literature has also reported numerous dynamic FC
abnormalities in many brain disorders, such as schizophrenia
(Damaraju et al., 2014), autism (Fu et al., 2019; Li et al., 2020),
depression (Kaiser et al., 2016; Yao et al., 2019), and Parkinson’s
disease (Kim et al., 2017). More recently, studies have implemented
the dynamic FC analysis to the ECT-related datasets and captured
numerous dynamic features which might serve as a potential
biomarker of the ECT outcomes (Fu et al., 2021c; Dini et al.,
2021; Liu et al., 2022). Dynamic FC might convey diseases- or
treatments-related mechanisms that cannot be identified by static
analysis (Hutchison et al., 2013; Matsui et al., 2019). However,
previous work usually focused on either static or dynamic FC
separately, failing to answer whether dynamic FC can provide
additional information to its static counterpart. The apparent
associations between ECT responses and both static and dynamic
FC is a basic motivation that drives the current study to investigate
the nature of their relationship by incorporating them into the
predictive models of ECT outcomes. For the first time, our study
demonstrates that the global dynamism of whole-brain FC provides
complementary information to the static FC, leading to an
improved prediction accuracy of antidepressant outcomes. The
changes in global dynamism might reflect how ECT influences
the brain dynamic range and fluidity, providing additional
information on the ECT-related neuroplasticity of the brain. One
potential explanation is that ECT changes the brain dynamism to
normalize the weakness in brain circuits related to cognitive control
and depressive deficits in executive functioning (MacDonald et al.,

2000; Kaiser et al., 2016). Another interesting finding is that brain
dynamism does not provide additional information to the static FC
in the prediction of cognitive changes. We argue that this may be
partially due to the inherently heterogeneous ECT impact on
cognitive functions (Stern et al., 1994; Stern, 2002). Specifically,
individuals with higher premorbid intelligence can better
compensate for the impact of ECT on cognitive functions (Stern
et al., 1994; Stern, 2002). The brain dynamismmight not be sensitive
to the individual difference in intelligence and therefore fails to
predict the heterogeneous changes in cognition.

Our study should be considered in light of some potential
limitations. First, our study is based on an ECT dataset where the
participants received ECT series with different amplitudes. Previous
studies have found that the electric field determined by the amplitude
shows significant associations with brain neuroplasticity,
antidepressant outcomes, and cognitive side effects (Argyelan et al.,
2019; Deng et al., 2021). Although we have replicated the majority of
the findings in the main text by regressing the confounding effect of
amplitude in the Supplementary Material, the neuroimaging
signatures might have different representations in different
amplitudes. In future studies with more samples collected with
each pulse amplitude, we can validate and extend our prediction
analysis to each amplitude respectively. Second, the prediction models
of antidepressant outcome and cognitive change were developed based
on linear models, which might ignore the potential non-linear
relationships between FC and ECT outcomes. Third, our present
work only considered static and dynamic FC features in the
prediction of clinical outcomes. However, ECT-induced structural
changes have also been widely associated with clinical outcomes
(Argyelan et al., 2019; Deng et al., 2021). It is still an open
question whether structural and functional neuroplasticity plays
overlapping or complementary roles in antidepression-related
circuitry. Investigations incorporating multi-modal imaging features
can help to elucidate the relationships between structural and
functional neuroplasticity with ECT and might provide better
prediction accuracy of ECT response. Fourth, the present work
built the predictive model only for ECT-induced memory changes.
We mainly focused on the memory domain because it is the most
impacted cognitive domain associated with ECT (Semkovska and
McLoughlin, 2010). Our prediction models can be extended to the
prediction of other cognitive domains to draw a more comprehensive
connectivity-based signature of cognitive impairments associated with
ECT. Fifth, the prediction model was not built using the dynamic
features alone because features with such a small dimension are not
suitable for the PLSR method. In future studies, we can investigate
other dynamic features with larger dimensions and examine their
predictive abilities for ECT outcomes directly. Finally, it is also of
interest whether and how pre-ECT imaging and previous
antidepressant exposure influence the predictive models.
Incorporating antidepressant type, dose, and duration into pre-ECT
prediction modeling is a promising future direction that will increase
the generalizability and translational impact of predictive modeling.
Unfortunately, our current dataset is not sufficiently powered for this
type of analysis. We have initiated a multi-site ECT-imaging
investigation that will capture pre-treatment medications and a
number of failed antidepressant trials. When completed, this large
dataset (n > 200) will allow us to incorporate antidepressant classes
and pre-ECT clustered FC patterns into the predictive modeling
approach for both antidepressant and cognitive outcomes.
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Conclusion

In this study, we investigated the extent to which ECT-induced
antidepressant outcomes and cognitive changes overlap in brain
connectivity via a technique from multivariate predictive
modeling. Our findings first demonstrate that changes in static
connectivity can predict ECT-induced clinical outcomes. Although
sharing a few common patterns, antidepressant outcomes and
cognitive changes have specific neural representations in brain
connectivity. More importantly, we found that adding dynamic
connectivity information to static connectivity can significantly
enhance the performance of predicting antidepressant outcomes
only (not for memory changes). It is widely believed that
connectivity dynamics evaluate brain interactions at a finer time
scale and thus might provide more information to the static
analysis. However, our findings indicate that dynamic
connectivity does not always provide additional neural
signatures to its static counterpart, which might depend on the
specific task to be investigated. In sum, our work offers new insights
into the complex relationships between static and dynamic brain
connectivity in ECT outcome prediction. Tracking the patterns of
static and dynamic connectivity changes may better characterize
the antidepressant efficacy and guide people to provide an optimal
ECT paradigm to reverse the symptoms in depressive patients.
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