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Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases
(ASCVD), characterized by persistent chronic inflammation in the vessel wall, in
which monocytes/macrophages play a key role. It has been reported that innate
immune system cells can assume a persistent proinflammatory state after short
stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be
influenced by this persistent hyperactivation of the innate immune system, which
is termed trained immunity. Trained immunity has also been implicated as a key
pathological mechanism, leading to persistent chronic inflammation in AS. Trained
immunity is mediated via epigenetic and metabolic reprogramming and occurs in
mature innate immune cells and their bone marrow progenitors. Natural products
are promising candidates for novel pharmacological agents that can be used to
prevent or treat cardiovascular diseases (CVD). A variety of natural products and
agents exhibiting antiatherosclerotic abilities have been reported to potentially
interfere with the pharmacological targets of trained immunity. This review
describes in as much detail as possible the mechanisms involved in trained
immunity and how phytochemicals of this process inhibit AS by affecting
trained monocytes/macrophages.
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1 Introduction

Atherosclerotic cardiovascular diseases (ASCVD) have emerged as the most common
burden of disease as a result of the aging and expanding global population (Mensah et al.,
2019). As the pathology of ASCVD, atherosclerosis (AS) generates a continuous buildup of
vessel-occluding plaques in the subendothelial intimal layer of coronary arteries, eventually
leading to considerable blood flow restriction and essential tissue hypoxia (Libby, 2002;
Gallino et al., 2014). Most cardiovascular events are caused by the rupture of atherosclerotic
plaques in the arterial artery wall and the subsequent formation of an occluding thrombus.

In addition to the deposition and retention of modified lipoproteins and the buildup of
immune cells in the walls of major arteries, AS is characterized by a low-grade, persistent,
chronic inflammation of the arterial wall (Edgar et al., 2021). All phases of AS are mostly
attributed to monocytes and monocyte-derived macrophages, which are also thought to be
responsible for persistent chronic inflammation (Moore et al., 2013). The traditional view is
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that innate immune cells, such as macrophages, can only eliminate
pathogens non-specifically through biological processes such as
phagocytes (Bonilla and Oettgen, 2010). However, a growing
body of research suggests that monocytes/macrophages may also
develop memory capabilities similar to those of the adaptive
immune system after exposure to pathogens (Arts et al., 2018).
Myeloid cells of the innate immune system become more sensitive
after activation with the same or different stimuli to produce a
persistent inflammatory monocyte/macrophage phenotype, a
phenomenon known as “trained immunity” or “innate
immunological memory” (Netea et al., 2020). This persistent
overactivation of the innate immune system could contribute to
the incessant vascular wall inflammation that is characteristic of AS
(Moore et al., 2013).

For thousands of years, herbal medicines have been widely
utilized alone or as a supplementary strategy to treat various
disorders in East Asia because of their reduced toxicity, fewer
side effects, and cheaper cost (Wang et al., 2018). Along with the
development of these natural therapies, herbal medicine is becoming
more widely accepted as a supplement and alternative therapy in
many countries (Liang et al., 2021). According to the most recent
statistics on US-FDA (United States Food and Drug
Administration) authorized drugs, herbal remedies have been a
vital source of novel medications (Newman and Cragg, 2020). A
growing body of scientific evidence has revealed that natural
medicines and phytochemicals from natural herbal medicines
exhibit promising anti-AS properties (Zhang et al., 2021a). Based
on the regulation of targeting trained immunity in monocyte and
macrophage, natural compounds generated from herbal remedies
are surely excellent resources for selecting potential therapeutics to
treat AS.

This review aims to provide more information on the role of
trained immunity in the pathophysiology of AS, which might be a
potential pharmacological target of natural products.

2 Trained immunity in AS

Conventional wisdom generally considers the adaptive immune
system as a specific protective mechanism that can form more
specialized lines of defense against re-infection with the same
pathogens (Domínguez-Andrés et al., 2019). However, innate
immune cells (e.g., macrophages/monocytes) have been reported
to display similar immune memory, referred to as trained immunity
(Conrath et al., 2015; Milutinović and Kurtz, 2016; Gourbal et al.,
2018). Studies of gene-specific chromatin changes brought about by
lipopolysaccharide (LPS) have first shown trained immunity
characteristics of monocytes/macrophages (Foster et al., 2007).
Subsequently, infectious stimuli, such as β-glucan and Bacille
Calmette–Guérin (BCG), improved their reactivity to stimulation
with unrelated infections or molecular patterns linked with those
pathogens (Quintin et al., 2012; Saeed et al., 2014). Factors that
contribute to the development of AS, such as uric acid and oxidized
low-density lipoprotein (oxLDL), and other endogenous ligands can
activate trained immunity (Bekkering et al., 2014; Crişan et al.,
2017). Freshly isolated monocytes from patients who had symptoms
of coronary artery disease (CAD) had a higher capacity to produce
cytokines than those from healthy controls, and this capacity was

maintained following ex vivo conversion to macrophages for 5 days
(Shirai et al., 2016). The atherogenic factors are characterized by
increased production of proatherogenic cytokines and chemokines
like tumor necrosis factor-α (TNF-α), IL-6, monocyte
chemoattractant protein-1 (MCP-1), matrix metalloproteinases 2
(MMP-2), and MMP-9 and increased foam cell formation is indeed
demonstrated by large-scale phenotyping of trained macrophages
in vitro (Bekkering et al., 2014).

After short activation with endogenous ligands, a persistent
proinflammatory phenotype can emerge in AS monocytes/
macrophages (Leentjens et al., 2018). The three key components
of trained immunity are metabolic reprogramming, epigenetic
reprogramming, and the promotion of myelopoiesis progenitors
(Fanucchi et al., 2021) (Figure 1). First, metabolic reprogramming is
responsible for the induction, maintenance, and regulation of
trained immunity. Different metabolic pathways supply the
required substrates for altering the structure of the respective
sections of the chromatin and genome, in addition to acting as a
source of energy and building components for the dynamic
remodeling of the epigenetic landscape. Second, epigenetic
reprogramming ultimately links metabolic changes to a cell’s
gene expression and inflammatory phenotype. Finally, trained
immunity in bone marrow by hematopoietic stem cells (HSCs)
maintains long-term effects on circulating monocytes through
differentiation into progenitor and mature cells (Mitroulis et al.,
2018). In addition to atherosclerotic triggers, such as lipoproteins,
glucose, diet, and microbiota-derived substances, proinflammatory
cytokines secreted by monocytes/macrophages with an
inflammatory phenotype may alter the tissue microenvironment
by altering macrophages, the functional state of cells, leading to a
vicious circle (Groh et al., 2018).

2.1 Metabolic reprogramming of trained
immunity in AS

The trained immune activation has to quickly access a supply of
substrates to initiate the numerous metabolic processes associated
with the immune response. Intracellular metabolic pathways of
glucose, amino acids, lipids, and nucleic acids are altered in
response to trained immune activation (Fanucchi et al., 2021).
When normal cells are at rest, they obtain enough energy via
metabolic processes that are extremely effective but rather slow,
such as oxidative phosphorylation (OXPHOS) and fatty acid
oxidation (FAO) (Augert et al., 2020). In contrast, trained
immune cells continue to opt for “aerobic glycolysis,” which uses
glycolysis instead of OXPHOS to generate energy under normoxic
conditions, similar to the “Warburg effect” in cancer (Mills et al.,
2016; Renner et al., 2017). In addition to glucose metabolism, trained
immune cells exhibit altered lipid and amino acid metabolic
patterns. For instance, the Krebs cycle’s anabolic redefinition to
synthesize cholesterol and phospholipids from citrate and acetyl
coenzyme A (CoA) is a crucial metabolic event in trained monocytes
(Arts et al., 2016a). When exposed to β-glucan, cholesterol synthesis
is increased, but fluvastatin, an inhibitor of the enzyme 3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) reductase, inhibits trained
immunity by downregulating histone H3 lysine 4 trimethylation
(H3K4me3) and limiting the production of proinflammatory
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cytokines (Bekkering et al., 2018). For the progression of AS, the
control of cholesterol import and efflux is critical. Similar to
glutamine, arginine, and glycine, several particular amino acids
are overexpressed in atherosclerotic plaques and have AS-
promoting effects (Mallat et al., 1999; Sheehan et al., 2011). The
intermediate metabolites from many metabolic pathways, such as
aerobic glycolysis, glutaminolysis, cholesterol metabolism, and fatty
acid synthesis, not only are a source of energy for the cell but also
play several significant biological roles (Groh et al., 2018).
Additionally, some chemo drugs made from natural herbal
products, such as resveratrol and epigallocatechin gallate, can
prevent cells from reprogramming their metabolism in response
to AS.

2.1.1 Glucose metabolism and AS
Although OXPHOS produces ATP more efficiently than other

cellular processes (approximately 30 ATP molecules can be
produced per glucose molecule during OXPHOS, whereas
glycolysis can only produce two ATP molecules per glucose
molecule) (Tabas and Bornfeldt, 2020). However, glycolysis
produces ATP faster than OXPHOS, allowing immune cells to

respond quickly to stimuli (Tabas and Bornfeldt, 2020). A
clinical trial found an enhanced capacity for cytokine production
in circulating monocytes obtained from ASCVD patients, which was
associated with the upregulation of glycolytic enzymes (Bekkering
et al., 2016; Shirai et al., 2016). This phenotype continued even after
in vitro macrophage differentiation, displaying a greater glycolytic
flux and a higher oxygen consumption rate (Shirai et al., 2016).
Furthermore, the inhibition of specific tricarboxylic acid (TCA)
cycle steps that support inflammatory processes is associated with
increased glycolysis in inflammatory macrophages that primarily
produce and release proinflammatory mediators, such as
interleukin-1 (IL-1), TNF-α, chemokine C–C motif ligand 2
(CCL2), IL-12, and nitric oxide (NO), through inducible nitric
oxide synthase (iNOS). The key proteins involved in glycolysis
are introduced in the following sections.

2.1.1.1 GLUT1
Glucose transporter 1 (GLUT1; gene name SLC2A1) on the cell

membrane initiates glucose uptake by monocytes/macrophages
(Fukuzumi et al., 1996). LPS and oxLDL, which cause
inflammation, can boost GLUT1 expression and thereby increase

FIGURE 1
Schematic diagram of the trained immunity mechanism in atherosclerotic cardiovascular disease. In the hematopoietic system, myeloid cells
exposed to endogenous triggers undergo epigenetic and metabolic reprogramming, resulting in acquiring innate immune memory. The initial gene
activation is accompanied by the accumulation of H3K4me3 on the gene promoter, and the persistence of H3K4me1 or H3K27ac in secondary
stimulation leads to an enhanced innate immune response. These trained myeloid cells differentiate into monocytes, which travel further into the
intima to becomemacrophages. Trainedmacrophages produce high levels of proinflammatory cytokines such as TNF-α, IL-6, IL-8, and IL-18 and uptake
of lipids to form foam cells. When plaques form, endogenous stimuli may be further released to form trained immunity mediated by the
NLRP3 inflammasome.
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glucose influx. Hexokinase phosphorylates glucose inside the cell to
produce glucose-6-phosphate, which is then utilized in the pentose
phosphate pathway (PPP), fatty acid synthase (FAS), or glycolysis.
When glucose is processed in the cytosol by glycolysis, two ATPs
and pyruvates are produced. Pyruvate produced during glycolysis
either enters the mitochondrial TCA cycle or is transformed to
lactate by lactate dehydrogenase (Christofk et al., 2008). In plaque
macrophages, GLUT1 can promote antiatherosclerotic activities.
The efferocytosis procedure increases the expression of GLUT1,
which promotes an increase in glucose absorption and a transition
from OXPHOS to improved aerobic glycolysis, both of which are
required for the effective clearance of apoptotic cells (Morioka et al.,
2018). When myeloid-targeted LysM-Cre Slc2a1fl/fl animals were
transplanted into Ldlr−/− mice on a Western-style diet (WTD), the
amount of necrotic core in the aorta increased (Morioka et al., 2018).
Another study revealed that GLUT1 deletion in hematopoietic cells
inhibited myelopoiesis, monocyte recruitment to lesions, and the
progression of AS in ApoE−/− mice, indicating that the main role of
GLUT1 in this model was to encourage the proliferation of bone
marrow HSCs and multi-potential progenitors, as well as the
commitment of these cells to the bone marrow (Sarrazy et al., 2016).

2.1.1.2 HIF-1α
Hyperoxia-inducible substance 1α (HIF-1α) is activated in

hypoxic circumstances, allowing cells to switch to glycolysis and
create ATP when oxygen is limited. Low oxygen levels trigger the
HIF-1α transcription factor to initiate glycolytic metabolism, which
decreases the need for OXPHOS and increases the expression of the
key glycolysis proteins GLUT1, hexokinase II (HK-II), and 6-
phosphofructo-2-kinase/fructo-2, 6-bisphosphatase (PFKFB3),
which increases glycolytic flux (Tawakol et al., 2015). The
activated macrophages will emit a lot of cytokines and absorb a
lot of glucose. Indeed, hypoxia, HIF-1α expression, and FDG
(fluorodeoxyglucose) uptake in macrophages are associated with
atherosclerotic plaques in animal models of AS (Folco et al., 2011;
Tawakol et al., 2015; Aarup et al., 2016).

2.1.2 Lipid metabolism and AS
In homeostasis, lipoproteins taken up by macrophages are

transported to lysosomes for the hydrolysis of cholesteryl esters.
Free cholesterol is transported to the cytoplasm, where it is
transported to the cell membrane for export or transported to
the ER for re-esterification and storage in lipid droplets (LDs).
Macrophages in advanced plaques provide signs of huge
accumulations of free cholesterol, which suggests a breakdown in
the mechanisms that keep cholesterol levels in balance. Membrane
damage and metabolic dysregulation in the ER and mitochondria
are required to maintain macrophage cholesterol homeostasis and
reduce inflammation, which results from excessive accumulation of
free cholesterol. Furthermore, high levels of modified cholesterol,
oxLDL, are taken up by macrophages to form foam cells and
promote plaque by secreting numerous proinflammatory
cytokines and chemokines and producing MMPs that degrade
plaque extracellular matrix pathogenesis (Khokha et al., 2013;
Tall and Yvan-Charvet, 2015). It is reported that the induction of
trained immunity in monocytes required stimulation of the
cholesterol biosynthesis pathway but not cholesterol synthesis
itself. oxLDL is an endogenous ligand that triggers trained

immunity to activate monocytes/macrophages (Bekkering et al.,
2014; Crişan et al., 2017). Another crucial characteristic of
monocytes trained on β-glucan is increased cholesterol
production (Netea et al., 2020). In primary human monocytes,
fluvastatin, an inhibitor of HMG-CoA reductase, inhibits trained
immunity (Arts et al., 2016a). Notably, β-glucan-induced training of
mature myeloid cells and their progenitors requires enhanced
cholesterol production. The accumulation of cholesterol esters
and lipids with more saturated acyl chains is associated with the
long-term myelopoiesis bias that β-glucan induced training imparts
to HSCs (Mitroulis et al., 2018). The HSC population increase and
myelopoiesis caused by β-glucan are reduced by HMG-CoA
reductase inhibitor (Mitroulis et al., 2018).

2.1.3 Amino acid metabolism and AS
Under AS pathological conditions, amino acid metabolites play

an important role in supporting the induction, maintenance, and
regulation mechanisms of trained immunity (Napoli et al., 2006).
Therefore, it is necessary to decipher the role of specific amino acid
metabolites in the induction of trained immunity.

2.1.3.1 Glutamine
Glutamate is one of the amino acids that has been well-studied

for its role in controlling inflammation (Wallace and Keast, 1992).
By directly converting into glutamate, α-ketoglutarate, and succinate
semialdehyde, glutamine contributes to the TCA cycle (Jha et al.,
2015). Additionally, glutamate can be employed as a source of citrate
for the FAS-catalyzed production of fatty acids. Recent research has
demonstrated that glutaminolysis is increased in trained
macrophages and is essential for the establishment of a trained
macrophage phenotype in response to β-glucan (Arts et al., 2016a).
In a different research study, oxidized phospholipids made of 1-
palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
(oxPAPC) were exposed to macrophages, which led to the
development of AS, glutaminolysis, and IL-1 48. This study
demonstrated that in contrast to macrophages activated with LPS
alone, those exposed to oxPAPC and LPS together had a metabolic
change (Di Gioia et al., 2020). This metabolic shift was characterized
by increased mitochondrial respiration, glutaminolysis, and
accumulation of oxaloacetate, which stabilized HIF-1α and
increased IL-1β production. IL-1β immunoreactivity in CD68+

lesional cells decreased in mice with systemic suppression of this
pathway, which also reduced early AS (Di Gioia et al., 2020).
Furthermore, the TCA cycle’s glutamine replenishment causes
fumarate to accumulate, which integrates immunological and
metabolic circuits to cause monocyte epigenetic reprogramming
by inhibiting KDM5 activity and boosting the methylation of
histone lysine 4 residues (Arts et al., 2016a). An epigenetic
program identical to trained immunity-mediated by β-glucan was
induced by fumarate. To support this, glutaminolysis inhibition and
cholesterol production suppression in mice decreased the induction
of trained immunity by β-glucan (Arts et al., 2016a).

2.1.3.2 Arginine
In the context of AS pathology, arginine metabolism and its by-

product NO are critical for the early stages of the disease (Lv et al.,
2021). iNOS is ubiquitously expressed in activated and developing
macrophages. NO creation by arginine is probably a factor in the
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metabolic transition. NO has been reported to inhibit OXPHOS in
activated dendritic cells and inflammatory macrophages
downstream of iNOS (Everts et al., 2012; Van den Bossche et al.,
2016). Conversely, in alternatively activated macrophages and in the
macrophages of atherosclerotic lesions that are regressing,
Arg1 converts arginine to putrescine (Willecke et al., 2015).
Under specific conditions, these two arginine metabolic routes
can inhibit one another. As a result, NO inhibits ornithine
decarboxylase’s ability to catalyze the conversion of ornithine to
putrescine by S-nitrosylation a cysteine that is essential for the
enzyme’s ability to function (Bauer et al., 2001). Conversely,
ornithine decarboxylase prevents macrophages from becoming
activated in an inflammatory response (Hardbower et al., 2017).
Arginine metabolism has been reprogrammed, which promotes
proinflammatory and healing processes.

2.1.3.3 Serine
Recent research has demonstrated that LPS-activated

macrophages promote serine synthesis, PPP, and one-carbon
metabolism, which synergistically drive epigenetic
reprogramming of IL-1β expression. The production of
S-adenosylmethionine (SAM) during LPS-induced inflammation
is fueled by the synergistic integration of glucose-derived ribose
and one-carbon units supplied by glucose and serine metabolism
into the methionine cycle through de novo ATP synthesis.
Impairment of these metabolic pathways that feed SAM
generation leads to anti-inflammatory outcomes (Yu et al., 2019).
According to a different research study, serine is necessary for the
synthesis of glutathione and IL-1β through the action of glycine
(Rodriguez et al., 2019).

2.2 Epigenetic reprogramming of trained
immunity in AS

Regulating gene expression without changing the DNA
sequence itself is referred to as epigenetic reprogramming.
Epigenetic reprogramming enables innate immune cells to react
to future stimuli with a stronger, quicker, or qualitatively different
transcriptional response (Zarzour et al., 2019). Epigenetic regulatory
mechanisms encompass diverse molecular processes, including
histone post-translational modifications, DNA methylation, and
long non-coding RNAs (lncRNAs).

2.2.1 Histone modifications
Epigenetic reprogramming occurs primarily through histone

changes at the level of the chromatin structure to promote a
sustained enhanced functional state of trained innate immune
cells (Saeed et al., 2014). Neutralization of the positive charge of
lysine residues in histones by histone acetylation increases the
binding of transcription factors activating gene transcription
(Bannister and Kouzarides, 2011). The specific lysine residue
implicated and the sum of the additional methyl groups
determine the effect of histone methylation on gene
transcription. Two important epigenetic marks for trained
immunity are as follows: the H3K4me3 accumulation at the gene
promoter and the histone 3 lysine 27 acetylation (H3K27ac)

acquisition at the gene’s distal enhancer (generated by histone
3 lysine acid 4 methylation (H3K4me1)) (Netea et al., 2020).

2.2.2 DNA methylation
DNA methylation is involved in the regulation of patterns of

gene expression. DNA methyltransferases (DNMTs) use CpG-rich
regions as recognition cues to methylate cytosines (m5C), which
suppresses transcription. Proteins with histone-binding domains
that can “read,” “write,” or “erase” histone marks may detect the tails
that protrude from histone octamers (Fanucchi et al., 2021). In
addition to methylation, acetylation, phosphorylation, and
ubiquitination, these enzymes can catalyze the addition or
removal of a broad and diverse range of other histone
modifications. Different DNA methylation patterns discriminate
between “responders” (those who can experience taught
immunity) and “non-responders” to stimuli, such as BCG, that
produce trained immunity (Verma et al., 2017). Forty-three genes
had distinct methylation patterns in BCG-naive responders as
opposed to non-responders in a follow-up investigation, which
may be utilized to predict sensitivity to triggers of trained
immunity (Das et al., 2019). Numerous studies have shown that
various DNA and histone modification combinations affect whether
DNA is kept in an accessible or “open” state or an inaccessible or
“closed” one (Fanucchi et al., 2021). To enable quick and effective
transcriptional activation, highly accessible DNA is quickly bound
by the transcriptional machinery and transcription factors. This
establishes a clear connection between the transcriptional state of
protein-coding genes and the “openness” of DNA.

2.2.3 lncRNAs
During trained immunity, lncRNA-dependent regulation has

a significant impact on the epigenetic reprogramming of immune
genes (Fanucchi et al., 2021). Several lncRNAs known as
immune-gene priming lncRNAs (IPLs) were found by the
application of a bioinformatic pipeline that comprised 3D
nuclear architecture, lncRNA and enhancer expression data,
and the epigenetic status of immune genes at the genome scale
(Fanucchi et al., 2019). The WD repeat-containing protein 5
(WDR5)-mixed lineage leukemia protein 1 complex is directed
across the chemokine promoters by UMLILO (upstream master
lncRNA of the inflammatory chemokine locus), allowing
H3K4me3 epigenetic priming, according to careful analysis of
a prototypical IPL known as UMLILO (Fanucchi et al., 2019).
Several trained immune genes share this mechanism. Training
mediated by β-glucan upregulates IPLs in a way that depends on
the nuclear factor of activated T cells, which epigenetically
reprograms immune genes. The Cxcl genes are not trained,
and the murine chemokine topologically associating domain is
devoid of an IPL. Cxcl genes are trained as a result of the insertion
of UMLILO into the chemokine topologically associating domain
in murine macrophages (Fanucchi et al., 2019). This offers
compelling evidence that the development of trained
immunity depends on lncRNA-mediated control. Further
research is required to examine these pathways in various
experimental contexts, as recent studies have only examined
the function of IPLs in β-glucan-induced trained immune
characteristics.
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2.3 Modulation of myelopoiesis progenitors

The observation of trained circulating monocytes months
after BCG vaccination suggests that adaptive processes induced
by trained immunity involve alterations in hematopoietic
progenitors at the bone marrow level (Kleinnijenhuis et al.,
2012). Evidence shows that trained immunity plays a role at
the bone marrow level in the context of AS. In mice, the
administration of β-glucan leads to long-term transcriptional
and metabolic alterations in hematopoietic stem and progenitor
cells, resulting in their expansion and bias toward myelopoiesis.
This enhances their ability to respond to secondary LPS
stimulation and protects them from chemotherapy-induced
myelosuppression (Mitroulis et al., 2018). The shared β-
subunit of the IL-3/GM-CSF receptor, CD131, is linked with
enhanced surface expression in this long-term reprogramming.
In a mouse model of predisposition to AS, a similar process
occurs when hypercholesterolemia induces enhanced myeloid
proliferation and inflammation, suggesting a possible role for
trained immunity in the context of traditional cardiovascular risk
factors (Wang et al., 2014). Existing evidence also supports a link
between enhanced glycolysis in myeloid cells and AS. In
hypercholesterolemic ApoE−/− mice, leucocytes and HSPCs
show enhanced GLUT1-dependent glucose absorption, which
is linked to an elevated mitochondrial potential, providing
evidence for a role for myeloid cell glycolysis in myelopoiesis
and atherogenesis. This suggests that the mitochondria in these

cells are fed by the inflow of glycolytic metabolites for OXPHOS
and ATP synthesis (Sarrazy et al., 2016).

3 Endogenous triggers of trained
immunity

In addition to microbial sources, endogenous molecules, such as
cellular metabolites oxLDL, lipoprotein(a), and hyperglycemia, can
induce trained immunity (Bekkering et al., 2014; van der Valk et al.,
2016; Braza et al., 2018; Edgar et al., 2021). These endogenous
triggers play a role in the development of ASCVD (Flores-Gomez
et al., 2021). We will discuss the link between these endogenous
triggers of trained immunity and atherosclerotic plaque formation in
activated monocyte–macrophages (Table 1).

3.1 oxLDL

oxLDL is a modified lipoprotein and is one of the key
atherogenic molecules within plaques that activates immune cells
(Moore and Tabas, 2011). oxLDL-trained macrophages exhibit
significant metabolic and epigenetic rewiring, similar to BCG and
β-glucan. The mammalian target of the rapamycin (mTOR)/HIF1-α
signaling pathway is necessary for the upregulation of glycolysis and
OXPHOS in oxLDL-induced cells (Keating et al., 2020). The
increase in glycolysis and the proinflammatory phenotype in

TABLE 1 Endogenous triggers of trained immunity.

Ligand Model Receptor Trained
immunity
signaling

Metabolic
reprogramming

Epigenetic
reprogramming

Atherogenic
factor

Reference

oxLDL Monocytes/
macrophages

TLR mTOR/HIF1-α Glycolysis H3K4me3 IL-6, TNF-α, SR-A,
CD36, and MCP1

Bekkering et al.
(2014); Sohrabi
et al. (2018);
Keating et al.

(2020)

IL-1 Mevalonate synthesis

Lipoprotein(a) Monocytes/
macrophages

Oxidized
phospholipids

— — — IL-6 and TNF-α van der Valk et al.
(2016); Stiekema
et al. (2020)

Hyperglycemia BMHSCs Runx1 IFN-γ Glycolysis H3K4me3 and
H3K27ac

IL-6 and IL-1β Edgar et al. (2021)

Catecholamines BMHSCs — β-Adrenergic
receptor 1 and
2 cAMP-protein

kinase A

Glycolysis and
oxidative

phosphorylation

H3K4me3 IL-6, IL-8, and
TNF-α

van der Heijden
et al. (2020a)

Aldosterone Monocytes/
macrophages

Mineralocorticoid Fatty acid
synthesis pathway

Fatty acid synthesis H3K4me3 Arterial wall
inflammation

van der Heijden
et al. (2020b); van
der Heijden et al.

(2020c)

Hyperlipidemia BMHSCs — NLRP3 Cholesterol
biosynthesis pathway

Chromatin landscape — Christ et al.
(2018)

IL-1

Abbreviation: BMHSCs, bone marrow hematopoietic stem cells; Runx1, Runt-related transcription factor 1; HIF1α, hypoxia-inducible factor 1-alpha; oxLDL, oxidized low-density lipoprotein;
IFN-γ, interferon-gamma; TLR, Toll-like receptor; mTOR, mammalian target of rapamycin; NLRP3, NLR family pyrin domain-containing 3; H3K4m3, histone 3 lysine 4 tri-methylation;

H3K27ac, histone 3 lysine 27 acetylation; SR-A, type A scavenger receptor; CD36, cluster of differentiation 36; MCP1, monocyte chemoattractant protein 1; TNF-α, tumor necrosis factor-α; IL,
interleukin.
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macrophages were avoided by pharmacological suppression of the
mTOR pathway and the signaling molecules involved and by
inhibiting glycolysis with 2-deoxyglucose (Sohrabi et al., 2018).
Epigenetic reprogramming is another characteristic of oxLDL-
trained macrophages. OxLDL interacts with the myeloid cell
surface receptor cluster of differentiation 36 (CD36) as a
damage-associated molecular pattern (DAMP) (Moore et al.,
2013). The internalization and release of oxLDL into the
cytoplasm may create cholesterol crystals, which activates the
NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)
inflammasome and releases IL-1β and other proinflammatory
cytokines, as well as a protracted inflammatory response (Sheedy
et al., 2013). Promoters of genes encoding proinflammatory and
proatherogenic cytokines and chemokines, such as IL-6, TNF-α,
type A scavenger receptor (SR-A), and CD36, are more likely to have
the activating histone modification H3K4me3 20. OxLDL training
was fully blocked by pharmacologically inhibiting histone
methyltransferases, demonstrating that epigenetic alterations are
what actually trained immunity by oxLDL (Bekkering et al., 2014).

3.2 Lipoprotein(a)

Lipoprotein(a) is the main circulating carrier of oxidized
phospholipids, which plays an important role in atherogenesis
(Boffa and Koschinsky, 2019). Monocytes from healthy donors
exposed for 24 h to high lipoprotein(a) extracted from
hyperlipidemic patients produced more proinflammatory
cytokines during the subsequent 6 days compared to controls.
Anti-oxidized phospholipid antibodies reduced the training of
monocyte-derived macrophages, demonstrating that oxidized
phospholipids are the mediating factor in this process (van der
Valk et al., 2016). After Pam3Cys and LPS ex vivo stimulation,
monocytes showed an increased ability to generate proinflammatory
cytokines, including IL-6 and TNF-α (van der Valk et al., 2016). A
recent study has shown that individuals with cardiovascular diseases
(CVD) may have their proinflammatory monocyte activation
reversed by significantly reducing their lipoprotein(a) levels,
demonstrating that at least some of this proinflammatory impact
is reversible (Stiekema et al., 2020).

3.3 Hyperglycemia

Hyperglycemia, a cardinal feature of diabetes, exacerbates AS
progression, delays plaque regression (Parathath et al., 2011), and
increases proinflammatory gene expression and resistance to
induction of M2-related gene expression (American Diabetes
Association, 2015). Evidence suggests that hyperglycemia induces
trained immunity in HSCs and macrophages, significantly
exacerbating AS (Edgar et al., 2021). High extracellular glucose
stimulated the production of proinflammatory genes and the
functional properties that are proatherogenic in macrophages
through pathways that depend on glycolysis. These traits were
sustained by diabetic mouse bone marrow-derived macrophages
even when they were cultivated in physiological glucose, showing
hyperglycemia-induced trained immunity. A disease-relevant and
enduring kind of trained innate immunity was demonstrated by an

increase in aortic root AS following bone marrow transplantation
from diabetic mice into (normoglycemic) Ldlr−/− mice. HSCs and
macrophages generated from the bone marrow showed a
proinflammatory priming effect in diabetes, according to
integrated tests for transposase-accessible chromatin, chromatin
immunoprecipitation, and RNA sequencing analysis (Edgar et al.,
2021). Transcription factors, notably runt-related transcription
factor 1 (Runx1), are implicated as mediators of trained
immunity (Himes et al., 2005). These in vitro signs of trained
immunity brought on by hyperglycemia were eliminated by
pharmacological suppression of Runx1.

3.4 Catecholamines

Increased sympathetic nervous system activity leads to
proinflammatory leukocytosis in models of chronic psychological
stress, stroke, and myocardial infarction (Dutta et al., 2012; Heidt
et al., 2014; Courties et al., 2015). The pathways causing
inflammatory alterations in disorders with high catecholamine
levels can be explained by the fact that catecholamines cause
long-lasting proinflammatory modifications in monocytes in vitro
and in vivo, indicating well-trained immunity (van der Heijden et al.,
2020a). After being restimulated with LPS 6 days later, monocyte-
derived macrophages exposed to a relevant quantity of epinephrine/
norepinephrine had higher levels of TNF-α and IL-6. Similar to
oxLDL, this trained immune phenotype is connected to a higher
glycolytic capability and OXPHOS. Studies using pharmacological
inhibition demonstrated that the cAMP-protein kinase A pathway
and the β-adrenergic receptors 1 and 2 are crucial for
catecholamine-induced training (van der Heijden et al., 2020a).
Patients who have pheochromocytoma and are regularly exposed
to brief bursts of catecholamine production have this
proinflammatory monocyte characteristic (Neumann and Young,
2019). Systemic inflammatory symptoms and an increased ex vivo
cytokine response in activated monocytes were present in these
individuals (Neumann and Young, 2019).

3.5 Aldosterone

Human macrophages deriving from monocytes have a long-
lasting proinflammatory phenotype in vitro in response to
transiently elevated aldosterone concentrations, which may be a
factor in the atherosclerotic condition AS chronic inflammation of
the artery wall (van der Heijden et al., 2020d). Aldosterone affects
intracellular metabolism by increasing fatty acid synthesis, but it
does not influence glycolysis and OXPHOS, as found in oxLDL
training (van der Heijden et al., 2020c). Additionally, training by
aldosterone is linked to the enrichment of H3K4me3 at the
promoters of proinflammatory cytokines, including TNF-α and
IL-6, demonstrating that aldosterone trains monocyte-derived
macrophages in vitro. However, circulating monocytes are not
more capable of producing cytokines in individuals with primary
hyperaldosteronism. The macrophages of individuals with primary
hyperaldosteronism only express more TNF-α following ex vivo
differentiation into macrophages in autologous serum (van der
Heijden et al., 2020b). These findings imply that aldosterone
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differs from the trained immune systems that have been well-
established and elaborated by other stimuli.

3.6 Hyperlipidemia

Recent research examined the possibility that a WTD, which is
high in fats, sweets, and salt and lacks fiber, might lead to trained
immunity (Christ et al., 2018). Circulating monocytes and their
myeloid progenitors in AS-prone Ldlr−/− mice were significantly
affected by proinflammatory transcriptional and epigenetic
reprogramming from this WTD over 4 weeks. Increased
inflammatory responses to subsequent innate immunological
stimulation were brought on by the food intervention. Even
when the mice were shifted to a typical chow diet for an
additional 4 weeks, this trained immune phenotype was
maintained despite circulating cholesterol levels and systemic
inflammatory indicators reverting to normal (Christ et al., 2018).

4 Inhibitors of targeting trained
immunity

Pharmacological inhibitors of histone methyltransferases and
inhibitors of glycolysis, glutaminolysis, and the mevalonate pathway
could restrain trained immunity. Following intraperitoneal injection
of β-glucan, the effects of pharmacologically suppressing
glutaminolysis and the pathway that produces mevalonate on the
formation of trained immunity have been established in mouse
models in vivo (Arts et al., 2016a). As a result, it would allow the
development of innovative pharmaceutical methods to lower the
risk of ASCVD and maybe lessen its negative consequences. In this
section, we systematically summarize all reported drugs that
suppress trained immunity based on multiple publications.

4.1 Agents that modulate metabolic
reprogramming

4.1.1 Wortmannin
The fungus metabolite wortmannin was demonstrated to

function as a selective inhibitor of AKT/phosphoinositide 3-
kinase (PI3K) (Ui et al., 1995). The intermediate stimulation of
the Akt/PI3K pathway is what causes mTOR to become active
(Kelley et al., 1999). As stimulation with β-glucan caused a high
phosphorylation of Akt, β-glucan was responsible for inducing this
signal pathway in monocytes. Additionally, mTOR activation was
inhibited as a result of Akt phosphorylation inhibition. Monocyte-
trained immunity by β-glucan was suppressed by the Akt inhibitor
wortmannin in a dose-dependent manner (Cheng et al., 2014).

4.1.2 Rapamycin
Accumulated mevalonate enhances the AKT-mTOR pathway

during the establishment of trained immunity, which then triggers
HIF1-α activation and a switch from OXPHOS to glycolysis. This
response results in circulating monocytes with a trained immunity
phenotype (Bekkering et al., 2018). The inhibition of mTOR with
rapamycin prevents mevalonate-induced trained immunity.

Additionally, BCG-induced trained immunity and β-glucan-
induced trained immunity depend on the development of the
histone marks H3K4me3 and H3K9me3, which are inhibited by
the pharmacological regulation of rate-limiting glycolysis enzymes
with rapamycin 30 88. Although rapamycins potently suppress
trained immunity in vitro and T-cell proliferation in vivo, they
exert little effect on innate immune cells (Braza et al., 2018).

4.1.3 AICAr
One of the most widely utilized pharmacological AMP-activated

protein kinase (AMPK) activity modulators is the nucleoside 5-
aminoimidazole-4-carboxamide (AICAr). Early research on
AMPK’s function in the physiological control of metabolism and
the etiology of cancer was mostly centered on the use of AICAr as an
AMPK activator (Višnjić et al., 2021). AICAr produces dose-
dependent inhibition of β-glucan-induced trained immunity by
indirectly inhibiting mTOR (Cheng et al., 2014).

4.1.4 Metformin
Metformin is extensively used as a first-line therapy for type

2 diabetes and has a high safety profile (McCreight et al., 2016).
Metformin acts through AMPK activation and subsequent mTOR
inhibition. Metformin completely inhibits the protective effects of
mice receiving metformin during and after primary infection with
low-inoculum C. albicans, which increases survival during
disseminated candidiasis brought on by a primary C. albicans
injection. In vitro, metformin suppresses trained immunity
induced by β-glucan (Cheng et al., 2014). Metformin also inhibits
trained immunity by inhibiting the formation of histone marks,
H3K4me3 andH3K9me3, by regulating the rate-limiting enzymes of
glycolysis 30 88.

4.1.5 Ascorbate
Ascorbate (vitamin C) is an essential micronutrient in primates

and serves as an antioxidant and a cofactor for various enzymatic
activities represented by prolyl hydroxylases (Fujii et al., 2022).
Because the induction of glycolysis by mTOR is mediated by the
activation of HIF1-α and stimulation of glycolytic enzymes and
ascorbate inhibits HIF-1α expression, it inhibits training immune in
a dose-dependent manner (Cheng et al., 2014).

4.1.6 ZVAD-fmk
Western diet feeding of Ldlr−/− mice induces systemic

inflammation, which induces long-lasting trained immunity in
myeloid cells (Christ et al., 2018). NLRP3 is a key pathway
mediating Western diet-induced trained immunity, and the use
of small-molecule inhibitors that block NLRP3 signaling can
mitigate its potentially deleterious effects in inflammatory
diseases (Christ et al., 2018). ZVAD-fmk (benzyloxycarbonyl-Val-
Ala-Asp-fluoromethylketone), a pan-caspase inhibitor, inhibits
NLRP3 inflammasome activation in atherosclerotic mice,
reducing the accumulation of serum IL-1β and plaque cholesterol
crystals (Sheedy et al., 2013).

4.1.7 2-DG
A d-glucose mimic, 2-deoxy-d-glucose (2-DG), inhibits

glycolysis by producing and accumulating intracellularly 2-deoxy-
d-glucose-6-phosphate (2-DG6P), which then inhibits the activity of
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hexokinase and glucose-6-phosphate isomerase and results in cell
death (Pajak et al., 2019). BCG immunization causes
immunometabolic activation and epigenetic reprogramming,
whereas 2-DG’s restriction of glycolysis during BCG-induced
training cancels out the enhanced cytokine production (Arts
et al., 2016b). In addition, the inhibitory effect of 2-DG on
glycolysis also inhibits histone methylation and prevents
mevalonate-induced trained immunity (Arts et al., 2016b).

4.1.8 3PO
3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a small-

molecule inhibitor of PFKFB3, inhibits glycolytic flow and is
cytostatic to malignant cells (Clem et al., 2008). In cells trained
with oxLDL, PFKFB3, a critical rate-limiting enzyme in glycolysis, is
increased. The in vitro training protocol’s dose-dependent
attenuation of the oxLDL-augmented production of TNF-α and
IL-6 upon subsequent stimulation with LPS was achieved by co-
incubating 3PO with oxLDL for the first 24 h (Clem et al., 2008).

4.1.9 Fluvastatin
Fluvastatin, the first fully synthetic HMG-CoA reductase

(HMGCR) inhibitor, is reported to prevent the growth and
spread of certain malignancies (Cai and Zhao, 2021).
Fluvastatin prevents trained immunity by downregulating
H3K4me3 and blocking the production of proinflammatory
cytokines (Arts et al., 2016a). Fluvastatin also prevents the
enhanced foam cell production brought on by training with
oxLDL and stops the epigenetic reprogramming of BCG, β-
glucan, and oxLDL-induced trained immunity (Arts et al.,
2016a). Additionally, following OxLDL-induced trained
immunity, scavenger receptor CD36 and SR-A mRNA
expression increase, whereas cholesterol efflux transporter
ATP binding cassette transporter A1 (ABCA1) and ATP
binding cassette transporter G1 (ABCG1) decrease. These
effects may be reversed by adding fluvastatin (Bekkering et al.,
2018).

4.1.10 Cerulenin
Cerulenin is a potent and specific inhibitor of type II FAS found

in various bacteria and mammalian tissues (Tomoda et al., 1984). It
is an antifungal antibiotic discovered in a culture filtrate of
Cephalosporium caerulens (Porrini et al., 2014). Aldosterone
levels above normal are linked to a higher risk of CVD in people
and the induction of trained immunity in primary human
monocytes (van der Heijden et al., 2019). Aldosterone’s trained
immunity was reduced when cells were pre-incubated with the fatty
acid synthesis inhibitor cerulenin for 1 h before re-stimulating with
P3C (van der Heijden et al., 2019).

4.2 Agents that modulate epigenetic
reprogramming

4.2.1 Ro5-3335
Extracellular glucose promotes macrophage-trained immunity

and induces a pro-atherogenic phenotype through a glycolysis-
dependent pathway. Runx1, which mediates trained immunity
produced by hyperglycemia, is implicated by the pattern of open

chromatin (Edgar et al., 2021). A benzodiazepine identified from the
screen, Ro5-3335, has a direct interaction with Runx1 (Cunningham
et al., 2012). In vitro hyperglycemia-induced trained immunity was
reversed by pharmacological suppression of Runx1 with Ro5-3335 4.

4.2.2 MTA
The histone methyltransferase inhibitor 5′-deoxy-5′-

methylthioadenosine (MTA) is a non-selective methyltransferase
inhibitor. OxLDL causes monocytes to develop a proinflammatory
phenotype that persists over time and speeds up AS. MTA
completely reverses the methylation of histones, which is
required for the change in chromatin architecture that results in
increased gene transcription, and thus completely reverses the
trained immunity phenotype induced by oxLDL (Bekkering et al.,
2014).

4.2.3 Resveratrol
Sirtuin 1 is a nicotinamide adenine dinucleotide (NAD+)-

dependent protein deacetylase and master metabolic regulator
(Deng et al., 2019). Phytochemical resveratrol, which is abundant
in the skin of red grapes and wine, has been studied extensively
for its ability to stimulate Sirtuin 1 activity (Lee et al., 2019).
Given that histone acetylation is necessary for β-glucan-induced
trained immunity, trained immunity in the presence of the
histone deacetylase activator resveratrol prevented trained
SHIP-1-deficient macrophages from producing more TNF-α
(Saz-Leal et al., 2018).

4.2.4 EGCG
The compound epigallocatechin-3-gallate (EGCG) has been

discovered to be a new histone acetyltransferase inhibitor
(HATi) with broad specificity for the majority of HAT
enzymes (Choi et al., 2009). EGCG can also inhibit trained
immunity that relies on β-glucan-induced epigenetic
reprogramming (Ifrim et al., 2014).

5 Antiatherosclerotic herbal medicine
potentially targeting trained immunity

The notion that trained monocytes/macrophages exhibit a
broad range of pro-atherogenic phenotypes, including increased
production of cytokines/chemokines and foam cells, has recently
been extensively supported experimentally (Leentjens et al.,
2018). Trained immunity occurs not only in circulating
monocytes but also in myeloid progenitors, ensuring a long-
term state of hyperactivation of innate immune cells. Trained
immunity is mediated by metabolic and epigenetic
reprogramming at the level of histone methylation.
Theoretically, these processes are amenable to pharmacological
intervention. In the past few decades, more studies have shown
that various naturally occurring anti-atherogenic natural
products, such as flavonoids, phenols, terpenoids, carotenoids,
phenylpropanoids, and alkaloids, may be involved in the
regulation of pharmacological targets of trained immunity
(Supplementary Table S2). We systematically summarize all
relevant literature to investigate all potential natural products
against trained immunity in ASCVD.
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5.1 Flavonoids

Flavonoids are a group of secondary plant metabolites often
employed by vegetables for growth andmicrobial defense (Izzo et al.,
2020). Flavonoids can be further classified as flavones, flavonols,
flavanones, isoflavonoids, anthocyanins, flavanols, or catechins
based on structural distinctions (Kumar and Pandey, 2013). Due
to their antioxidant, anti-inflammatory, anti-mutagenic, anti-aging,
cardioprotective, antiviral/bacterial, and anticarcinogenic qualities
and their ability to influence enzyme performance, they are linked to
a variety of positive health impacts. Flavonoids are thought to
mediate epigenetic changes, including DNA methylation, histone
modifications, and non-coding RNAs (Fatima et al., 2021). We
examine some significant natural products that may target
monocyte/macrophage and trained immunity in AS in this section.

5.1.1 Alpinetin
Alpinetin (7-hydroxy-5-methoxyflavanone), a flavonoid, is the

main active component of Alpinia katsumadai Hayata, a traditional
medicinal plant. It engages in various biological processes that affect
the NF-κB, MAPK, and PI3K signaling pathways, such as
antibacterial, anti-ROS, anticancer, and anti-inflammatory actions
(Huo et al., 2012;Wu et al., 2020a; Zhang et al., 2020). The inhibition
of the NLRP3 inflammasome may be one way of suppressing trained
immunity (Christ et al., 2018). Mechanistically, alpinetin inhibits
NLRP3-mediated anti-inflammatory activity and reduces
mitochondrial ROS production and HIF-1α transcription, thereby
inhibiting HIF-1α signaling (Zhang et al., 2020; Zhu et al., 2021).
The expression of the toll-like receptor 4 (TLR4) stimulated by LPS
may be dramatically downregulated by alpinetin; alpinetin was
reported to have had an anti-inflammatory impact by preventing
the production of TNF-α, IL-6, and IL-1β in LPS-stimulated human
macrophages (Hu et al., 2013).

5.1.2 Anthocyanins
Anthocyanins are water-soluble glycosides of polyhydroxyl and

polymethoxyl derivatives of 2-phenylbenzopyrylium or flavylium
salts and are partially responsible for the pigmentation of berries
(Azzini et al., 2017). The major anthocyanins in plant foods are
glycoside forms of anthocyanidins, including pelargonidin,
cyanidin, delphinidin, peonidin, petunidin, and malvidin (Khoo
et al., 2017). The bioavailability of anthocyanins is higher than
previously thought because the parent compounds are immediately
absorbed and converted to bioactive metabolites that remain in
circulation (Scalbert et al., 2005; Czank et al., 2013). Anthocyanins
increase total antioxidant capacity, antioxidant defense enzymes,
and high-density lipoprotein (HDL) antioxidant properties in
preclinical and clinical populations through multiple measures,
thereby reducing CVD risk factors and mortality in patients with
coronary heart disease (Garcia and Blesso, 2021). An essential
mediator of trained immunity, the NLRP3-caspase-
1 inflammasome, is directly activated upstream by ROS, which is
an important mediator of trained immunity (Sun et al., 2020).
Preclinical research suggests that anthocyanidins regulate cellular
cholesterol efflux from macrophages, hepatic paraoxonase
1 expression, and activity to affect reverse cholesterol transport
(RCT) and HDL function beyond simple HDL cholesterol content
(Millar et al., 2017). In human populations (such as those who are

hyperlipidemic, hypertensive, or diabetic), dietary anthocyanin
intake is linked to positive changes in serum biomarkers related
to HDL function. These changes include an increase in HDL
cholesterol concentration and HDL antioxidant and cholesterol
efflux capacities (Millar et al., 2017).

The powdered wild blueberry (Vaccinium angustifolium)
component high in anthocyanins also reduced lipid buildup
in macrophages generated from THP-1 (Del Bo et al., 2016).
In accordance with additional studies, the black rice
anthocyanin-rich extract blocked the generation of oxLDL
and decreased total cholesterol (TC) and LDL-cholesterol
(LDL-C) while boosting the amount of HDL-cholesterol
(HDL-C) in serum from rats and ApoE−/− mice. In order to
lower the risk of an embolism, it also decreased the area of
atherosclerotic plaque and improved the stability of the plaque
(Xia et al., 2006). In hypercholesterolemic rabbits, fatty streak
development and lipid metabolism were slightly influenced by
pomegranate peel extract containing anthocyanins (Sharifiyan
et al., 2016). This evidence suggests that the potential of
anthocyanins to regulate inflammation, lipid buildup, and
macrophage may play a role in how an anthocyanin-rich diet
lowers the risk of developing CVD.

5.1.2.1 Cyanidin-3-O-β-glucoside
Cyanidin-3-O-glucoside (C3G) is the anthocyanin with the

greatest abundance. C3G is abundantly found in fresh fruits,
including grapes, berries, blood oranges, peaches, and apples,
and in beverages and colored cereals, such as purple rice and
maize (Fang, 2015). One investigation found that methylated
proteins, particularly H3K4, lose mono- or dimethyl groups
when exposed to C3G or its metabolites, which block the
enzyme lysine-specific demethylase 1, which controls histone
methylation (Abdulla et al., 2013), thereby directly affecting
histone-modifying enzymes (Persico et al., 2021). The results
reported here show how dietary C3G intake may effectively
control H3K4me3 in the mouse liver, especially in promoter
areas (Persico et al., 2021). Recent research in a rat model of
high-fat diet (HFD)-induced AS examined the
antiatherosclerotic potential of C3G. The findings
demonstrated that adding 150 mg/kg of C3G to the diet
significantly reduced body weight, visceral adiposity, TG, TC,
free fatty acids, and AS index (Um et al., 2013). C3G protected
ApoE−/− mice against endothelial dysfunction and AS brought
on by hypercholesterolemia by preventing the buildup of
cholesterol and 7-oxysterol in the aorta (Wang et al., 2012).

5.1.3 Baicalin
Baicalin is a flavonoid active ingredient extracted from the roots

of Scutellaria baicalensis Georgi, a plant used for many years in
Chinese traditional medicine to treat various inflammatory illnesses
(Liu and Liu, 2017; Riham et al., 2019). One study showed that
baicalin could control metabolic diseases in vivo. The therapy with
baicalin in HFD rats markedly improved fasting blood glucose levels
(Guo et al., 2009). Furthermore, baicalin is reported to inactivate
succinate dehydrogenase (SDH) to inhibit ROS production and
protect glutamine synthetase (GS) protein stability from oxidative
stress to improve glutamate handling and reduce excitotoxicity
(Song et al., 2020a).
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5.1.4 Chrysin
Chrysin (5,7-dihydroxyflavone) is a flavonoid that naturally

occurs in food and is frequently found in honey and propolis,
among other plant extracts (Song et al., 2020b). Chrysin
possesses various biological qualities, including anti-
inflammatory, anti-bacterial, antidiabetic, anticancer, antioxidant,
and anti-allergenic actions (Kasala et al., 2015; Mani and Natesan,
2018). One study showed that chrysin has a good expansion effect on
human HSCs due to its antioxidant properties by delaying HSC
differentiation, inhibiting ROS-activated apoptosis, and regulating
cyclin-dependent kinase inhibitors, which can maintain the self-
renewal and multilineage differentiation potential of human HSCs
(Litviňuková et al., 2020). Chrysin is an emerging histone
deacetylase inhibitor for epigenetic regulation in cancer studies
(Ganai et al., 2021).

Chrysin may reduce inflammation by modulating M1/
M2 status. It promotes the anti-inflammatory M2 phenotype and
suppresses the M1 phenotype in peritoneal and cultured
macrophages in vitro by activating PPAR-γ (Feng et al., 2014).
One study showed that chrysin inhibited NLRP3 inflammasome
activation and increased IL-1β levels to reduce synovitis (Liao et al.,
2020). Another study showed that chrysin inhibits ROS-mediated
Akt/mTOR signaling in cells and induces autophagy (He et al.,
2021). The study showed that the overexpression of PPARγ, liver X
receptor (LXR)α, ABCA1, and ABCG1 expression led to a
considerable increase in HDL-mediated RAW264.7 macrophage
cholesterol efflux following chrysin treatment (Lin et al., 2015b).

5.1.5 Daidzein
Daidzein, a substance mostly present in soy foods and plants

such as red clover, is one of the most studied and potent
phytoestrogens (Yang et al., 2012). Studies in non-human
primates have shown that dietary intake of soy protein can
interfere with related epigenetic changes that may influence the
etiology of complex diseases (Howard et al., 2011). By stimulating
the PPARγ-LXRα-ABCA1 pathway, daidzein protected low-density
lipoprotein (LDL) from oxidation and increased paraoxonase-1
(PON-1) activity in Huh7 cells, which may control cholesterol
efflux (Schrader et al., 2012; Ikhlef et al., 2016). Furthermore,
daidzein therapy decreased blood cholesterol and increased TG
levels in middle-aged male rats given HFD designed to induce
AS (Sosić-Jurjević et al., 2007). These suggest that daidzein has
antiatherosclerotic potential.

5.1.6 Ellagic acid
Ellagic acid (EA) is a dilactone of hexahydroxydiphenic acid that

may be found in various nuts, fruits, and vegetables, such as
pomegranates, walnuts, black raspberries, raspberries, almonds,
and strawberries (Galano et al., 2014). According to in vitro, in
vivo, and clinical investigations, it has a wide range of physiological
actions, including anti-inflammatory, antioxidant, antibacterial,
anticarcinogenic, antiplasmodial, antiviral, hepatoprotective,
antifibrotic, immunomodulatory, and neuroprotective activities
(Gupta et al., 2021). A study showed that EA promotes
hematopoietic progenitor cell proliferation and megakaryocyte
differentiation (Gao et al., 2014). Other studies have shown that
EA interrupts the sequential histone remodeling steps of adipocyte
differentiation by reducing the coactivator-associated arginine

methyltransferase 1 (CARM1) activity, including histone
acetylation and dissociation of HDAC9 from chromatin (Kang
et al., 2014). Pomegranate peel polyphenols, in particular
pomegranate ellagic acid (PEA), also boosted ApoA1-mediated
macrophage cholesterol efflux by upregulating ABCA1 and LXRα
and inhibited macrophage lipid buildup by lowering the expression
of CD36 (Zhao et al., 2016).

5.1.7 EGCG
EGCG, a typical polyphenol flavonoid molecule with eight

free hydroxyl groups, is the most common (Chakrawarti et al.,
2016). Research has revealed that EGCG has antibacterial,
antiviral, antioxidant, anti-arteriosclerosis, anti-thrombosis,
anti-vascular proliferation, anti-inflammatory, and anti-tumor
activities (Liu and Yan, 2019). As a histone acetyltransferase
inhibitor, EGCG can significantly inhibit the training of
monocytes (Ifrim et al., 2014). In different research, EGCG-
loaded nanoparticles targeted macrophages via their
CD36 receptor, reduced the release of inflammatory factors by
mouse peritoneal macrophages, and reduced the lesion surface
area of arterial plaques in LDLr−/− mice (Zhang et al., 2019).
EGCG also inhibited the oxLDL-induced overexpression of SR-A
in the same cell line, reducing oxLDL absorption and the
formation of foam cells (Chen et al., 2017). EGCG regulated
macrophage polarization toward the M2 state. EGCG decreased
the expression of proinflammatory M1 mediators, iNOS, TNF-α,
IL-1β, and IL-6, in the LPS-administered lung microenvironment
and increased the expression of KLF4, Arg1, and ym1, which
enhanced the M2 phenotype of macrophages (Almatroodi et al.,
2020).

5.1.8 Hesperidin
Hesperidin (3′,5,7,-trihydroxy-4′-methoxyflavanone), a

flavanone family of flavonoids, is a derivative of hesperetin,
which is present in citrus fruits, such as oranges and
grapefruit (Muhammad et al., 2019). Hesperidin has several
pharmacological effects, with the main ones being the
stimulation of antioxidation, the inhibition of the generation
of proinflammatory cytokines, and the inhibition of the
proliferation of cancer cells (Li and Schluesener, 2017). A
study using metabolic tracing studies showed that TLR
signaling in mouse and human macrophages redirects
metabolic flux to increase acetyl-CoA for glucose production,
thereby enhancing histone acetylation (Christ and Latz, 2019).
According to a preclinical study, hesperetin provided
neuroprotection by controlling the TLR4/NF-κB signaling
pathway in response to the harmful effects of LPS
(Muhammad et al., 2019). Hesperetin decreased the generation
of foam cells produced from THP-1 by promoting
ABCA1 expression by boosting the activities of the
ABCA1 promoter and LXR enhancer, upregulating the
ApoA1-mediated cholesterol efflux (Iio et al., 2012).

5.1.9 Icariin
Icariin, one of the primary ingredients in epimedium, is an 8-

isopentane flavonoside that has several pharmacological benefits,
including enhancement of cardiovascular function, promotion of
hematological function, prevention of neuronal damage, and
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anti-osteoporosis properties (El-Shitany and Eid, 2019). Icariin
decreased RAW264.7 macrophage infiltration at atherosclerotic
lesions by reducing the CX3CR1–CX3CL1 interaction, which is
directly related to monocyte adhesion and migration (Wang
et al., 2016a).

5.1.10 Pratensein
Pratensein is a compound extracted from Radix Polygala roots.

It has anti-inflammatory, anti-apoptotic, and antioxidant effects
(Liu et al., 2016b). Pratensein increases the expression of the
ABCA1 protein and HDL levels in HepG2 cells (Gao et al.,
2008). AS is brought on by passive LDL transport across
damaged endothelial cells. Recent research has revealed a novel
therapeutic target in the fight against AS: scavenger receptor class B
type I (SR-BI)-mediated endothelial LDL transcytosis. This process
increases LDL entry into the arterial wall and the development of AS
(Huang et al., 2019). Further investigation found that pratensein
increased the expression of CLA-1, a human homolog of SR-BI,
indicating that it may have some bearing on the in vitro process of
cholesterol efflux (Yang et al., 2009).

5.1.11 Puerarin
Puerarin, an isoflavone component extracted from the herb

Radix Puerariae, is often employed in China to treat
inflammatory and immunological disorders (Yang et al., 2021).
Its powerful pharmacological effects are a result of the
compounds’ many bioactivities. Puerarin’s anti-inflammatory
processes, which include the control of important signals,
including TLR, Nrf2, HDAC, and PPARα, and the
enhancement of organelle function (Ni et al., 2020; Niu et al.,
2020; Chen et al., 2021), have been thoroughly investigated in
recent years (Chang et al., 2021). An earlier study investigated the
epigenetic mechanism through which puerarin suppresses MCP-
1 production using high-glucose circumstances. It was shown
that puerarin dramatically reduced high glucose’s ability to
upregulate H3K4 di- and tri-methylation (H3K4me2/3) on the
MCP-1 gene promoter, suggesting that it may be useful in
treating diabetes-related vascular damage (Han et al., 2015).
Puerarin promoted ABCA1-mediated cholesterol efflux via
pathways involving miRNA-7, serine/threonine kinase 11
(STK11), and the AMPK-PPARγ-LXRα-ABCA1 cascade,
therefore reducing cellular lipid buildup in THP-1
macrophages (Li et al., 2017a).

5.1.12 Quercetin
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is one of the most

prevalent plant flavonoids and a key dietary antioxidant in the
human diet (Boots et al., 2008). It can be found in various
traditional Chinese herbal medicines, tea, fruit, and other vegetables
and has also been proven effective in clinical studies (Ferry et al., 1996).
The antioxidant, anti-inflammatory, antiviral, anticancer, and
antifibrotic effects of quercetin should be preserved (Russo et al.,
2012). Moreover, quercetin stimulates autophagy in the
hematopoietic stem/progenitor cell compartment of myelodysplastic
bone marrow (Daw and Law, 2021). Qu also promotes apoptosis
through DNA demethylation activity, HDAC inhibition, and
enrichment of H3ac and H4ac in the promoter regions of genes that
enhance apoptotic pathways (Alvarez et al., 2018).

In vitro studies have shown that quercetin can inhibit two stages
of macrophage differentiation and polarization: macrophage
infiltration (from monocytes to macrophages) and macrophage
subtype conversion (from M2 to M1 subtypes). Quercetin
downregulated the expression of M1 macrophage markers and
proinflammatory cytokines and upregulated the expression of
M2 macrophage markers and anti-inflammatory cytokines in
BMDM under both basal and LPS-stimulated conditions (Dong
et al., 2014b). Jia et al. (2019) demonstrated that in apoE−/− mice fed
with HFD, quercetin protects against AS by regulating the
expression of proprotein convertase subtilisin/kexin type 9
(PCSK9), CD36, PPARγ, LXRα, and ABCA1. In THP-1-derived
foam cells, quercetin increased ApoA1-mediated cholesterol efflux
and promoted ABCA1 and PPARγ expression by activating PPARγ
signaling (Sun et al., 2015). Quercetin has also been linked to
reduced AS in ApoE−/− mice by enhancing RCT, which depends
on ABCA1 and ABCG1 (Cui et al., 2017).

5.1.13 Silymarin
Silymarin is extracted from the seeds of Silybum marianum L.

Gaertn. (also known as milk thistle). Silymarin is a blend of
flavonoids, primarily silybin, silydianin, silychristin, and other
active components (Rašković et al., 2011). In addition to
protecting the liver and lowering enzymes and lipids, this
combination has antioxidant, anti-inflammatory, and anticancer
properties (Zhao et al., 2021). Studies have shown that silibinin
may interfere with epigenetic cellular mechanisms, including
increasing the total DNMT activity, while reducing histone
deacetylase (HDAC) expression levels (Anestopoulos et al., 2016).
The silymarin compounds, isosilybin A, isosilybin B, silychristin,
and isosilychristin, increased ABCA1 protein expression in THP-1
cells. Due to its PPARγ activating qualities, isosilybin A, in
particular, enhanced cholesterol efflux from THP-1 macrophages
(Wang et al., 2015b).

5.2 Phenols

Phenolic chemicals are found all over the plant world and have
more than 8,000 distinct known structures. Phenols can be classified
as monophenols, binary phenols, or polyphenols, depending on the
number of phenolic hydroxyl groups in the chemical structure (Xiao
et al., 2012). Through various mechanisms, phenolic compounds
have various pharmacological and biological actions. These activities
include the control of various cell signaling pathways, gene
expression, and antioxidation.

5.2.1 Curcumin
Curcumin ((1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-

heptadiene-3,5-dione) is a polyphenolic derivative produced from
turmeric (Curcuma longa) (Wu et al., 2020b). Curcumin can control
inflammation in in vitro and in vivo studies. This property makes
curcumin an effective treatment for various inflammatory disorders,
including obesity, diabetes, CVD, bronchial asthma, and
rheumatoid arthritis (Chen et al., 2019a). Studies have
demonstrated a direct inhibitory effect of curcumin on
NLRP3 inflammasome activation in macrophages, which can
prevent HFD-induced insulin resistance and inhibit LPS-priming
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and NLRP3 inflammasome activation pathways in macrophages
(Yin et al., 2018). Curcumin may also act as an epigenetic regulator,
including the inhibition of DNMTs, regulation of histone
modifications via the regulation of histone acetyltransferases
(HATs) and HDACs, regulation of miRNA, action as a DNA-
binding agent, and interaction with transcription factors (Hassan
et al., 2019). Additionally, c-Jun N-terminal kinases (JNK), histone
methyltransferase p300, and transcriptional factor activating
protein-1 (AP-1) were all inhibited by curcumin (Huwait et al.,
2011).

In terms of regulating M1/M2 macrophages, curcumin can
enhance the secretion of M2 macrophage markers, such as
macrophage mannose receptor (MMR), Arg-1, PPAR-γ, IL-4,
and/or IL-13. These effects have been observed in experimental
autoimmune myocarditis (EAM) models and hyaline membrane
disease, where curcumin polarizes M0 and M1macrophages to an
M2 phenotype (Saqib et al., 2018). A previous study indicated
that without having a sizable impact on other cholesterol
transporters, curcumin dramatically reduced the oxLDL-
induced lipid buildup in J774.A1 macrophages by reducing the
SR-A-dependent oxLDL uptake and enhancing the ABCA1-
dependent cholesterol efflux (Zhao et al., 2012). The evidence
suggests that curcumin inhibits the production of SR-A through a
ubiquitin/proteasome mechanism. Additionally, through LXRα-
dependent transcriptional regulation, curcumin increased
ABCA1 expression (Zhao et al., 2012).

5.2.2 Paeonol
Paeonol is an active component of the Chinese herbal

remedy Moutan Cortex (Pae, 2-hydroxy-4-
methoxyacetophenone), which is obtained from the root bark
(Chen et al., 2019b). Pae has several physiologic benefits,
including anti-inflammatory and antioxidant properties (Mei
et al., 2019). LncRNAs are RNA molecules longer than
200 nucleotides interacting with target genes at the
transcriptional level. They function as competing endogenous
RNA (ceRNA) sponges to control mRNA expression and
promote cisplatin-induced nephrotoxicity by regulating AKT/
TSC/mTOR-mediated autophagy (Jing et al., 2021). Pae can
inhibit the expression of lnc-MEG3 to alleviate renal injury in
mice (Jing et al., 2021).

In ApoE−/− mice, Pae therapy decreased the development of
atherosclerotic lesions, slowed systemic inflammation, and
enhanced ABCA1 expression (Zhao et al., 2013b).

5.2.3 Polydatin
The main active ingredient of Polygonum cuspidatum Sieb. et

Zucc. (Polygonaceae), a plant widely used in traditional medicine
worldwide, particularly in China and Japan, is polydatin (Du et al.,
2013). Polydatin clearly possesses hypoglycemic, antiatherosclerotic,
hypolipidemic, hypouricemic, and anti-inflammatory effects,
according to the findings of the literature review (Luo et al.,
2022). In oxLDL-stimulated ApoE−/− mouse macrophages, a
48 h polydatin therapy decreased TC, FC, and CE levels and
TNF-α and IL-1β production. The mechanism generating these
effects is linked to the stimulation of PPARγ-dependent
ABCA1 overexpression and the decrease in CD36 expression
(Wu et al., 2015a).

5.2.4 Protocatechuic acid
In vegetables, fruits, and rice, protocatechuic acid (PCA, 3,4-

dihydroxybenzoic acid) has been demonstrated to enhance
vasodilation in apolipoprotein E-deficient rats with AS via the
eNOS-mediated endothelium-dependent pathway (Bai et al.,
2021). PCA may also control lipid metabolism by inhibiting the
expression of HMG-CoA reductase (Liu et al., 2010). PCA also
prevent ED intercellular adhesion molecule 1 (ICAM-1) and
vascular cell adhesion molecule 1 (VCAM-1)-dependent
monocyte adherence to activated HUVECs as well as CCL2-
mediated monocyte transmigration, inhibiting the effects of
cholesterol metabolism in addition to decreasing the progression
of AS in ApoE−/− mice (Wang et al., 2010b; Stumpf et al., 2013).

5.2.5 Resveratrol
Resveratrol (RV), the most studied stilbene structure, is present

in typical food sources such as grapes, berries, peanuts, and red wine,
and, in some herbs, it is regarded as a strong antioxidant, among
other properties (Sarubbo et al., 2017). In fact, research has
identified several RV advantageous properties, making it possible
for it to play crucial roles in the treatment of diseases including
cancer, CVD, and AD, as well as other degenerative brain illnesses
(Choi et al., 2012). Recent evidence suggests that the beneficial
effects of RV may be related to altered epigenetic mechanisms. After
being taken orally, RV can cause several chemical modifications,
including oxidation, dehydroxylation, and demethylation, which
can either directly inhibit the activity of epigenetic enzymes such
as DNMTs, HDACs, or HATs or change the amount of substrate
that is available for those enzymatic reactions (Griñán-Ferré et al.,
2021). Since β-glucan-induced trained immunity depends on
histone acetylation, under the action of the histone deacetylase
activator RV (a sirtuin 1 activator), trained immunity is
significantly inhibited and partially suppressed enhancement of
IL-6 production (Cheng et al., 2014).

Regarding the effect on macrophages, RV can reverse the
oxysterol-induced M2/M1 phenotypic switch (Buttari et al.,
2014). RV regulates microglial M1/M2 polarization through
PGC-1α under neuroinflammatory injury. Similar studies have
shown that malibatol A (MA), an oligomer of RV, inhibits the
expression of proinflammatory cytokines and M1 markers (CD16,
CD32, and CD86) while increasing M2 in LPS-stimulated microglia
markers (CD206 and YM-1) (Pan et al., 2015). RV has the
atherosclerotic protective mechanism by regulating monocyte/
macrophage differentiation, among other mechanisms, including
inhibition of LDL oxidation, enhanced endothelial protection,
reduction of trimethylamine N-oxide (TMAO) by gut flora, and
inhibition of vascular smooth muscle cell (VSMC) proliferation and
migration (Vasamsetti et al., 2016). RV suppressed LPS-induced
RAW264.7 foam cell development by lowering ROS production and
MCP1 expression through the Akt/Foxo3a and AMPK/
Sirt1 pathways, which rely on NADPH oxidase 1 (Nox1) (Park
et al., 2009; Dong et al., 2014a). According to clinical research, RV
decreases the amount of TC and TG in individuals with dyslipidemia
(Simental-Mendía and Guerrero-Romero, 2019).

5.2.6 Salicylic acid
Radix Salvia miltiorrhiza (Danshen), which produces salvianolic

acid B (SalB), has several medicinal actions, including antioxidant,
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anticancer, anti-inflammatory, and antiatherosclerotic qualities
(Tang et al., 2022). Research showed that SalB induced the
production of ABCA1 in differentiated THP-1 macrophages,
which helped the HDL and ApoA-1-mediated cholesterol export.
Additional mechanism experiments revealed that PPARγ and LXRα
inhibitors might decrease the overexpression of ABCA1 triggered by
SalB, which suggested that SalB promoted cholesterol efflux through
a PPARγ/LXRα/ABCA1-dependent mechanism in THP-1
macrophages to minimize lipid buildup (Yue et al., 2015).
Salvianolic acid B was discovered using a high-throughput
screening experiment to be a powerful CD36 antagonist that
prevents oxLDL absorption in RAW264.7 macrophages (Wang
et al., 2010c).

5.3 Terpenoids

Terpenoids, also known as isoprenoids, are isoprene-based
natural compounds having critical functions in every organism’s
metabolism (Bergman et al., 2019). The terpenoid family of natural
compounds, which includes several plant terpenoids, has been a
valuable source of medicinal discoveries.

5.3.1 Betulinic acid
Betulinic acid (BA), a natural pentacyclic triterpenoid, is an

active compound in the bark of the birch tree Betula
spp. (Betulaceae). BA has many biological effects, including anti-
inflammatory, antiviral, antioxidant, and anticancer properties
(Appiah et al., 2018). Research found that betulinic acid reduced
atherosclerotic lesions, TG, TC, and LDL-C levels in ApoE−/− mice
by blocking the NF-κB signaling pathway and miR-33 expression
(Zhao et al., 2013c). In RAW264.7 and THP-1 cells, betulin (a
derivative of betulinic acid) consistently improved ABCA1/ABCG1-
mediated cholesterol efflux by preventing the synthesis of SREBPs,
which bound to E-box motifs in the ABCA1 promoter (Gui et al.,
2016).

5.3.2 Ginsenosides
The main active compounds in ginseng are called ginsenosides,

which are triterpene glycosides of the dammarane type (Nah et al.,
2007). Ginsenosides are expressed by the formula Rx, where x
represents the separation from the thin-layer chromatography
origin (Kim et al., 2017). The segments are labeled A for the
most polar and H for the least polar (Kim et al., 2017).
Protopanaxadiols, protopanaxatriols, and oleanane are the three
main families of ginsenosides (ginsenoside Ro). Ginsenosides Rb1,
Rb2, Rb3, Rc, Rd, Rg3, and Rh3 are examples of protopanaxadiols,
which include sugar moieties on the C-3 position of dammarane-
type triterpenes. Ginsenosides Re, Rf, Rg1, Rg2, and Rh1 are
examples of the sugar moieties on the C-6 position dammarane-
type triterpenes that make up protopanaxatriol (Lü et al., 2009; Kim
et al., 2018). Ginseng is a well-liked supplement due to its wide range
of pharmacological and therapeutic effects on aging, cancer, the
cardiovascular system, diabetes, immune-regulatory function, and
inflammation (Im, 2020). Ginsenoside Rg1 exerts positive effects on
mesenchymal stem cells (MSCs). Ginsenoside Rg1 can influence
HSC proliferation and migration, control HSCs/hematopoietic
progenitor cell (HPC) differentiation, and slow down HSC aging.

These findings may offer new approaches for increasing the homing
rate of HSCs during HSC transplantation and for the treatment of
graft-versus-host disease (GVHD) and other diseases caused by
HSCs/HPC dysplasia (He and Yao, 2021).

Regarding the effect on macrophage polarization, ginsenoside
Rg3 showed a positive effect on M2 polarization. After treatment
with LPS, isolated mouse peritoneal macrophages significantly
expressed several M1 marker genes, such as COX-2
(cyclooxygenase), iNOS, IL-1β, and TNFα. Pretreatment with
Rg3 successfully restored a representative M2 marker (arginase-
1), which was reduced after treatment with LPS (Koh et al., 2018).
Ginsenoside Rg3 significantly reduced ox-LDL-induced
atherosclerotic pathological changes in ApoE−/− mice fed with
HFD, upregulated PPARγ, and inhibited the activation of focal
adhesion kinase (FAK) in the aorta, thus inhibiting the expression of
VCAM-1 and ICAM-1 in the intima (Geng et al., 2020). Another
crucial component of ginseng is ginsenoside Rd. Data from a
RAW264.7 cell model showed that Rd inhibited the expression of
the SR-A protein, followed by a decrease in the uptake of oxLDL and
in the amount of cholesterol inside the cell (Li et al., 2011). An in
vivo investigation revealed that Rd administration decreased the
atherosclerotic plaque areas and oxLDL absorption in ApoE−/−mice.

5.3.3 Tanshinone IIA
Extracted from Salvia miltiorrhiza Bunge, tanshinone IIA (Tan

IIA) is a significant lipophilic diterpene (Ono, 2018). Tan IIA can
prevent or decrease the advancement of several illnesses, including
cardiovascular diseases, cancers, cerebrovascular diseases, and
Alzheimer’s disease, according to several experimental and
clinical studies (Ding et al., 2020). One study demonstrated that
TIIA treatment attenuated high glucose-induced kidney damage by
modulating the DNA methylation of related genes Nmu, Fgl2, Glo,
and Kcnip2 (Li et al., 2019). Tanshinone IIA consistently boosted
ERK/Nrf2/HO-1 loop-mediated ABCA1- and ABCG1-mediated
cholesterol efflux and decreased SR-A-mediated oxLDL
absorption by inhibiting AP-1, which reduced cholesterol buildup
in cells (Liu et al., 2014a). Another investigation using peritoneal
macrophages from rats and macrophages generated from THP-1
revealed that tanshinone IIA treatment greatly raised
ABCA1 mRNA and protein expression while considerably
reducing CD36, suggesting simultaneous effects on cholesterol
intake and efflux (Jia et al., 2016). In addition, a clinical trial has
demonstrated that tanshinone IIA lowers hs-CRP in CAD patients
(Li et al., 2017c).

5.3.4 Ursolic acid
Ursolic acid (3B-hydroxy-12-urc-12-en-28-oic acid) is a

pentacyclic triterpenoid produced from plants that have
antioxidant, anti-inflammatory, and neuroprotective properties
(Rong et al., 2022). A study on skin cancer reported that ursolic
acid therapy reduces hypermethylated CpG islands of the Nrf2 gene
promoter region in mouse epidermal cells, restoring
Nrf2 expression, accomplished by lowering the production of
epigenetic-modifying enzymes such as DNA methyltransferases
(Kim et al., 2016). A recent study found that ursolic acid
improved the transport of cholesterol from LDL-loaded
macrophages to ApoA-1 through autophagy without changing
the levels of ABCA1 and ABCG1 mRNA or protein in MPMs
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(Leng et al., 2016). In vivo, UA therapy dramatically decreased the
size of the atherosclerotic lesion and increased macrophage
autophagy in LDLR−/− mice (Leng et al., 2016).

5.3.5 Zerumbone
A naturally occurring substance called zerumbone is derived

from pinecone or shampoo ginger, Zingiber zerumbet L. Smith, and
contains several pharmacological properties, including antiulcer,
antioxidant, anticancer, and antibacterial (Rosa et al., 2019).
Earlier research found that zerumbone significantly reduced the
inflammatory response caused by LPS in in vitro and ex vivo trials
using the macrophages employed in this investigation by inhibiting
the activation of the ERK-MAPK andNF-κB signaling pathways and
the NLRP3 inflammasome (Su et al., 2021). Studies in a rabbit model
fed cholesterol show that zerumbone can stop the development of
atherosclerotic lesions (Hemn et al., 2015). Zerumbone reduced the
expression of SR-A and CD36 mRNA in vitro studies by controlling
AP-1 and NF-κB suppression, which blocked the absorption of
acLDL by THP-1 macrophages (Eguchi et al., 2007). Additionally,
zerumbone treatment of THP-1 macrophages resulted in a
considerable decrease in cholesterol levels through increasing the
mRNA and protein levels of ABCA1, but not ABCG1, and ERK1/
2 phosphorylation (Zhu and Liu, 2015).

5.4 Carotenoids

Carotenoids represent a class of pigmented terpenoids. The
human diet contains around 50 of more than 700 carotenoids
identified in nature, with about half present in human blood and
tissues (Krinsky and Johnson, 2005). Lycopene, lutein, zeaxanthin,
β-cryptoxanthin, α-carotene, and β-carotene are the main
carotenoids in human serum (Krinsky and Johnson, 2005).
According to epidemiologic research, it may be linked to better
cognitive and visual abilities and a lower chance of developing
chronic conditions, including cancer, CVD, and age-related
macular degeneration (AMD) (Moran et al., 2018).

5.4.1 Astaxanthin
A natural xanthophyll carotenoid called astaxanthin (3,3′-

dihydroxy-β,β′-carotene-4,4′-dione) is present in various marine
species, such as Haematococcus pluvialis, Chlorella zofingiensis,
Chlorococcum, and Phaffia rhodozyma (Hussein et al., 2006). It
has been suggested that it has anti-inflammatory, antioxidant,
and neuroprotective properties, and research from different
experimental models has demonstrated that these properties
are linked to a decreased expression of proinflammatory
cytokines and a decreased production of ROS and free radicals
(Kim et al., 2020). Xue et al. (2017) reported that astaxanthin
prevents oxidative stress and apoptosis, which reduces the
hematopoietic damage caused by whole-body radiation in
mice. Yang et al. (2017) stated that astaxanthin could
demethylate certain promoters of particular genes, which may
help increase the stability of the total chromatin structure. Only
at high dosages does astaxanthin enhance the expression of
ABCA1/G1 (up to 2.0- and 3.2-fold at the protein level),
which promotes ApoA-1/HDL-mediated cholesterol efflux
(Iizuka et al., 2012).

5.4.2 β-Carotene
β-Carotene (BC), a precursor to vitamin A, is present in a greater

variety of fruits and vegetables. It is frequently used in foods as an
antioxidant and natural colorant (Zhao et al., 2020). Lower overall,
CVD, heart disease, stroke, cancer, and other causes of death are
linked to a higher β-carotene biochemical state (Huang et al., 2018).
Kim et al. (2019) suggested that BC can regulate epigenetic
modifications for its anticancer effects in colon cancer stem cells.
Furthermore, endogenous β-carotene 15,15′-monooxygenase 1 may
convert 9-cis-c into 9-cis retinoic acid or other retinoids, activate the
retinoid X receptor (RXR), and stop foam cell formation and the
development of AS (Zolberg Relevy et al., 2015).

5.4.3 Lycopene
Lycopene, a member of the carotenoid family, is mostly found in

foods such as tomatoes (particularly the red kind), watermelons, and
red pomelo (Zhan et al., 2021). Lycopene is widely recognized for its
anti-inflammatory and antioxidant properties and ability to affect
important bodily metabolic processes (Han et al., 2016). Napolitano
et al. (2007) demonstrated that lycopene reduced cholesterol buildup
by upregulating IL-10 secretion in human peripheral blood
monocyte-derived macrophages (HMDMs) and THP-1
macrophages and downregulating SR-A mRNA expression and
lipid synthesis. Furthermore, HMG-CoA reductase inhibition,
RhoA inactivation, an increase in PPARγ and LXRα activation,
and ultimately an improvement in ABCA1 and caveolin
1 expression may all contribute to the potential cascade impact
of lycopene in lowering foam cell formation (Palozza et al., 2011).

5.4.4 Retinoids
Retinol, generally known as vitamin A1, and its natural

derivatives, 9-cis retinoic acid (9-cis-RA) and all-trans retinoic
acid (ATRA), are thought to be prospective therapeutic agents
for the prevention of AS development because they can promote
macrophage cholesterol efflux. Retinoids reportedly cause epigenetic
alterations that cause stem cell differentiation (Gudas, 2013).
Through binding to the RARs, ATRA modifies how the retinoic
acid receptors (RARs) interact with various protein elements of the
transcription complex at multiple genes in stem cells. The epigenetic
marks on histones or DNA are added to or removed by some of these
protein components of the transcription complex, altering the
chromatin structure and leading to the departure from the self-
renewing, pluripotent stem cell state (Gudas, 2013). According to
research, 9-cis-RA and ATRA can significantly increase the
expression of ABCA1, ABCG1, and ApoE in THP-1
macrophages and the efflux of cholesterol to ApoA-1 in
RAW264.7 macrophages (Langmann et al., 2005). Additionally,
9-cis-RA has been connected to the ABCA1-mediated cholesterol
efflux from J774 macrophages, THP-1-derived macrophages, and
RAW264.7 macrophages (Schwartz et al., 2000; Kiss et al., 2005).

5.5 Phenylpropanoids

5.5.1 Ferulic acid
Ferulic acid (FA) ((E)-3-(4-hydroxy-3-methoxy-phenyl) prop-

2-enoic acid), a caffeic acid derivative, can be isolated from several
Chinese herbal medicines, including Cimicifuga racemosa, Angelica
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sinensis, and Rhizoma Ligustici Chuanxiong, as well as from plants
that are commonly found in our diet, includingOryza sativa,Glycine
max, and Zea mays (Li et al., 2022). FA has free radical scavenging
and antioxidant properties that have a wide range of potential
applications in the prevention and treatment of CVD and the
management of cancer, as well as hepatoprotective, antimicrobial,
and anti-inflammatory therapies (Li et al., 2022). FA, a metabolite of
chlorogenic acid, has an improving effect on HDL-mediated
cholesterol efflux from macrophages by increasing the expression
of ABCG1 and SR-BI (Uto-Kondo et al., 2010).

5.5.2 Chlorogenic acid
Chlorogenic acid (CA) is a phenolic molecule from the

hydroxycinnamic family found in drinks made from herbs, fruits,
and vegetables. It is recognized for its antioxidant capabilities against
free radicals (Santana-Gálvez et al., 2017). In ApoE−/− mice fed a diet
high in cholesterol, CA decreased the percentage and total
atherosclerotic lesion area, as well as the aortic dilatation and
serum levels of TC, LDL-C, and TG (Wu et al., 2014). Through
the upregulation of the transcription of PPARγ, LXRα, ABCA1, and
ABCG1 in in vitro mechanistic studies, CA repressed foam cell
growth and decreased the oxLDL-induced neutral lipid and
cholesterol accumulation in RAW264.7 macrophages (Wu et al.,
2014). In HepG2 cells, chlorogenic acid enhanced mRNA expression
of ABCA1, CYP7A1, and AMPKα2 and facilitated the efflux of TC
and triacylglycerol (Hao et al., 2016).

5.5.3 Lignans
The largest concentration of lignans, which are bioactive, non-

nutritive, non-caloric phenolic plant chemicals, is found in flax and
sesame seeds (Peterson et al., 2010). Dietary lignans demonstrate
strong antiviral, antioxidant, anticancer, and antiatherosclerotic
properties via functioning as phytoestrogens (Peterson et al., 2010).

5.5.3.1 Arctigenin
Across hundreds of years, people all over the world have used

the roots of Arctium lappa, also known as larger burdock, as food
and traditional herbal medicine. The seeds of the Arctium lappa
plant contain arctigenin, a phenylpropanoid dibenzylbutyrolactone
lignin (Nam and Nam, 2020). The antibacterial, antiviral,
antioxidant, anti-inflammatory, and anticancer properties of
arctigenin have been demonstrated (Maxwell et al., 2018).
Arctigenin boosted the expression of ApoE, ABCA1, and
ABCG1 in oxLDL-loaded THP-1 macrophages, increasing
cholesterol efflux (Xu et al., 2013).

5.5.3.2 Honokiol
Honokiol (HKL) [2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-

prop-2-enyl-phenol] is a naturally occurring biphenolic
chemical with a low molecular weight, which is obtained from
the bark of magnolia trees and is utilized in traditional Chinese
medicine (Fried and Arbiser, 2009). It possesses analgesic, anti-
inflammatory, antioxidant, anti-tumor, and neuroprotective
activities as a pharmaceutical (Pillai et al., 2015). Honokiol
could activate the RXR/LXR heterodimer, inducing the
ABCA1 expression and improving cholesterol efflux from
MPMs (Kotani et al., 2010). According to another study,
honokiol boosted ABCA1 expression by interacting with

RXRβ. Additionally, it boosted the expression of ABCG1 and
ApoE (Jung et al., 2010).

5.5.3.3 Sesamin
Sesamin, a naturally occurring lignin compound, is isolated

from sesame seeds and has many positive health effects,
including anti-inflammatory, anticancer, anti-hypertension, anti-
thrombotic, antidiabetic, anti-atherogenic, anti-obesity, and
lipolytic effects (Dalibalta et al., 2020). It also can reduce damage
to the intestine, kidneys, heart, brain, and liver (Wang et al., 2021b).
Studies have shown that sesamin inhibits LPS-induced macrophage-
derived chemokine expression through ER, PPAR-α, MAPK-p38
pathway, NFκB-p65 pathway, and epigenetic regulation (Hsieh
et al., 2014). Sesamin boosted cholesterol efflux from
RAW264.7 macrophages and decreased the oxLDL-induced
accumulation of cholesterol, most likely by activating PPARγ,
LXRα, and ABCG1 (Liu et al., 2014b). Sesamin reduced AS in
ApoE−/− mice by stifling vascular inflammation, according to in vivo
research (Wu et al., 2010).

5.6 Alkaloids

5.6.1 Berberine
Berberine (BBR) is a naturally occurring substance extracted

from herbs, including Coptis chinensis and Berberis vulgaris. BBR
has been identified as a safe and effective treatment for type
2 diabetes and hyperlipidemia with new mechanisms since 2004
(Kong et al., 2004). Over the past 10 years, several studies have
demonstrated the clinical effectiveness of BBR in decreasing lipids
and glucose (Wang et al., 2021c). The investigation results
demonstrated that BBR administration mostly impacted enzymes
involved in histone acetylation and methylation (Zhang et al., 2016).
The expression of the proteins H3K4me3, H3K27me3, and
H3K36me3 reduced after BBR administration, according to
Western blotting tests conducted concurrently (Zhang et al.,
2016). By encouraging LXRα/ABCA1-dependent cholesterol
efflux, BBR reduced the development of foam cells in THP-1
macrophages (Lee et al., 2010). Nevertheless, ABCG1, SR-BI,
CD36, and SR-A were unaffected by berberine. The impact of
BBR on macrophages is also mediated by other pathways,
including AMPK/Sirt1 activation, autophagy induction, and
adipocyte enhancer-binding protein 1 suppression (Huang et al.,
2012; Chi et al., 2014; Kou et al., 2017). Moreover, in a rat model of
adjuvant arthritis, BBR treatment restrained the phagocytic function
of macrophages and restored the balance of M1/M2 by reducing the
levels of M1 cytokines (TNF-α, IL-1β, and IL-6), increasing the levels
of M2 cytokines (IL-10 and TGF-β1), increasing the expression of
arginase 1(Arg1) (M2 marker), and decreasing the expression of
iNOS (M1 marker) (Zhou et al., 2019).

5.6.2 Piperine
Long and black peppers contain piperine (Srinivasan, 2007).

Previous research has demonstrated that piperine has a variety of
pharmacological properties. In terms of pharmaceuticals,
piperine decreases depressive disorders, prevents
hepatotoxicity, and reduces obesity and diabetes (Nogara
et al., 2016). According to studies, piperine suppresses the
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development of adipocytes by dynamically controlling histone
modifications and regulating the expression of genes involved in
adipogenesis and lipolysis (Park et al., 2019). In THP-1-
differentiated human macrophages, piperine was likewise
observed to increase ABCA1 protein expression. However, it
did not affect ABCG1 or SR-BI expression (Wang et al., 2017a).

5.6.3 Rutaecarpine
Rutaecarpine (8,13-dihydro-7H-indolo-[2′,3′:3.4]-pyrido [2,1-

b]-quinazolin-5-one) is an alkaloid first isolated from E.
rutaecarpa. Earlier studies demonstrated that rutaecarpine
possesses many biological and pharmacological features,
including the ability to cause diuresis, sweating, uterotonic
action, brain function improvement, antinociception, and anti-
obesity (Jayakumar et al., 2021). Studies showed that rutaecarpine
increased cholesterol efflux by upregulating the expression of
ABCA1 and SR-BI in vitro (RAW264.7 macrophages and
HepG2 cells) and in vivo (ApoE−/− mice) (without changing
ABCG1 and CD36) (Xu et al., 2014). This reduced the lipid
buildup and foam cell formation. Through this method,
rutaecarpine decreased the growth of atherosclerotic plaque in
ApoE−/− mice (Xu et al., 2014).

5.7 Others

5.7.1 Astragalus polysaccharides
The primary active ingredient of Astragalus membranaceus,

Astragalus polysaccharides (APS), is widely used in clinical
applications as an immunomodulator (Li et al., 2012). It has
several bio-activities, including anti-inflammatory, proliferative,
and immune-regulating effects, and a molecular weight of 3.6 ×
104 Da (Sun et al., 2021a). Studies have demonstrated that APS
significantly abrogates LPS-induced IL-6 levels in THP-1
macrophages (Long et al., 2022). ABCA1 expression in foam cells
exposed to TNF-α increases in response to APS (Wang et al., 2010a).
As a result, APS increases the outflow of cholesterol and reduces fat
accumulation. According to further research, TNF-α-induced NF-
κB activation in foam cells generated from THP-1 was reversed by
APS (Wang et al., 2010a).

5.7.2 Diosgenin
Diosgenin has gained more attention recently due to its

efficacy in treating several metabolic diseases, including
diabetes, CVD, neurological conditions, osteoporosis, and
hyperlipidemia, as well as its anticancer effects, which are
mediated via multiple targets and regulate a variety of signals
(Sun et al., 2021b). By preventing the nuclear translocation of the
Notch intracellular domain in THP-1 cells, diosgenin prevented
AS (Binesh et al., 2018). By preventing the induction of ICAM1,
VCAM1, and endothelial lipase, it also prevented the adherence
of TNF-α-induced leukocytes to activated endothelium cells
(Wu et al., 2015b). Diosgenin is a naturally occurring
compound capable of modulating M1 polarization (Saqib
et al., 2018). Additionally, dioscin prevented systemic
inflammation and the LOX-1/NF-κB pathway in MPMs from
rats with atherosclerotic arteries, inhibiting the absorption of
oxLDL (Wang et al., 2017b).

5.7.3 Panax notoginseng saponins
The primary bioactive components of Panax notoginseng (P.

notoginseng) are known as Panax notoginseng saponins (PNS),
which include several saponins of the dammarane type (Xu et al.,
2019). PNS have several cardiovascular preventive properties, including
avoiding endothelial dysfunction, boosting blood flow, inhibiting the
production of foam cells, antioxidation, anti-inflammation, and
antithrombosis (Yuan et al., 2011). According to Duan et al. (2022),
PNS regulate themiR-194 promoter, miR-194, andMAPKmethylation
using cellular assays and blinded, controlled trials. PNS increased
ABCA1 expression in macrophages, which reduced the buildup of
cholesterol esters (Jia et al., 2010). PNS, at a dosage of 100 mg/kg per
day, reduced foam cell development in rats with AS caused by zymosan
A, according to in vivo research (Yuan et al., 2011).

5.7.4 Emodin
Emodin is an anthraquinone derivative isolated from Polygonum

multiflorum (Ma et al., 2015). It has various therapeutic actions,
including anti-tumor, anti-inflammatory, antioxidant, and anti-virus
properties (Zheng et al., 2019). Studies have shown that emodin can
bidirectionally regulate macrophage polarization and epigenetic
regulation of macrophage memory (Iwanowycz et al., 2016). Emodin
prevented H3K27 trimethylation (H3K27m3) marks from being
removed from, and H3K27ac marks from being added to, genes
needed for M1 or M2 polarization of macrophages (Iwanowycz
et al., 2016). By activating the PPARγ/LXRα/ABCA1 signaling
pathway, emodin boosted ApoA-1-mediated cholesterol efflux from
THP-1 macrophages. Emodin also reduced diet-induced AS in rabbits
(Hei et al., 2006; Fu et al., 2014).

6 Summary and perspectives

Evidence suggests that low-grade inflammation, predominantly
driven by the immune system, plays a critical role in the development
of AS (Leentjens et al., 2018). Although anti-inflammatory medications,
such as canakinumab and colchicine, have been recently proven to lower
the risk of CVD, there are still significant side effects and a high residual
risk (Ridker et al., 2017; Tardif et al., 2019). Therefore, innovative
therapies are urgently needed, and trained immunity provides
interesting new pharmacological targets for new drug therapies. With
enhanced production of pro-atherosclerotic cytokines/chemokines and
higher foamcell generation, trainedmonocytes andmacrophages showed
a strong pro-atherosclerotic character. This is accomplished by epigenetic
reprogramming of histone methylation levels and metabolic rewiring.
These processes occur not only in circulating monocytes but also in
myeloid progenitor cells, which ensure a long-term state of
hyperactivation of innate immune cells. This review describes the
aforementioned mechanisms in detail.

Although trained immunity is an immunological memory that is
not disease-specific, different trained immune programs have different
levels of disease specificity (Mulder et al., 2019). Natural products serve
as a desirable resource in the search for novel therapies due to their high
structural variety and biodiversity. Many natural products have been
potential candidates for regulating immune training through different
mechanisms, such as RV and EGCG. This paper provides an overview
of anti-ASCVD natural products, such as flavonoids, phenols,
terpenoids, carotenoids, phenylpropanoids, and alkaloids, that
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potentially modulate trained immunity. Although in vivo studies of AS
models already exist for these natural compounds, making these
compounds more promising, there is currently less evidence that
these natural compounds can directly modulate training immunity.
Further studies are needed to reveal possible pathways by which natural
products act on trained immunity.
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Glossary

ASCVD atherosclerotic cardiovascular diseases

AS atherosclerosis

ABCA1 ATP-binding cassette transporter A1

APS Astragalus polysaccharides

ATRA all-trans retinoic acid

AMD age-related macular degeneration

ABCG1 ATP-binding cassette transporter G1

ATP adenosine triphosphate

AMPK AMP-activated protein kinase

AP-1 activating protein-1

BCG bacille Calmette–Guérin

BA betulinic acid

BC β-carotene
BBR berberine

CA chlorogenic acid

CD36 cluster of differentiation 36

CAD coronary artery disease

CoA acetyl coenzyme A

CCL2 chemokine C–C motif ligand 2

CVD cardiovascular diseases

C3G Cyanidin-3-O-glucoside

chrysin 5,7-dihydroxyflavone

CARM1 coactivator-associated arginine methyltransferase 1

ceRNA competing endogenous RNA

DAMP damage-associated molecular pattern

DNMTs DNA methyltransferases

EGCG epigallocatechin-3-gallate

EA ellagic acid

FAO fatty acid oxidation

FAS fatty acid synthase

FAK focal adhesion kinase

GM-CSF granulocyte–macrophage colony-stimulating factor

GS glutamine synthetase

GVHD graft-versus-host disease

HATi histone acetyltransferase inhibitor

HATs histone acetyltransferases

HDACs histone deacetylases

HDL-C HDL-cholesterol

HFD high-fat diet

HDL High-density lipoprotein

HSCs hematopoietic stem cells

HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A

H3K4me3 histone H3 lysine 4 trimethylation

HIF-1α hyperoxia-inducible substance 1α

HK-II hexokinase II

H3K27ac histone 3 lysine 27 acetylation

H3K4me1 histone 3 lysine 4 methylation

hesperidin 3′,5,7,-trihydroxy-4′-methoxyflavanone

H3K4me2/3 H3K4 di- and tri-methylation

HDAC1–2 histone deacetylase 1–2

HPC hematopoietic progenitor cell

HMDMs human peripheral blood monocyte-derived macrophages

H3K27m3 H3K27 trimethylation

iNOS

inducible nitric oxide synthase

IL interleukin

ICAM-1 intercellular adhesion molecule 1

JNK c-Jun N-terminal kinases

LDL low-density lipoprotein

LDs lipid droplets

LXR liver X receptor

LPS lipopolysaccharide

lncRNAs long non-coding RNAs

LDL-C LDL-cholesterol

MCP-1 monocyte chemoattractant protein-1

MMP-2 matrix metalloproteinases 2

m5C methylate cytosine

mTOR mammalian target of rapamycin

MSCs mesenchymal stem cells

NLRP3

NOD-, LRR-, and pyrin domain-containing protein 3

NO nitric oxide

Nox1 NADPH oxidase 1

oxLDL oxidized LDL

OXPHOS oxidative phosphorylation

oxPAPC oxidized phospholipids made of 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphorylcholine

PPARγ peroxisome proliferator-activated receptor γ
PPP pentose phosphate pathway

PFKFB3 6-phosphofructo-2-kinase/fructo-2, 6-bisphosphatase

PDK1 pyruvate dehydrogenase kinase isozyme 1

PI3K phosphoinositide 3-kinase

PON-1 paraoxonase-1

PEA pomegranate ellagic acid

PCSK9 proprotein convertase subtilisin/kexin type 9

PCA protocatechuic acid

PNS Panax notoginseng saponins

quercetin

3,3’,4’,5,7-pentahydroxyflavone

RXR retinoid X receptor
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ROS reactive oxygen species

Runx1 Runt-related transcription factor 1

RCT reverse cholesterol transport

RV resveratrol

RARs retinoic acid receptors

SalB salvianolic acid B

SAM S-adenosylmethionine

SR-A type A scavenger receptor

SR-BI scavenger receptor class B type I

SDH succinate dehydrogenase

STK11 serine/threonine kinase 11

TNF-α tumor necrosis factor-α
TCA cycle tricarboxylic acid cycle

TLR4 Toll-like receptor 4

TC total cholesterol

TMAO trimethylamine N-oxide

Tan IIA tanshinone IIA

ursolic acid

3B-hydroxy-12-urc-12-en-28-oic acid

9-cis-RA

9-cis retinoic acid

VCAM-1 vascular cell adhesion molecule 1

VSMCs vascular smooth muscle cells

WTD Western-style diet

WDR5 WD repeat-containing protein 5

2-DG

2-deoxy-d-glucose

2-DG6P

2-deoxy-d-glucose-6-phosphate.
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